]> code.delx.au - gnu-emacs/blob - doc/lispref/sequences.texi
* lisp/emacs-lisp/map.el: Better docstring for the map pcase macro.
[gnu-emacs] / doc / lispref / sequences.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2015 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Sequences Arrays Vectors
7 @chapter Sequences, Arrays, and Vectors
8 @cindex sequence
9
10 The @dfn{sequence} type is the union of two other Lisp types: lists
11 and arrays. In other words, any list is a sequence, and any array is
12 a sequence. The common property that all sequences have is that each
13 is an ordered collection of elements.
14
15 An @dfn{array} is a fixed-length object with a slot for each of its
16 elements. All the elements are accessible in constant time. The four
17 types of arrays are strings, vectors, char-tables and bool-vectors.
18
19 A list is a sequence of elements, but it is not a single primitive
20 object; it is made of cons cells, one cell per element. Finding the
21 @var{n}th element requires looking through @var{n} cons cells, so
22 elements farther from the beginning of the list take longer to access.
23 But it is possible to add elements to the list, or remove elements.
24
25 The following diagram shows the relationship between these types:
26
27 @example
28 @group
29 _____________________________________________
30 | |
31 | Sequence |
32 | ______ ________________________________ |
33 | | | | | |
34 | | List | | Array | |
35 | | | | ________ ________ | |
36 | |______| | | | | | | |
37 | | | Vector | | String | | |
38 | | |________| |________| | |
39 | | ____________ _____________ | |
40 | | | | | | | |
41 | | | Char-table | | Bool-vector | | |
42 | | |____________| |_____________| | |
43 | |________________________________| |
44 |_____________________________________________|
45 @end group
46 @end example
47
48 @menu
49 * Sequence Functions:: Functions that accept any kind of sequence.
50 * Arrays:: Characteristics of arrays in Emacs Lisp.
51 * Array Functions:: Functions specifically for arrays.
52 * Vectors:: Special characteristics of Emacs Lisp vectors.
53 * Vector Functions:: Functions specifically for vectors.
54 * Char-Tables:: How to work with char-tables.
55 * Bool-Vectors:: How to work with bool-vectors.
56 * Rings:: Managing a fixed-size ring of objects.
57 @end menu
58
59 @node Sequence Functions
60 @section Sequences
61
62 This section describes functions that accept any kind of sequence.
63
64 @defun sequencep object
65 This function returns @code{t} if @var{object} is a list, vector,
66 string, bool-vector, or char-table, @code{nil} otherwise.
67 @end defun
68
69 @defun length sequence
70 @cindex string length
71 @cindex list length
72 @cindex vector length
73 @cindex sequence length
74 @cindex char-table length
75 This function returns the number of elements in @var{sequence}. If
76 @var{sequence} is a dotted list, a @code{wrong-type-argument} error is
77 signaled. Circular lists may cause an infinite loop. For a
78 char-table, the value returned is always one more than the maximum
79 Emacs character code.
80
81 @xref{Definition of safe-length}, for the related function @code{safe-length}.
82
83 @example
84 @group
85 (length '(1 2 3))
86 @result{} 3
87 @end group
88 @group
89 (length ())
90 @result{} 0
91 @end group
92 @group
93 (length "foobar")
94 @result{} 6
95 @end group
96 @group
97 (length [1 2 3])
98 @result{} 3
99 @end group
100 @group
101 (length (make-bool-vector 5 nil))
102 @result{} 5
103 @end group
104 @end example
105 @end defun
106
107 @noindent
108 See also @code{string-bytes}, in @ref{Text Representations}.
109
110 If you need to compute the width of a string on display, you should use
111 @code{string-width} (@pxref{Size of Displayed Text}), not @code{length},
112 since @code{length} only counts the number of characters, but does not
113 account for the display width of each character.
114
115 @defun elt sequence index
116 @cindex elements of sequences
117 This function returns the element of @var{sequence} indexed by
118 @var{index}. Legitimate values of @var{index} are integers ranging
119 from 0 up to one less than the length of @var{sequence}. If
120 @var{sequence} is a list, out-of-range values behave as for
121 @code{nth}. @xref{Definition of nth}. Otherwise, out-of-range values
122 trigger an @code{args-out-of-range} error.
123
124 @example
125 @group
126 (elt [1 2 3 4] 2)
127 @result{} 3
128 @end group
129 @group
130 (elt '(1 2 3 4) 2)
131 @result{} 3
132 @end group
133 @group
134 ;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
135 (string (elt "1234" 2))
136 @result{} "3"
137 @end group
138 @group
139 (elt [1 2 3 4] 4)
140 @error{} Args out of range: [1 2 3 4], 4
141 @end group
142 @group
143 (elt [1 2 3 4] -1)
144 @error{} Args out of range: [1 2 3 4], -1
145 @end group
146 @end example
147
148 This function generalizes @code{aref} (@pxref{Array Functions}) and
149 @code{nth} (@pxref{Definition of nth}).
150 @end defun
151
152 @defun copy-sequence sequence
153 @cindex copying sequences
154 This function returns a copy of @var{sequence}. The copy is the same
155 type of object as the original sequence, and it has the same elements
156 in the same order.
157
158 Storing a new element into the copy does not affect the original
159 @var{sequence}, and vice versa. However, the elements of the new
160 sequence are not copies; they are identical (@code{eq}) to the elements
161 of the original. Therefore, changes made within these elements, as
162 found via the copied sequence, are also visible in the original
163 sequence.
164
165 If the sequence is a string with text properties, the property list in
166 the copy is itself a copy, not shared with the original's property
167 list. However, the actual values of the properties are shared.
168 @xref{Text Properties}.
169
170 This function does not work for dotted lists. Trying to copy a
171 circular list may cause an infinite loop.
172
173 See also @code{append} in @ref{Building Lists}, @code{concat} in
174 @ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
175 for other ways to copy sequences.
