]> code.delx.au - gnu-emacs/blob - src/lisp.h
* lisp/emacs-lisp/map.el: Better docstring for the map pcase macro.
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # define alignas(alignment) /* empty */
282 # if USE_LSB_TAG
283 # error "USE_LSB_TAG requires alignas"
284 # endif
285 #endif
286
287 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
288 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
289 #else
290 # define GCALIGNED /* empty */
291 #endif
292
293 /* Some operations are so commonly executed that they are implemented
294 as macros, not functions, because otherwise runtime performance would
295 suffer too much when compiling with GCC without optimization.
296 There's no need to inline everything, just the operations that
297 would otherwise cause a serious performance problem.
298
299 For each such operation OP, define a macro lisp_h_OP that contains
300 the operation's implementation. That way, OP can be implemented
301 via a macro definition like this:
302
303 #define OP(x) lisp_h_OP (x)
304
305 and/or via a function definition like this:
306
307 LISP_MACRO_DEFUN (OP, Lisp_Object, (Lisp_Object x), (x))
308
309 which macro-expands to this:
310
311 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
312
313 without worrying about the implementations diverging, since
314 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
315 are intended to be private to this include file, and should not be
316 used elsewhere.
317
318 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
319 functions, once most developers have access to GCC 4.8 or later and
320 can use "gcc -Og" to debug. Maybe in the year 2016. See
321 Bug#11935.
322
323 Commentary for these macros can be found near their corresponding
324 functions, below. */
325
326 #if CHECK_LISP_OBJECT_TYPE
327 # define lisp_h_XLI(o) ((o).i)
328 # define lisp_h_XIL(i) ((Lisp_Object) { i })
329 #else
330 # define lisp_h_XLI(o) (o)
331 # define lisp_h_XIL(i) (i)
332 #endif
333 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
334 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
335 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
336 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
337 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
338 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
339 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
340 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
341 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
342 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
343 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
344 #define lisp_h_NILP(x) EQ (x, Qnil)
345 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
346 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
347 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
348 #define lisp_h_SYMBOL_VAL(sym) \
349 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
350 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
351 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
352 #define lisp_h_XCAR(c) XCONS (c)->car
353 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
354 #define lisp_h_XCONS(a) \
355 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
356 #define lisp_h_XHASH(a) XUINT (a)
357 #define lisp_h_XPNTR(a) \
358 (SYMBOLP (a) ? XSYMBOL (a) : (void *) ((intptr_t) (XLI (a) & VALMASK)))
359 #ifndef GC_CHECK_CONS_LIST
360 # define lisp_h_check_cons_list() ((void) 0)
361 #endif
362 #if USE_LSB_TAG
363 # define lisp_h_make_number(n) \
364 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
365 # define lisp_h_XFASTINT(a) XINT (a)
366 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
367 # define lisp_h_XSYMBOL(a) \
368 (eassert (SYMBOLP (a)), \
369 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
370 + (char *) lispsym))
371 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
372 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
373 #endif
374
375 /* When compiling via gcc -O0, define the key operations as macros, as
376 Emacs is too slow otherwise. To disable this optimization, compile
377 with -DINLINING=false. */
378 #if (defined __NO_INLINE__ \
379 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
380 && ! (defined INLINING && ! INLINING))
381 # define XLI(o) lisp_h_XLI (o)
382 # define XIL(i) lisp_h_XIL (i)
383 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
384 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
385 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
386 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
387 # define CONSP(x) lisp_h_CONSP (x)
388 # define EQ(x, y) lisp_h_EQ (x, y)
389 # define FLOATP(x) lisp_h_FLOATP (x)
390 # define INTEGERP(x) lisp_h_INTEGERP (x)
391 # define MARKERP(x) lisp_h_MARKERP (x)
392 # define MISCP(x) lisp_h_MISCP (x)
393 # define NILP(x) lisp_h_NILP (x)
394 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
395 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
396 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
397 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
398 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
399 # define XCAR(c) lisp_h_XCAR (c)
400 # define XCDR(c) lisp_h_XCDR (c)
401 # define XCONS(a) lisp_h_XCONS (a)
402 # define XHASH(a) lisp_h_XHASH (a)
403 # define XPNTR(a) lisp_h_XPNTR (a)
404 # ifndef GC_CHECK_CONS_LIST
405 # define check_cons_list() lisp_h_check_cons_list ()
