]> code.delx.au - gnu-emacs/blob - src/md5.c
*** empty log message ***
[gnu-emacs] / src / md5.c
1 /* Functions to compute MD5 message digest of files or memory blocks.
2 according to the definition of MD5 in RFC 1321 from April 1992.
3 Copyright (C) 1995, 1996, 1997, 1999, 2000, 2002, 2003, 2004,
4 2005, 2006 Free Software Foundation, Inc.
5 This file is part of the GNU Emacs.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
23
24 #ifdef HAVE_CONFIG_H
25 # include <config.h>
26 #endif
27
28 #include <sys/types.h>
29
30 #if STDC_HEADERS || defined _LIBC
31 # include <stdlib.h>
32 # include <string.h>
33 #else
34 # ifndef HAVE_MEMCPY
35 # define memcpy(d, s, n) bcopy ((s), (d), (n))
36 # endif
37 #endif
38
39 #ifdef _LIBC
40 # include <endian.h>
41 # if __BYTE_ORDER == __BIG_ENDIAN
42 # define WORDS_BIG_ENDIAN 1
43 # endif
44 /* We need to keep the namespace clean so define the MD5 function
45 protected using leading __ . */
46 # define md5_init_ctx __md5_init_ctx
47 # define md5_process_block __md5_process_block
48 # define md5_process_bytes __md5_process_bytes
49 # define md5_finish_ctx __md5_finish_ctx
50 # define md5_read_ctx __md5_read_ctx
51 # define md5_stream __md5_stream
52 # define md5_buffer __md5_buffer
53 #endif
54
55 #include "md5.h"
56
57 #ifdef WORDS_BIG_ENDIAN
58 # define SWAP(n) \
59 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
60 #else
61 # define SWAP(n) (n)
62 #endif
63
64
65 /* This array contains the bytes used to pad the buffer to the next
66 64-byte boundary. (RFC 1321, 3.1: Step 1) */
67 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
68
69
70 /* Initialize structure containing state of computation.
71 (RFC 1321, 3.3: Step 3) */
72 void
73 md5_init_ctx (ctx)
74 struct md5_ctx *ctx;
75 {
76 ctx->A = 0x67452301;
77 ctx->B = 0xefcdab89;
78 ctx->C = 0x98badcfe;
79 ctx->D = 0x10325476;
80
81 ctx->total[0] = ctx->total[1] = 0;
82 ctx->buflen = 0;
83 }
84
85 /* Put result from CTX in first 16 bytes following RESBUF. The result
86 must be in little endian byte order.
87
88 IMPORTANT: On some systems it is required that RESBUF is correctly
89 aligned for a 32 bits value. */
90 void *
91 md5_read_ctx (ctx, resbuf)
92 const struct md5_ctx *ctx;
93 void *resbuf;
94 {
95 ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
96 ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
97 ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
98 ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
99
100 return resbuf;
101 }
102
103 /* Process the remaining bytes in the internal buffer and the usual
104 prolog according to the standard and write the result to RESBUF.
105
106 IMPORTANT: On some systems it is required that RESBUF is correctly
107 aligned for a 32 bits value. */
108 void *
109 md5_finish_ctx (ctx, resbuf)
110 struct md5_ctx *ctx;
111 void *resbuf;
112 {
113 /* Take yet unprocessed bytes into account. */
114 md5_uint32 bytes = ctx->buflen;
115 size_t pad;
116
117 /* Now count remaining bytes. */
118 ctx->total[0] += bytes;
119 if (ctx->total[0] < bytes)
120 ++ctx->total[1];
121
122 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
123 memcpy (&ctx->buffer[bytes], fillbuf, pad);
124
125 /* Put the 64-bit file length in *bits* at the end of the buffer. */
126 *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
127 *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
128 (ctx->total[0] >> 29));
129
130 /* Process last bytes. */
131 md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
132
133 return md5_read_ctx (ctx, resbuf);
134 }
135
136 /* Compute MD5 message digest for bytes read from STREAM. The
137 resulting message digest number will be written into the 16 bytes
138 beginning at RESBLOCK. */
139 int
140 md5_stream (stream, resblock)
141 FILE *stream;
142 void *resblock;
143 {