176
177 @example
178 @group
179 (setq bar '(1 2))
180 @result{} (1 2)
181 @end group
182 @group
183 (setq x (vector 'foo bar))
184 @result{} [foo (1 2)]
185 @end group
186 @group
187 (setq y (copy-sequence x))
188 @result{} [foo (1 2)]
189 @end group
190
191 @group
192 (eq x y)
193 @result{} nil
194 @end group
195 @group
196 (equal x y)
197 @result{} t
198 @end group
199 @group
200 (eq (elt x 1) (elt y 1))
201 @result{} t
202 @end group
203
204 @group
205 ;; @r{Replacing an element of one sequence.}
206 (aset x 0 'quux)
207 x @result{} [quux (1 2)]
208 y @result{} [foo (1 2)]
209 @end group
210
211 @group
212 ;; @r{Modifying the inside of a shared element.}
213 (setcar (aref x 1) 69)
214 x @result{} [quux (69 2)]
215 y @result{} [foo (69 2)]
216 @end group
217 @end example
218 @end defun
219
220 @defun reverse sequence
221 @cindex string reverse
222 @cindex list reverse
223 @cindex vector reverse
224 @cindex sequence reverse
225 This function creates a new sequence whose elements are the elements
226 of @var{sequence}, but in reverse order. The original argument @var{sequence}
227 is @emph{not} altered. Note that char-tables cannot be reversed.
228
229 @example
230 @group
231 (setq x '(1 2 3 4))
232 @result{} (1 2 3 4)
233 @end group
234 @group
235 (reverse x)
236 @result{} (4 3 2 1)
237 x
238 @result{} (1 2 3 4)
239 @end group
240 @group
241 (setq x [1 2 3 4])
242 @result{} [1 2 3 4]
243 @end group
244 @group
245 (reverse x)
246 @result{} [4 3 2 1]
247 x
248 @result{} [1 2 3 4]
249 @end group
250 @group
251 (setq x "xyzzy")
252 @result{} "xyzzy"
253 @end group
254 @group
255 (reverse x)
256 @result{} "yzzyx"
257 x
258 @result{} "xyzzy"
259 @end group
260 @end example
261 @end defun
262
263 @defun nreverse sequence
264 @cindex reversing a string
265 @cindex reversing a list
266 @cindex reversing a vector
267 This function reverses the order of the elements of @var{sequence}.
268 Unlike @code{reverse} the original @var{sequence} may be modified.
269
270 For example:
271
272 @example
273 @group
274 (setq x '(a b c))
275 @result{} (a b c)
276 @end group
277 @group
278 x
279 @result{} (a b c)
280 (nreverse x)
281 @result{} (c b a)
282 @end group
283 @group
284 ;; @r{The cons cell that was first is now last.}
285 x
286 @result{} (a)
287 @end group
288 @end example
289
290 To avoid confusion, we usually store the result of @code{nreverse}
291 back in the same variable which held the original list:
292
293 @example
294 (setq x (nreverse x))
295 @end example
296
297 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
298 presented graphically:
299
300 @smallexample
301 @group
302 @r{Original list head:} @r{Reversed list:}
303 ------------- ------------- ------------
304 | car | cdr | | car | cdr | | car | cdr |
305 | a | nil |<-- | b | o |<-- | c | o |
306 | | | | | | | | | | | | |
307 ------------- | --------- | - | -------- | -
308 | | | |
309 ------------- ------------
310 @end group
311 @end smallexample
312
313 For the vector, it is even simpler because you don't need setq:
314
315 @example
316 (setq x [1 2 3 4])
317 @result{} [1 2 3 4]
318 (nreverse x)
319 @result{} [4 3 2 1]
320 x
321 @result{} [4 3 2 1]
322 @end example
323
324 Note that unlike @code{reverse}, this function doesn't work with strings.
325 Although you can alter string data by using @code{aset}, it is strongly
326 encouraged to treat strings as immutable.
327
328 @end defun
329
330 @defun sort sequence predicate
331 @cindex stable sort
332 @cindex sorting lists
333 @cindex sorting vectors
334 This function sorts @var{sequence} stably. Note that this function doesn't work
335 for all sequences; it may be used only for lists and vectors. If @var{sequence}
336 is a list, it is modified destructively. This functions returns the sorted
337 @var{sequence} and compares elements using @var{predicate}. A stable sort is
338 one in which elements with equal sort keys maintain their relative order before
339 and after the sort. Stability is important when successive sorts are used to
340 order elements according to different criteria.
341
342 The argument @var{predicate} must be a function that accepts two
343 arguments. It is called with two elements of @var{sequence}. To get an
344 increasing order sort, the @var{predicate} should return non-@code{nil} if the
345 first element is ``less than'' the second, or @code{nil} if not.
346
347 The comparison function @var{predicate} must give reliable results for
348 any given pair of arguments, at least within a single call to
349 @code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
350 less than @var{b}, @var{b} must not be less than @var{a}. It must be
351 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
352 is less than @var{c}, then @var{a} must be less than @var{c}. If you
353 use a comparison function which does not meet these requirements, the
354 result of @code{sort} is unpredictable.
355
356 The destructive aspect of @code{sort} for lists is that it rearranges the
357 cons cells forming @var{sequence} by changing @sc{cdr}s. A nondestructive
358 sort function would create new cons cells to store the elements in their
359 sorted order. If you wish to make a sorted copy without destroying the
360 original, copy it first with @code{copy-sequence} and then sort.
361
362 Sorting does not change the @sc{car}s of the cons cells in @var{sequence};
363 the cons cell that originally contained the element @code{a} in
364 @var{sequence} still has @code{a} in its @sc{car} after sorting, but it now
365 appears in a different position in the list due to the change of
366 @sc{cdr}s. For example:
367
368 @example
369 @group
370 (setq nums '(1 3 2 6 5 4 0))
371 @result{} (1 3 2 6 5 4 0)
372 @end group
373 @group
374 (sort nums '<)
375 @result{} (0 1 2 3 4 5 6)
376 @end group
377 @group
378 nums
379 @result{} (1 2 3 4 5 6)
380 @end group
381 @end example
382
383 @noindent
384 @strong{Warning}: Note that the list in @code{nums} no longer contains
385 0; this is the same cons cell that it was before, but it is no longer
386 the first one in the list. Don't assume a variable that formerly held
387 the argument now holds the entire sorted list! Instead, save the result
388 of @code{sort} and use that. Most often we store the result back into
389 the variable that held the original list:
390
391 @example
392 (setq nums (sort nums '<))
393 @end example
394
395 For the better understanding of what stable sort is, consider the following
396 vector example. After sorting, all items whose @code{car} is 8 are grouped
397 at the beginning of @code{vector}, but their relative order is preserved.