406 # endif
407 # if USE_LSB_TAG
408 # define make_number(n) lisp_h_make_number (n)
409 # define XFASTINT(a) lisp_h_XFASTINT (a)
410 # define XINT(a) lisp_h_XINT (a)
411 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
412 # define XTYPE(a) lisp_h_XTYPE (a)
413 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
414 # endif
415 #endif
416
417 /* Define NAME as a lisp.h inline function that returns TYPE and has
418 arguments declared as ARGDECLS and passed as ARGS. ARGDECLS and
419 ARGS should be parenthesized. Implement the function by calling
420 lisp_h_NAME ARGS. */
421 #define LISP_MACRO_DEFUN(name, type, argdecls, args) \
422 INLINE type (name) argdecls { return lisp_h_##name args; }
423
424 /* like LISP_MACRO_DEFUN, except NAME returns void. */
425 #define LISP_MACRO_DEFUN_VOID(name, argdecls, args) \
426 INLINE void (name) argdecls { lisp_h_##name args; }
427
428
429 /* Define the fundamental Lisp data structures. */
430
431 /* This is the set of Lisp data types. If you want to define a new
432 data type, read the comments after Lisp_Fwd_Type definition
433 below. */
434
435 /* Lisp integers use 2 tags, to give them one extra bit, thus
436 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
437 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
438 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
439
440 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
441 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
442 vociferously about them. */
443 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
444 || (defined __SUNPRO_C && __STDC__))
445 #define ENUM_BF(TYPE) unsigned int
446 #else
447 #define ENUM_BF(TYPE) enum TYPE
448 #endif
449
450
451 enum Lisp_Type
452 {
453 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
454 Lisp_Symbol = 0,
455
456 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
457 whose first member indicates the subtype. */
458 Lisp_Misc = 1,
459
460 /* Integer. XINT (obj) is the integer value. */
461 Lisp_Int0 = 2,
462 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
463
464 /* String. XSTRING (object) points to a struct Lisp_String.
465 The length of the string, and its contents, are stored therein. */
466 Lisp_String = 4,
467
468 /* Vector of Lisp objects, or something resembling it.
469 XVECTOR (object) points to a struct Lisp_Vector, which contains
470 the size and contents. The size field also contains the type
471 information, if it's not a real vector object. */
472 Lisp_Vectorlike = 5,
473
474 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
475 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
476
477 Lisp_Float = 7
478 };
479
480 /* This is the set of data types that share a common structure.
481 The first member of the structure is a type code from this set.
482 The enum values are arbitrary, but we'll use large numbers to make it
483 more likely that we'll spot the error if a random word in memory is
484 mistakenly interpreted as a Lisp_Misc. */
485 enum Lisp_Misc_Type
486 {
487 Lisp_Misc_Free = 0x5eab,
488 Lisp_Misc_Marker,
489 Lisp_Misc_Overlay,
490 Lisp_Misc_Save_Value,
491 Lisp_Misc_Finalizer,
492 /* Currently floats are not a misc type,
493 but let's define this in case we want to change that. */
494 Lisp_Misc_Float,
495 /* This is not a type code. It is for range checking. */
496 Lisp_Misc_Limit
497 };
498
499 /* These are the types of forwarding objects used in the value slot
500 of symbols for special built-in variables whose value is stored in
501 C variables. */
502 enum Lisp_Fwd_Type
503 {
504 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
505 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
506 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
507 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
508 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
509 };
510
511 /* If you want to define a new Lisp data type, here are some
512 instructions. See the thread at
513 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
514 for more info.
515
516 First, there are already a couple of Lisp types that can be used if
517 your new type does not need to be exposed to Lisp programs nor
518 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
519 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
520 is suitable for temporarily stashing away pointers and integers in
521 a Lisp object. The latter is useful for vector-like Lisp objects
522 that need to be used as part of other objects, but which are never
523 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
524 an example).
525
526 These two types don't look pretty when printed, so they are
527 unsuitable for Lisp objects that can be exposed to users.
528
529 To define a new data type, add one more Lisp_Misc subtype or one
530 more pseudovector subtype. Pseudovectors are more suitable for
531 objects with several slots that need to support fast random access,
532 while Lisp_Misc types are for everything else. A pseudovector object
533 provides one or more slots for Lisp objects, followed by struct
534 members that are accessible only from C. A Lisp_Misc object is a
535 wrapper for a C struct that can contain anything you like.
536
537 Explicit freeing is discouraged for Lisp objects in general. But if
538 you really need to exploit this, use Lisp_Misc (check free_misc in
539 alloc.c to see why). There is no way to free a vectorlike object.