144 /* Important: BLOCKSIZE must be a multiple of 64. */
145 #define BLOCKSIZE 4096
146 struct md5_ctx ctx;
147 char buffer[BLOCKSIZE + 72];
148 size_t sum;
149
150 /* Initialize the computation context. */
151 md5_init_ctx (&ctx);
152
153 /* Iterate over full file contents. */
154 while (1)
155 {
156 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
157 computation function processes the whole buffer so that with the
158 next round of the loop another block can be read. */
159 size_t n;
160 sum = 0;
161
162 /* Read block. Take care for partial reads. */
163 do
164 {
165 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
166
167 sum += n;
168 }
169 while (sum < BLOCKSIZE && n != 0);
170 if (n == 0 && ferror (stream))
171 return 1;
172
173 /* If end of file is reached, end the loop. */
174 if (n == 0)
175 break;
176
177 /* Process buffer with BLOCKSIZE bytes. Note that
178 BLOCKSIZE % 64 == 0
179 */
180 md5_process_block (buffer, BLOCKSIZE, &ctx);
181 }
182
183 /* Add the last bytes if necessary. */
184 if (sum > 0)
185 md5_process_bytes (buffer, sum, &ctx);
186
187 /* Construct result in desired memory. */
188 md5_finish_ctx (&ctx, resblock);
189 return 0;
190 }
191
192 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
193 result is always in little endian byte order, so that a byte-wise
194 output yields to the wanted ASCII representation of the message
195 digest. */
196 void *
197 md5_buffer (buffer, len, resblock)
198 const char *buffer;
199 size_t len;
200 void *resblock;
201 {
202 struct md5_ctx ctx;
203
204 /* Initialize the computation context. */
205 md5_init_ctx (&ctx);
206
207 /* Process whole buffer but last len % 64 bytes. */
208 md5_process_bytes (buffer, len, &ctx);
209
210 /* Put result in desired memory area. */
211 return md5_finish_ctx (&ctx, resblock);
212 }
213
214
215 void
216 md5_process_bytes (buffer, len, ctx)
217 const void *buffer;
218 size_t len;
219 struct md5_ctx *ctx;
220 {
221 /* const void aligned_buffer = buffer; */
222
223 /* When we already have some bits in our internal buffer concatenate
224 both inputs first. */
225 if (ctx->buflen != 0)
226 {
227 size_t left_over = ctx->buflen;
228 size_t add = 128 - left_over > len ? len : 128 - left_over;
229
230 /* Only put full words in the buffer. */
231 add -= add % __alignof__ (md5_uint32);
232
233 memcpy (&ctx->buffer[left_over], buffer, add);
234 ctx->buflen += add;
235
236 if (ctx->buflen > 64)
237 {
238 md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
239
240 ctx->buflen &= 63;
241 /* The regions in the following copy operation cannot overlap. */
242 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
243 ctx->buflen);
244 }
245
246 buffer = (const char *) buffer + add;
247 len -= add;
248 }
249
250 /* Process available complete blocks. */
251 if (len > 64)
252 {
253 md5_process_block (buffer, len & ~63, ctx);
254 buffer = (const char *) buffer + (len & ~63);
255 len &= 63;
256 }
257
258 /* Move remaining bytes in internal buffer. */
259 if (len > 0)
260 {
261 size_t left_over = ctx->buflen;
262
263 memcpy (&ctx->buffer[left_over], buffer, len);
264 left_over += len;
265 if (left_over >= 64)
266 {
267 md5_process_block (ctx->buffer, 64, ctx);
268 left_over -= 64;
269 memcpy (ctx->buffer, &ctx->buffer[64], left_over);
270 }
271 ctx->buflen = left_over;
272 }
273 }
274
275
276 /* These are the four functions used in the four steps of the MD5 algorithm
277 and defined in the RFC 1321. The first function is a little bit optimized
278 (as found in Colin Plumbs public domain implementation). */
279 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
280 #define FF(b, c, d) (d ^ (b & (c ^ d)))
281 #define FG(b, c, d) FF (d, b, c)
282 #define FH(b, c, d) (b ^ c ^ d)
283 #define FI(b, c, d) (c ^ (b | ~d))
284
285 /* Process LEN bytes of BUFFER, accumulating context into CTX.