398 All items whose @code{car} is 9 are grouped at the end of @code{vector},
399 but their relative order is also preserved:
400
401 @example
402 @group
403 (setq
404 vector
405 (vector '(8 . "xxx") '(9 . "aaa") '(8 . "bbb") '(9 . "zzz")
406 '(9 . "ppp") '(8 . "ttt") '(8 . "eee") '(9 . "fff")))
407 @result{} [(8 . "xxx") (9 . "aaa") (8 . "bbb") (9 . "zzz")
408 (9 . "ppp") (8 . "ttt") (8 . "eee") (9 . "fff")]
409 @end group
410 @group
411 (sort vector (lambda (x y) (< (car x) (car y))))
412 @result{} [(8 . "xxx") (8 . "bbb") (8 . "ttt") (8 . "eee")
413 (9 . "aaa") (9 . "zzz") (9 . "ppp") (9 . "fff")]
414 @end group
415 @end example
416
417 @xref{Sorting}, for more functions that perform sorting.
418 See @code{documentation} in @ref{Accessing Documentation}, for a
419 useful example of @code{sort}.
420 @end defun
421
422 @cindex sequence functions in seq
423 @cindex seq library
424 The @file{seq.el} library provides the following additional sequence
425 manipulation macros and functions, prefixed with @code{seq-}. To use
426 them, you must first load the @file{seq} library.
427
428 All functions defined in this library are free of side-effects;
429 i.e., they do not modify any sequence (list, vector, or string) that
430 you pass as an argument. Unless otherwise stated, the result is a
431 sequence of the same type as the input. For those functions that take
432 a predicate, this should be a function of one argument.
433
434 @defun seq-drop sequence n
435 This function returns all but the first @var{n} (an integer)
436 elements of @var{sequence}. If @var{n} is negative or zero,
437 the result is @var{sequence}.
438
439 @example
440 @group
441 (seq-drop [1 2 3 4 5 6] 3)
442 @result{} [4 5 6]
443 @end group
444 @group
445 (seq-drop "hello world" -4)
446 @result{} "hello world"
447 @end group
448 @end example
449 @end defun
450
451 @defun seq-take sequence n
452 This function returns the first @var{n} (an integer) elements of
453 @var{sequence}. If @var{n} is negative or zero, the result
454 is @code{nil}.
455
456 @example
457 @group
458 (seq-take '(1 2 3 4) 3)
459 @result{} (1 2 3)
460 @end group
461 @group
462 (seq-take [1 2 3 4] 0)
463 @result{} []
464 @end group
465 @end example
466 @end defun
467
468 @defun seq-take-while predicate sequence
469 This function returns the members of @var{sequence} in order,
470 stopping before the first one for which @var{predicate} returns @code{nil}.
471
472 @example
473 @group
474 (seq-take-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
475 @result{} (1 2 3)
476 @end group
477 @group
478 (seq-take-while (lambda (elt) (> elt 0)) [-1 4 6])
479 @result{} []
480 @end group
481 @end example
482 @end defun
483
484 @defun seq-drop-while predicate sequence
485 This function returns the members of @var{sequence} in order,
486 starting from the first one for which @var{predicate} returns @code{nil}.
487
488 @example
489 @group
490 (seq-drop-while (lambda (elt) (> elt 0)) '(1 2 3 -1 -2))
491 @result{} (-1 -2)
492 @end group
493 @group
494 (seq-drop-while (lambda (elt) (< elt 0)) [1 4 6])
495 @result{} [1 4 6]
496 @end group
497 @end example
498 @end defun
499
500 @defun seq-filter predicate sequence
501 @cindex filtering sequences
502 This function returns a list of all the elements in @var{sequence}
503 for which @var{predicate} returns non-@code{nil}.
504
505 @example
506 @group
507 (seq-filter (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
508 @result{} (1 3 5)
509 @end group
510 @group
511 (seq-filter (lambda (elt) (> elt 0)) '(-1 -3 -5))
512 @result{} nil
513 @end group
514 @end example
515 @end defun
516
517 @defun seq-remove predicate sequence
518 @cindex removing from sequences
519 This function returns a list of all the elements in @var{sequence}
520 for which @var{predicate} returns @code{nil}.
521
522 @example
523 @group
524 (seq-remove (lambda (elt) (> elt 0)) [1 -1 3 -3 5])
525 @result{} (-1 -3)
526 @end group
527 @group
528 (seq-remove (lambda (elt) (< elt 0)) '(-1 -3 -5))
529 @result{} nil
530 @end group
531 @end example
532 @end defun
533
534 @defun seq-reduce function sequence initial-value
535 @cindex reducing sequences
536 This function returns the result of calling @var{function} with
537 @var{initial-value} and the first element of @var{sequence}, then calling
538 @var{function} with that result and the second element of @var{sequence},
539 then with that result and the third element of @var{sequence}, etc.
540 @var{function} should be a function of two arguments. If
541 @var{sequence} is empty, this returns @var{initial-value} without
542 calling @var{function}.
543
544 @example
545 @group
546 (seq-reduce #'+ [1 2 3 4] 0)
547 @result{} 10
548 @end group
549 @group
550 (seq-reduce #'+ '(1 2 3 4) 5)
551 @result{} 15
552 @end group
553 @group
554 (seq-reduce #'+ '() 3)
555 @result{} 3
556 @end group
557 @end example
558 @end defun
559
560 @defun seq-some-p predicate sequence
561 This function returns the first member of sequence for which @var{predicate}
562 returns non-@code{nil}.
563
564 @example
565 @group
566 (seq-some-p #'numberp ["abc" 1 nil])
567 @result{} 1
568 @end group
569 @group
570 (seq-some-p #'numberp ["abc" "def"])
571 @result{} nil
572 @end group
573 @end example
574 @end defun
575
576 @defun seq-every-p predicate sequence
577 This function returns non-@code{nil} if applying @var{predicate}
578 to every element of @var{sequence} returns non-@code{nil}.