540
541 To add a new pseudovector type, extend the pvec_type enumeration;
542 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
543
544 For a Lisp_Misc, you will also need to add your entry to union
545 Lisp_Misc (but make sure the first word has the same structure as
546 the others, starting with a 16-bit member of the Lisp_Misc_Type
547 enumeration and a 1-bit GC markbit) and make sure the overall size
548 of the union is not increased by your addition.
549
550 For a new pseudovector, it's highly desirable to limit the size
551 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
552 Otherwise you will need to change sweep_vectors (also in alloc.c).
553
554 Then you will need to add switch branches in print.c (in
555 print_object, to print your object, and possibly also in
556 print_preprocess) and to alloc.c, to mark your object (in
557 mark_object) and to free it (in gc_sweep). The latter is also the
558 right place to call any code specific to your data type that needs
559 to run when the object is recycled -- e.g., free any additional
560 resources allocated for it that are not Lisp objects. You can even
561 make a pointer to the function that frees the resources a slot in
562 your object -- this way, the same object could be used to represent
563 several disparate C structures. */
564
565 #ifdef CHECK_LISP_OBJECT_TYPE
566
567 typedef struct { EMACS_INT i; } Lisp_Object;
568
569 #define LISP_INITIALLY(i) {i}
570
571 #undef CHECK_LISP_OBJECT_TYPE
572 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
573 #else /* CHECK_LISP_OBJECT_TYPE */
574
575 /* If a struct type is not wanted, define Lisp_Object as just a number. */
576
577 typedef EMACS_INT Lisp_Object;
578 #define LISP_INITIALLY(i) (i)
579 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
580 #endif /* CHECK_LISP_OBJECT_TYPE */
581
582 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
583 \f
584 /* Forward declarations. */
585
586 /* Defined in this file. */
587 union Lisp_Fwd;
588 INLINE bool BOOL_VECTOR_P (Lisp_Object);
589 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
590 INLINE bool BUFFERP (Lisp_Object);
591 INLINE bool CHAR_TABLE_P (Lisp_Object);
592 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
593 INLINE bool (CONSP) (Lisp_Object);
594 INLINE bool (FLOATP) (Lisp_Object);
595 INLINE bool functionp (Lisp_Object);
596 INLINE bool (INTEGERP) (Lisp_Object);
597 INLINE bool (MARKERP) (Lisp_Object);
598 INLINE bool (MISCP) (Lisp_Object);
599 INLINE bool (NILP) (Lisp_Object);
600 INLINE bool OVERLAYP (Lisp_Object);
601 INLINE bool PROCESSP (Lisp_Object);
602 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
603 INLINE bool SAVE_VALUEP (Lisp_Object);
604 INLINE bool FINALIZERP (Lisp_Object);
605 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
606 Lisp_Object);
607 INLINE bool STRINGP (Lisp_Object);
608 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
609 INLINE bool SUBRP (Lisp_Object);
610 INLINE bool (SYMBOLP) (Lisp_Object);
611 INLINE bool (VECTORLIKEP) (Lisp_Object);
612 INLINE bool WINDOWP (Lisp_Object);
613 INLINE bool TERMINALP (Lisp_Object);
614 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
615 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
616 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
617 INLINE void *(XUNTAG) (Lisp_Object, int);
618
619 /* Defined in chartab.c. */
620 extern Lisp_Object char_table_ref (Lisp_Object, int);
621 extern void char_table_set (Lisp_Object, int, Lisp_Object);
622
623 /* Defined in data.c. */
624 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
625 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
626
627 /* Defined in emacs.c. */
628 extern bool might_dump;
629 /* True means Emacs has already been initialized.
630 Used during startup to detect startup of dumped Emacs. */
631 extern bool initialized;
632
633 /* Defined in floatfns.c. */
634 extern double extract_float (Lisp_Object);
635
636 \f
637 /* Interned state of a symbol. */
638
639 enum symbol_interned
640 {
641 SYMBOL_UNINTERNED = 0,
642 SYMBOL_INTERNED = 1,
643 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
644 };
645
646 enum symbol_redirect
647 {
648 SYMBOL_PLAINVAL = 4,
649 SYMBOL_VARALIAS = 1,
650 SYMBOL_LOCALIZED = 2,
651 SYMBOL_FORWARDED = 3
652 };
653
654 struct Lisp_Symbol
655 {
656 bool_bf gcmarkbit : 1;
657
658 /* Indicates where the value can be found:
659 0 : it's a plain var, the value is in the `value' field.
660 1 : it's a varalias, the value is really in the `alias' symbol.