286 It is assumed that LEN % 64 == 0. */
287
288 void
289 md5_process_block (buffer, len, ctx)
290 const void *buffer;
291 size_t len;
292 struct md5_ctx *ctx;
293 {
294 md5_uint32 correct_words[16];
295 const md5_uint32 *words = buffer;
296 size_t nwords = len / sizeof (md5_uint32);
297 const md5_uint32 *endp = words + nwords;
298 md5_uint32 A = ctx->A;
299 md5_uint32 B = ctx->B;
300 md5_uint32 C = ctx->C;
301 md5_uint32 D = ctx->D;
302
303 /* First increment the byte count. RFC 1321 specifies the possible
304 length of the file up to 2^64 bits. Here we only compute the
305 number of bytes. Do a double word increment. */
306 ctx->total[0] += len;
307 if (ctx->total[0] < len)
308 ++ctx->total[1];
309
310 /* Process all bytes in the buffer with 64 bytes in each round of
311 the loop. */
312 while (words < endp)
313 {
314 md5_uint32 *cwp = correct_words;
315 md5_uint32 A_save = A;
316 md5_uint32 B_save = B;
317 md5_uint32 C_save = C;
318 md5_uint32 D_save = D;
319
320 /* First round: using the given function, the context and a constant
321 the next context is computed. Because the algorithms processing
322 unit is a 32-bit word and it is determined to work on words in
323 little endian byte order we perhaps have to change the byte order
324 before the computation. To reduce the work for the next steps
325 we store the swapped words in the array CORRECT_WORDS. */
326
327 #define OP(a, b, c, d, s, T) \
328 do \
329 { \
330 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
331 ++words; \
332 CYCLIC (a, s); \
333 a += b; \
334 } \
335 while (0)
336
337 /* It is unfortunate that C does not provide an operator for
338 cyclic rotation. Hope the C compiler is smart enough. */
339 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
340
341 /* Before we start, one word to the strange constants.
342 They are defined in RFC 1321 as
343
344 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
345 */
346
347 /* Round 1. */
348 OP (A, B, C, D, 7, 0xd76aa478);
349 OP (D, A, B, C, 12, 0xe8c7b756);
350 OP (C, D, A, B, 17, 0x242070db);
351 OP (B, C, D, A, 22, 0xc1bdceee);
352 OP (A, B, C, D, 7, 0xf57c0faf);
353 OP (D, A, B, C, 12, 0x4787c62a);
354 OP (C, D, A, B, 17, 0xa8304613);
355 OP (B, C, D, A, 22, 0xfd469501);
356 OP (A, B, C, D, 7, 0x698098d8);
357 OP (D, A, B, C, 12, 0x8b44f7af);
358 OP (C, D, A, B, 17, 0xffff5bb1);
359 OP (B, C, D, A, 22, 0x895cd7be);
360 OP (A, B, C, D, 7, 0x6b901122);
361 OP (D, A, B, C, 12, 0xfd987193);
362 OP (C, D, A, B, 17, 0xa679438e);
363 OP (B, C, D, A, 22, 0x49b40821);
364
365 /* For the second to fourth round we have the possibly swapped words
366 in CORRECT_WORDS. Redefine the macro to take an additional first
367 argument specifying the function to use. */
368 #undef OP
369 #define OP(f, a, b, c, d, k, s, T) \
370 do \
371 { \
372 a += f (b, c, d) + correct_words[k] + T; \
373 CYCLIC (a, s); \
374 a += b; \
375 } \
376 while (0)
377
378 /* Round 2. */
379 OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
380 OP (FG, D, A, B, C, 6, 9, 0xc040b340);
381 OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
382 OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
383 OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
384 OP (FG, D, A, B, C, 10, 9, 0x02441453);
385 OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
386 OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
387 OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
388 OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
389 OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
390 OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
391 OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
392 OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
393 OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
394 OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
395
396 /* Round 3. */
397 OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
398 OP (FH, D, A, B, C, 8, 11, 0x8771f681);
399 OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
400 OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
401 OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
402 OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
403 OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
404 OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
405 OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
406 OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
407 OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
408 OP (FH, B, C, D, A, 6, 23, 0x04881d05);
409 OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
410 OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
411 OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
412 OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
413
414 /* Round 4. */
415 OP (FI, A, B, C, D, 0, 6, 0xf4292244);
416 OP (FI, D, A, B, C, 7, 10, 0x432aff97);
417 OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
418 OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
419 OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
420 OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
421 OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
422 OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
423 OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
424 OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
425 OP (FI, C, D, A, B, 6, 15, 0xa3014314);
426 OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
427 OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
428 OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
429 OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
430 OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
431
432 /* Add the starting values of the context. */
433 A += A_save;
434 B += B_save;
435 C += C_save;
436 D += D_save;
437 }
438
439 /* Put checksum in context given as argument. */
440 ctx->A = A;
441 ctx->B = B;
442 ctx->C = C;
443 ctx->D = D;
444 }
445
446 /* arch-tag: 60084f04-b434-42cb-9d2b-e91df01f4325
447 (do not change this comment) */