579
580 @example
581 @group
582 (seq-every-p #'numberp [2 4 6])
583 @result{} t
584 @end group
585 @group
586 (seq-some-p #'numberp [2 4 "6"])
587 @result{} nil
588 @end group
589 @end example
590 @end defun
591
592 @defun seq-empty-p sequence
593 This function returns non-@code{nil} if @var{sequence} is empty.
594
595 @example
596 @group
597 (seq-empty-p "not empty")
598 @result{} nil
599 @end group
600 @group
601 (seq-empty-p "")
602 @result{} t
603 @end group
604 @end example
605 @end defun
606
607 @defun seq-count predicate sequence
608 This function returns the number of elements in @var{sequence} for which
609 @var{predicate} returns non-@code{nil}.
610
611 @example
612 (seq-count (lambda (elt) (> elt 0)) [-1 2 0 3 -2])
613 @result{} 2
614 @end example
615 @end defun
616
617 @cindex sorting sequences
618 @defun seq-sort function sequence
619 This function returns a copy of @var{sequence} that is sorted
620 according to @var{function}, a function of two arguments that returns
621 non-@code{nil} if the first argument should sort before the second.
622 @end defun
623
624 @defun seq-contains-p sequence elt &optional function
625 This function returns the first element in @var{sequence} that is equal to
626 @var{elt}. If the optional argument @var{function} is non-@code{nil},
627 it is a function of two arguments to use instead of the default @code{equal}.
628
629 @example
630 @group
631 (seq-contains-p '(symbol1 symbol2) 'symbol1)
632 @result{} symbol1
633 @end group
634 @group
635 (seq-contains-p '(symbol1 symbol2) 'symbol3)
636 @result{} nil
637 @end group
638 @end example
639
640 @end defun
641
642 @defun seq-uniq sequence &optional function
643 This function returns a list of the elements of @var{sequence} with
644 duplicates removed. If the optional argument @var{function} is non-@code{nil},
645 it is a function of two arguments to use instead of the default @code{equal}.
646
647 @example
648 @group
649 (seq-uniq '(1 2 2 1 3))
650 @result{} (1 2 3)
651 @end group
652 @group
653 (seq-uniq '(1 2 2.0 1.0) #'=)
654 @result{} [3 4]
655 @end group
656 @end example
657 @end defun
658
659 @defun seq-subseq sequence start &optional end
660 This function returns a subset of @var{sequence} from @var{start}
661 to @var{end}, both integers (@var{end} defaults to the last element).
662 If @var{start} or @var{end} is negative, it counts from the end of
663 @var{sequence}.
664
665 @example
666 @group
667 (seq-subseq '(1 2 3 4 5) 1)
668 @result{} (2 3 4 5)
669 @end group
670 @group
671 (seq-subseq '[1 2 3 4 5] 1 3)
672 @result{} [2 3]
673 @end group
674 @group
675 (seq-subseq '[1 2 3 4 5] -3 -1)
676 @result{} [3 4]
677 @end group
678 @end example
679 @end defun
680
681 @defun seq-concatenate type &rest sequences
682 This function returns a sequence of type @var{type} made of the
683 concatenation of @var{sequences}. @var{type} may be: @code{vector},
684 @code{list} or @code{string}.
685
686 @example
687 @group
688 (seq-concatenate 'list '(1 2) '(3 4) [5 6])
689 @result{} (1 2 3 5 6)
690 @end group
691 @group
692 (seq-concatenate 'string "Hello " "world")
693 @result{} "Hello world"
694 @end group
695 @end example
696 @end defun
697
698 @defun seq-mapcat function sequence &optional type
699 This function returns the result of applying @code{seq-concatenate}
700 to the result of applying @var{function} to each element of
701 @var{sequence}. The result is a sequence of type @var{type}, or a
702 list if @var{type} is @code{nil}.
703
704 @example
705 @group
706 (seq-mapcat #'seq-reverse '((3 2 1) (6 5 4)))
707 @result{} (1 2 3 4 5 6)
708 @end group
709 @end example
710 @end defun
711
712 @defun seq-partition sequence n
713 This function returns a list of the elements of @var{sequence}
714 grouped into sub-sequences of length @var{n}. The last sequence may
715 contain less elements than @var{n}. @var{n} must be an integer. If
716 @var{n} is a negative integer or 0, nil is returned.
717
718 @example
719 @group
720 (seq-partition '(0 1 2 3 4 5 6 7) 3)
721 @result{} ((0 1 2) (3 4 5) (6 7))
722 @end group
723 @end example
724 @end defun
725
726 @defun seq-intersection sequence1 sequence2 &optional function
727 This function returns a list of the elements that appear both in
728 @var{sequence1} and @var{sequence2}. If the optional argument
729 @var{function} is non-@code{nil}, it is a function of two arguments to
730 use to compare elements instead of the default @code{equal}.
731
732 @example
733 @group
734 (seq-intersection [2 3 4 5] [1 3 5 6 7])
735 @result{} (3 5)
736 @end group
737 @end example
738 @end defun
739
740
741 @defun seq-difference sequence1 sequence2 &optional function
742 This function returns a list of the elements that appear in
743 @var{sequence1} but not in @var{sequence2}. If the optional argument
744 @var{function} is non-@code{nil}, it is a function of two arguments to
745 use to compare elements instead of the default @code{equal}.
746
747 @example
748 @group
749 (seq-difference '(2 3 4 5) [1 3 5 6 7])
750 @result{} (2 4)
751 @end group
752 @end example
753 @end defun
754
755 @defun seq-group-by function sequence
756 This function separates the elements of @var{sequence} into an alist
757 whose keys are the result of applying @var{function} to each element
758 of @var{sequence}. Keys are compared using @code{equal}.
759
760 @example
761 @group
762 (seq-group-by #'integerp '(1 2.1 3 2 3.2))
763 @result{} ((t 1 3 2) (nil 2.1 3.2))
764 @end group
765 @group
766 (seq-group-by #'car '((a 1) (b 2) (a 3) (c 4)))
767 @result{} ((b (b 2)) (a (a 1) (a 3)) (c (c 4)))
768 @end group
769 @end example
770 @end defun
771
772 @defun seq-into sequence type
773 This function converts the sequence @var{sequence} into a sequence
774 of type @var{type}. @var{type} can be one of the following symbols:
775 @code{vector}, @code{string} or @code{list}.
776
777 @example
778 @group
779 (seq-into [1 2 3] 'list)
780 @result{} (1 2 3)
781 @end group
782 @group
783 (seq-into nil 'vector)
784 @result{} []
785 @end group
786 @group
787 (seq-into "hello" 'vector)
788 @result{} [104 101 108 108 111]
789 @end group
790 @end example
791 @end defun
792
793 @defmac seq-doseq (var sequence [result]) body@dots{}
794 @cindex sequence iteration
795 This macro is like @code{dolist}, except that @var{sequence} can be a list,
796 vector or string (@pxref{Iteration} for more information about the
797 @code{dolist} macro). This is primarily useful for side-effects.
798 @end defmac
799
800 @node Arrays
801 @section Arrays
802 @cindex array
803
804 An @dfn{array} object has slots that hold a number of other Lisp
805 objects, called the elements of the array. Any element of an array
806 may be accessed in constant time. In contrast, the time to access an
807 element of a list is proportional to the position of that element in
808 the list.
809
810 Emacs defines four types of array, all one-dimensional:
811 @dfn{strings} (@pxref{String Type}), @dfn{vectors} (@pxref{Vector
812 Type}), @dfn{bool-vectors} (@pxref{Bool-Vector Type}), and
813 @dfn{char-tables} (@pxref{Char-Table Type}). Vectors and char-tables
814 can hold elements of any type, but strings can only hold characters,
815 and bool-vectors can only hold @code{t} and @code{nil}.
816
817 All four kinds of array share these characteristics:
818
819 @itemize @bullet
820 @item
821 The first element of an array has index zero, the second element has
822 index 1, and so on. This is called @dfn{zero-origin} indexing. For
823 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
824
825 @item
826 The length of the array is fixed once you create it; you cannot
827 change the length of an existing array.
828
829 @item
830 For purposes of evaluation, the array is a constant---i.e.,
831 it evaluates to itself.
832
833 @item
834 The elements of an array may be referenced or changed with the functions
835 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
836 @end itemize
837
838 When you create an array, other than a char-table, you must specify
839 its length. You cannot specify the length of a char-table, because that
840 is determined by the range of character codes.
841
842 In principle, if you want an array of text characters, you could use
843 either a string or a vector. In practice, we always choose strings for
844 such applications, for four reasons:
845
846 @itemize @bullet
847 @item
848 They occupy one-fourth the space of a vector of the same elements.
849
850 @item
851 Strings are printed in a way that shows the contents more clearly
852 as text.
853
854 @item
855 Strings can hold text properties. @xref{Text Properties}.
856
857 @item
858 Many of the specialized editing and I/O facilities of Emacs accept only
859 strings. For example, you cannot insert a vector of characters into a
860 buffer the way you can insert a string. @xref{Strings and Characters}.
861 @end itemize
862
863 By contrast, for an array of keyboard input characters (such as a key
864 sequence), a vector may be necessary, because many keyboard input
865 characters are outside the range that will fit in a string. @xref{Key
866 Sequence Input}.
867
868 @node Array Functions
869 @section Functions that Operate on Arrays
870
871 In this section, we describe the functions that accept all types of
872 arrays.
873
874 @defun arrayp object
875 This function returns @code{t} if @var{object} is an array (i.e., a
876 vector, a string, a bool-vector or a char-table).
877
878 @example
879 @group
880 (arrayp [a])
881 @result{} t
882 (arrayp "asdf")
883 @result{} t
884 (arrayp (syntax-table)) ;; @r{A char-table.}
885 @result{} t
886 @end group
887 @end example
888 @end defun
889
890 @defun aref array index
891 @cindex array elements
892 This function returns the @var{index}th element of @var{array}. The
893 first element is at index zero.
894
895 @example
896 @group
897 (setq primes [2 3 5 7 11 13])
898 @result{} [2 3 5 7 11 13]
899 (aref primes 4)
900 @result{} 11
901 @end group
902 @group
903 (aref "abcdefg" 1)
904 @result{} 98 ; @r{@samp{b} is @acronym{ASCII} code 98.}
905 @end group
906 @end example
907
908 See also the function @code{elt}, in @ref{Sequence Functions}.
909 @end defun
910
911 @defun aset array index object
912 This function sets the @var{index}th element of @var{array} to be
913 @var{object}. It returns @var{object}.
914
915 @example
916 @group
917 (setq w [foo bar baz])
918 @result{} [foo bar baz]
919 (aset w 0 'fu)
920 @result{} fu
921 w
922 @result{} [fu bar baz]
923 @end group
924
925 @group
926 (setq x "asdfasfd")
927 @result{} "asdfasfd"
928 (aset x 3 ?Z)
929 @result{} 90
930 x
931 @result{} "asdZasfd"
932 @end group
933 @end example
934
935 If @var{array} is a string and @var{object} is not a character, a
936 @code{wrong-type-argument} error results. The function converts a
937 unibyte string to multibyte if necessary to insert a character.
938 @end defun
939
940 @defun fillarray array object
941 This function fills the array @var{array} with @var{object}, so that
942 each element of @var{array} is @var{object}. It returns @var{array}.
943
944 @example
945 @group
946 (setq a [a b c d e f g])
947 @result{} [a b c d e f g]
948 (fillarray a 0)
949 @result{} [0 0 0 0 0 0 0]
950 a
951 @result{} [0 0 0 0 0 0 0]
952 @end group
953 @group
954 (setq s "When in the course")
955 @result{} "When in the course"
956 (fillarray s ?-)
957 @result{} "------------------"
958 @end group
959 @end example
960
961 If @var{array} is a string and @var{object} is not a character, a
962 @code{wrong-type-argument} error results.
963 @end defun
964
965 The general sequence functions @code{copy-sequence} and @code{length}
966 are often useful for objects known to be arrays. @xref{Sequence Functions}.
967
968 @node Vectors
969 @section Vectors
970 @cindex vector (type)
971
972 A @dfn{vector} is a general-purpose array whose elements can be any
973 Lisp objects. (By contrast, the elements of a string can only be
974 characters. @xref{Strings and Characters}.) Vectors are used in
975 Emacs for many purposes: as key sequences (@pxref{Key Sequences}), as
976 symbol-lookup tables (@pxref{Creating Symbols}), as part of the
977 representation of a byte-compiled function (@pxref{Byte Compilation}),
978 and more.
979
980 Like other arrays, vectors use zero-origin indexing: the first
981 element has index 0.
982
983 Vectors are printed with square brackets surrounding the elements.
984 Thus, a vector whose elements are the symbols @code{a}, @code{b} and
985 @code{a} is printed as @code{[a b a]}. You can write vectors in the
986 same way in Lisp input.
987
988 A vector, like a string or a number, is considered a constant for
989 evaluation: the result of evaluating it is the same vector. This does
990 not evaluate or even examine the elements of the vector.
991 @xref{Self-Evaluating Forms}.
992
993 Here are examples illustrating these principles:
994
995 @example
996 @group
997 (setq avector [1 two '(three) "four" [five]])
998 @result{} [1 two (quote (three)) "four" [five]]
999 (eval avector)
1000 @result{} [1 two (quote (three)) "four" [five]]
1001 (eq avector (eval avector))
1002 @result{} t
1003 @end group
1004 @end example
1005
1006 @node Vector Functions
1007 @section Functions for Vectors
1008
1009 Here are some functions that relate to vectors:
1010
1011 @defun vectorp object
1012 This function returns @code{t} if @var{object} is a vector.
1013
1014 @example
1015 @group
1016 (vectorp [a])
1017 @result{} t
1018 (vectorp "asdf")
1019 @result{} nil
1020 @end group
1021 @end example
1022 @end defun
1023
1024 @defun vector &rest objects
1025 This function creates and returns a vector whose elements are the
1026 arguments, @var{objects}.
1027
1028 @example
1029 @group
1030 (vector 'foo 23 [bar baz] "rats")
1031 @result{} [foo 23 [bar baz] "rats"]
1032 (vector)
1033 @result{} []
1034 @end group
1035 @end example
1036 @end defun
1037
1038 @defun make-vector length object
1039 This function returns a new vector consisting of @var{length} elements,
1040 each initialized to @var{object}.
1041
1042 @example
1043 @group
1044 (setq sleepy (make-vector 9 'Z))
1045 @result{} [Z Z Z Z Z Z Z Z Z]
1046 @end group
1047 @end example
1048 @end defun
1049
1050 @defun vconcat &rest sequences
1051 @cindex copying vectors
1052 This function returns a new vector containing all the elements of
1053 @var{sequences}. The arguments @var{sequences} may be true lists,
1054 vectors, strings or bool-vectors. If no @var{sequences} are given,
1055 the empty vector is returned.
1056
1057 The value is either the empty vector, or is a newly constructed
1058 nonempty vector that is not @code{eq} to any existing vector.
1059
1060 @example
1061 @group
1062 (setq a (vconcat '(A B C) '(D E F)))
1063 @result{} [A B C D E F]
1064 (eq a (vconcat a))
1065 @result{} nil
1066 @end group
1067 @group
1068 (vconcat)
1069 @result{} []
1070 (vconcat [A B C] "aa" '(foo (6 7)))
1071 @result{} [A B C 97 97 foo (6 7)]
1072 @end group
1073 @end example
1074
1075 The @code{vconcat} function also allows byte-code function objects as
1076 arguments. This is a special feature to make it easy to access the entire
1077 contents of a byte-code function object. @xref{Byte-Code Objects}.
1078
1079 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
1080 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
1081 in @ref{Building Lists}.
1082 @end defun
1083
1084 The @code{append} function also provides a way to convert a vector into a
1085 list with the same elements:
1086
1087 @example
1088 @group
1089 (setq avector [1 two (quote (three)) "four" [five]])
1090 @result{} [1 two (quote (three)) "four" [five]]
1091 (append avector nil)
1092 @result{} (1 two (quote (three)) "four" [five])
1093 @end group
1094 @end example
1095
1096 @node Char-Tables
1097 @section Char-Tables
1098 @cindex char-tables
1099 @cindex extra slots of char-table
1100
1101 A char-table is much like a vector, except that it is indexed by
1102 character codes. Any valid character code, without modifiers, can be
1103 used as an index in a char-table. You can access a char-table's
1104 elements with @code{aref} and @code{aset}, as with any array. In
1105 addition, a char-table can have @dfn{extra slots} to hold additional
1106 data not associated with particular character codes. Like vectors,
1107 char-tables are constants when evaluated, and can hold elements of any
1108 type.
1109
1110 @cindex subtype of char-table
1111 Each char-table has a @dfn{subtype}, a symbol, which serves two
1112 purposes:
1113
1114 @itemize @bullet
1115 @item
1116 The subtype provides an easy way to tell what the char-table is for.
1117 For instance, display tables are char-tables with @code{display-table}
1118 as the subtype, and syntax tables are char-tables with
1119 @code{syntax-table} as the subtype. The subtype can be queried using
1120 the function @code{char-table-subtype}, described below.
1121
1122 @item
1123 The subtype controls the number of @dfn{extra slots} in the
1124 char-table. This number is specified by the subtype's
1125 @code{char-table-extra-slots} symbol property (@pxref{Symbol
1126 Properties}), whose value should be an integer between 0 and 10. If
1127 the subtype has no such symbol property, the char-table has no extra
1128 slots.
1129 @end itemize
1130
1131 @cindex parent of char-table
1132 A char-table can have a @dfn{parent}, which is another char-table. If
1133 it does, then whenever the char-table specifies @code{nil} for a
1134 particular character @var{c}, it inherits the value specified in the
1135 parent. In other words, @code{(aref @var{char-table} @var{c})} returns
1136 the value from the parent of @var{char-table} if @var{char-table} itself
1137 specifies @code{nil}.
1138
1139 @cindex default value of char-table
1140 A char-table can also have a @dfn{default value}. If so, then
1141 @code{(aref @var{char-table} @var{c})} returns the default value
1142 whenever the char-table does not specify any other non-@code{nil} value.
1143
1144 @defun make-char-table subtype &optional init
1145 Return a newly-created char-table, with subtype @var{subtype} (a
1146 symbol). Each element is initialized to @var{init}, which defaults to
1147 @code{nil}. You cannot alter the subtype of a char-table after the
1148 char-table is created.
1149
1150 There is no argument to specify the length of the char-table, because
1151 all char-tables have room for any valid character code as an index.
1152
1153 If @var{subtype} has the @code{char-table-extra-slots} symbol
1154 property, that specifies the number of extra slots in the char-table.
1155 This should be an integer between 0 and 10; otherwise,
1156 @code{make-char-table} raises an error. If @var{subtype} has no
1157 @code{char-table-extra-slots} symbol property (@pxref{Property
1158 Lists}), the char-table has no extra slots.
1159 @end defun
1160
1161 @defun char-table-p object
1162 This function returns @code{t} if @var{object} is a char-table, and
1163 @code{nil} otherwise.
1164 @end defun
1165
1166 @defun char-table-subtype char-table
1167 This function returns the subtype symbol of @var{char-table}.
1168 @end defun
1169
1170 There is no special function to access default values in a char-table.
1171 To do that, use @code{char-table-range} (see below).
1172
1173 @defun char-table-parent char-table
1174 This function returns the parent of @var{char-table}. The parent is
1175 always either @code{nil} or another char-table.
1176 @end defun
1177
1178 @defun set-char-table-parent char-table new-parent
1179 This function sets the parent of @var{char-table} to @var{new-parent}.
1180 @end defun
1181
1182 @defun char-table-extra-slot char-table n
1183 This function returns the contents of extra slot @var{n} of
1184 @var{char-table}. The number of extra slots in a char-table is
1185 determined by its subtype.
1186 @end defun
1187
1188 @defun set-char-table-extra-slot char-table n value
1189 This function stores @var{value} in extra slot @var{n} of
1190 @var{char-table}.
1191 @end defun
1192
1193 A char-table can specify an element value for a single character code;
1194 it can also specify a value for an entire character set.
1195
1196 @defun char-table-range char-table range
1197 This returns the value specified in @var{char-table} for a range of
1198 characters @var{range}. Here are the possibilities for @var{range}:
1199
1200 @table @asis
1201 @item @code{nil}
1202 Refers to the default value.
1203
1204 @item @var{char}
1205 Refers to the element for character @var{char}
1206 (supposing @var{char} is a valid character code).
1207
1208 @item @code{(@var{from} . @var{to})}
1209 A cons cell refers to all the characters in the inclusive range
1210 @samp{[@var{from}..@var{to}]}.
1211 @end table
1212 @end defun
1213
1214 @defun set-char-table-range char-table range value
1215 This function sets the value in @var{char-table} for a range of
1216 characters @var{range}. Here are the possibilities for @var{range}:
1217
1218 @table @asis
1219 @item @code{nil}
1220 Refers to the default value.
1221
1222 @item @code{t}
1223 Refers to the whole range of character codes.
1224
1225 @item @var{char}
1226 Refers to the element for character @var{char}
1227 (supposing @var{char} is a valid character code).
1228
1229 @item @code{(@var{from} . @var{to})}
1230 A cons cell refers to all the characters in the inclusive range
1231 @samp{[@var{from}..@var{to}]}.
1232 @end table
1233 @end defun
1234
1235 @defun map-char-table function char-table
1236 This function calls its argument @var{function} for each element of
1237 @var{char-table} that has a non-@code{nil} value. The call to
1238 @var{function} is with two arguments, a key and a value. The key
1239 is a possible @var{range} argument for @code{char-table-range}---either
1240 a valid character or a cons cell @code{(@var{from} . @var{to})},
1241 specifying a range of characters that share the same value. The value is
1242 what @code{(char-table-range @var{char-table} @var{key})} returns.
1243
1244 Overall, the key-value pairs passed to @var{function} describe all the
1245 values stored in @var{char-table}.
1246
1247 The return value is always @code{nil}; to make calls to
1248 @code{map-char-table} useful, @var{function} should have side effects.
1249 For example, here is how to examine the elements of the syntax table:
1250
1251 @example
1252 (let (accumulator)
1253 (map-char-table
1254 #'(lambda (key value)
1255 (setq accumulator
1256 (cons (list
1257 (if (consp key)
1258 (list (car key) (cdr key))
1259 key)
1260 value)
1261 accumulator)))
1262 (syntax-table))
1263 accumulator)
1264 @result{}
1265 (((2597602 4194303) (2)) ((2597523 2597601) (3))
1266 ... (65379 (5 . 65378)) (65378 (4 . 65379)) (65377 (1))
1267 ... (12 (0)) (11 (3)) (10 (12)) (9 (0)) ((0 8) (3)))
1268 @end example
1269 @end defun
1270
1271 @node Bool-Vectors
1272 @section Bool-vectors
1273 @cindex Bool-vectors
1274
1275 A bool-vector is much like a vector, except that it stores only the
1276 values @code{t} and @code{nil}. If you try to store any non-@code{nil}
1277 value into an element of the bool-vector, the effect is to store
1278 @code{t} there. As with all arrays, bool-vector indices start from 0,
1279 and the length cannot be changed once the bool-vector is created.
1280 Bool-vectors are constants when evaluated.
1281
1282 Several functions work specifically with bool-vectors; aside
1283 from that, you manipulate them with same functions used for other kinds
1284 of arrays.
1285
1286 @defun make-bool-vector length initial
1287 Return a new bool-vector of @var{length} elements,
1288 each one initialized to @var{initial}.
1289 @end defun
1290
1291 @defun bool-vector &rest objects
1292 This function creates and returns a bool-vector whose elements are the
1293 arguments, @var{objects}.
1294 @end defun
1295
1296 @defun bool-vector-p object
1297 This returns @code{t} if @var{object} is a bool-vector,
1298 and @code{nil} otherwise.
1299 @end defun
1300
1301 There are also some bool-vector set operation functions, described below:
1302
1303 @defun bool-vector-exclusive-or a b &optional c
1304 Return @dfn{bitwise exclusive or} of bool vectors @var{a} and @var{b}.
1305 If optional argument @var{c} is given, the result of this operation is
1306 stored into @var{c}. All arguments should be bool vectors of the same length.
1307 @end defun
1308
1309 @defun bool-vector-union a b &optional c
1310 Return @dfn{bitwise or} of bool vectors @var{a} and @var{b}. If
1311 optional argument @var{c} is given, the result of this operation is
1312 stored into @var{c}. All arguments should be bool vectors of the same length.
1313 @end defun
1314
1315 @defun bool-vector-intersection a b &optional c
1316 Return @dfn{bitwise and} of bool vectors @var{a} and @var{b}. If
1317 optional argument @var{c} is given, the result of this operation is
1318 stored into @var{c}. All arguments should be bool vectors of the same length.
1319 @end defun
1320
1321 @defun bool-vector-set-difference a b &optional c
1322 Return @dfn{set difference} of bool vectors @var{a} and @var{b}. If
1323 optional argument @var{c} is given, the result of this operation is
1324 stored into @var{c}. All arguments should be bool vectors of the same length.
1325 @end defun
1326
1327 @defun bool-vector-not a &optional b
1328 Return @dfn{set complement} of bool vector @var{a}. If optional
1329 argument @var{b} is given, the result of this operation is stored into
1330 @var{b}. All arguments should be bool vectors of the same length.
1331 @end defun
1332
1333 @defun bool-vector-subsetp a b
1334 Return @code{t} if every @code{t} value in @var{a} is also t in
1335 @var{b}, @code{nil} otherwise. All arguments should be bool vectors of the
1336 same length.
1337 @end defun
1338
1339 @defun bool-vector-count-consecutive a b i
1340 Return the number of consecutive elements in @var{a} equal @var{b}
1341 starting at @var{i}. @code{a} is a bool vector, @var{b} is @code{t}
1342 or @code{nil}, and @var{i} is an index into @code{a}.
1343 @end defun
1344
1345 @defun bool-vector-count-population a
1346 Return the number of elements that are @code{t} in bool vector @var{a}.
1347 @end defun
1348
1349 The printed form represents up to 8 boolean values as a single
1350 character:
1351
1352 @example
1353 @group
1354 (bool-vector t nil t nil)
1355 @result{} #&4"^E"
1356 (bool-vector)
1357 @result{} #&0""
1358 @end group
1359 @end example
1360
1361 You can use @code{vconcat} to print a bool-vector like other vectors:
1362
1363 @example
1364 @group
1365 (vconcat (bool-vector nil t nil t))
1366 @result{} [nil t nil t]
1367 @end group
1368 @end example
1369
1370 Here is another example of creating, examining, and updating a
1371 bool-vector:
1372
1373 @example
1374 (setq bv (make-bool-vector 5 t))
1375 @result{} #&5"^_"
1376 (aref bv 1)
1377 @result{} t
1378 (aset bv 3 nil)
1379 @result{} nil
1380 bv
1381 @result{} #&5"^W"
1382 @end example
1383
1384 @noindent
1385 These results make sense because the binary codes for control-_ and
1386 control-W are 11111 and 10111, respectively.
1387
1388 @node Rings
1389 @section Managing a Fixed-Size Ring of Objects
1390
1391 @cindex ring data structure
1392 A @dfn{ring} is a fixed-size data structure that supports insertion,
1393 deletion, rotation, and modulo-indexed reference and traversal. An
1394 efficient ring data structure is implemented by the @code{ring}
1395 package. It provides the functions listed in this section.
1396
1397 Note that several ``rings'' in Emacs, like the kill ring and the
1398 mark ring, are actually implemented as simple lists, @emph{not} using
1399 the @code{ring} package; thus the following functions won't work on
1400 them.
1401
1402 @defun make-ring size
1403 This returns a new ring capable of holding @var{size} objects.
1404 @var{size} should be an integer.
1405 @end defun
1406
1407 @defun ring-p object
1408 This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1409 @end defun
1410
1411 @defun ring-size ring
1412 This returns the maximum capacity of the @var{ring}.
1413 @end defun
1414
1415 @defun ring-length ring
1416 This returns the number of objects that @var{ring} currently contains.
1417 The value will never exceed that returned by @code{ring-size}.
1418 @end defun
1419
1420 @defun ring-elements ring
1421 This returns a list of the objects in @var{ring}, in order, newest first.
1422 @end defun
1423
1424 @defun ring-copy ring
1425 This returns a new ring which is a copy of @var{ring}.
1426 The new ring contains the same (@code{eq}) objects as @var{ring}.
1427 @end defun
1428
1429 @defun ring-empty-p ring
1430 This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1431 @end defun
1432
1433 The newest element in the ring always has index 0. Higher indices
1434 correspond to older elements. Indices are computed modulo the ring
1435 length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1436 to the next-oldest, and so forth.
1437
1438 @defun ring-ref ring index
1439 This returns the object in @var{ring} found at index @var{index}.
1440 @var{index} may be negative or greater than the ring length. If
1441 @var{ring} is empty, @code{ring-ref} signals an error.
1442 @end defun
1443
1444 @defun ring-insert ring object
1445 This inserts @var{object} into @var{ring}, making it the newest
1446 element, and returns @var{object}.
1447
1448 If the ring is full, insertion removes the oldest element to
1449 make room for the new element.
1450 @end defun
1451
1452 @defun ring-remove ring &optional index
1453 Remove an object from @var{ring}, and return that object. The
1454 argument @var{index} specifies which item to remove; if it is
1455 @code{nil}, that means to remove the oldest item. If @var{ring} is
1456 empty, @code{ring-remove} signals an error.
1457 @end defun
1458
1459 @defun ring-insert-at-beginning ring object
1460 This inserts @var{object} into @var{ring}, treating it as the oldest
1461 element. The return value is not significant.
1462
1463 If the ring is full, this function removes the newest element to make
1464 room for the inserted element.
1465 @end defun
1466
1467 @cindex fifo data structure
1468 If you are careful not to exceed the ring size, you can
1469 use the ring as a first-in-first-out queue. For example:
1470
1471 @lisp
1472 (let ((fifo (make-ring 5)))
1473 (mapc (lambda (obj) (ring-insert fifo obj))
1474 '(0 one "two"))
1475 (list (ring-remove fifo) t
1476 (ring-remove fifo) t
1477 (ring-remove fifo)))
1478 @result{} (0 t one t "two")
1479 @end lisp