661 2 : it's a localized var, the value is in the `blv' object.
662 3 : it's a forwarding variable, the value is in `forward'. */
663 ENUM_BF (symbol_redirect) redirect : 3;
664
665 /* Non-zero means symbol is constant, i.e. changing its value
666 should signal an error. If the value is 3, then the var
667 can be changed, but only by `defconst'. */
668 unsigned constant : 2;
669
670 /* Interned state of the symbol. This is an enumerator from
671 enum symbol_interned. */
672 unsigned interned : 2;
673
674 /* True means that this variable has been explicitly declared
675 special (with `defvar' etc), and shouldn't be lexically bound. */
676 bool_bf declared_special : 1;
677
678 /* True if pointed to from purespace and hence can't be GC'd. */
679 bool_bf pinned : 1;
680
681 /* The symbol's name, as a Lisp string. */
682 Lisp_Object name;
683
684 /* Value of the symbol or Qunbound if unbound. Which alternative of the
685 union is used depends on the `redirect' field above. */
686 union {
687 Lisp_Object value;
688 struct Lisp_Symbol *alias;
689 struct Lisp_Buffer_Local_Value *blv;
690 union Lisp_Fwd *fwd;
691 } val;
692
693 /* Function value of the symbol or Qnil if not fboundp. */
694 Lisp_Object function;
695
696 /* The symbol's property list. */
697 Lisp_Object plist;
698
699 /* Next symbol in obarray bucket, if the symbol is interned. */
700 struct Lisp_Symbol *next;
701 };
702
703 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
704 meaning as in the DEFUN macro, and is used to construct a prototype. */
705 /* We can use the same trick as in the DEFUN macro to generate the
706 appropriate prototype. */
707 #define EXFUN(fnname, maxargs) \
708 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
709
710 /* Note that the weird token-substitution semantics of ANSI C makes
711 this work for MANY and UNEVALLED. */
712 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
713 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
714 #define DEFUN_ARGS_0 (void)
715 #define DEFUN_ARGS_1 (Lisp_Object)
716 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
717 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
718 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
719 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
720 Lisp_Object)
721 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
722 Lisp_Object, Lisp_Object)
723 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
724 Lisp_Object, Lisp_Object, Lisp_Object)
725 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
726 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
727
728 /* Yield an integer that contains TAG along with PTR. */
729 #define TAG_PTR(tag, ptr) \
730 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
731
732 /* Yield an integer that contains a symbol tag along with OFFSET.
733 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
734 #define TAG_SYMOFFSET(offset) \
735 TAG_PTR (Lisp_Symbol, \
736 ((uintptr_t) (offset) >> (USE_LSB_TAG ? 0 : GCTYPEBITS)))
737
738 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
739 XLI (builtin_lisp_symbol (Qwhatever)),
740 except the former expands to an integer constant expression. */
741 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
742
743 /* Declare extern constants for Lisp symbols. These can be helpful
744 when using a debugger like GDB, on older platforms where the debug
745 format does not represent C macros. */
746 #define DEFINE_LISP_SYMBOL(name) \
747 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
748 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
749
750 /* By default, define macros for Qt, etc., as this leads to a bit
751 better performance in the core Emacs interpreter. A plugin can
752 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
753 other Emacs instances that assign different values to Qt, etc. */
754 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
755 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
756 #endif
757
758 #include "globals.h"
759
760 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
761 At the machine level, these operations are no-ops. */
762 LISP_MACRO_DEFUN (XLI, EMACS_INT, (Lisp_Object o), (o))
763 LISP_MACRO_DEFUN (XIL, Lisp_Object, (EMACS_INT i), (i))
764
765 /* In the size word of a vector, this bit means the vector has been marked. */
766
767 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
768 # define ARRAY_MARK_FLAG PTRDIFF_MIN
769 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
770
771 /* In the size word of a struct Lisp_Vector, this bit means it's really
772 some other vector-like object. */
773 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
774 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
775 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
776
777 /* In a pseudovector, the size field actually contains a word with one
778 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
779 with PVEC_TYPE_MASK to indicate the actual type. */
780 enum pvec_type
781 {
782 PVEC_NORMAL_VECTOR,
783 PVEC_FREE,
784 PVEC_PROCESS,
785 PVEC_FRAME,
786 PVEC_WINDOW,
787 PVEC_BOOL_VECTOR,
788 PVEC_BUFFER,
789 PVEC_HASH_TABLE,
790 PVEC_TERMINAL,
791 PVEC_WINDOW_CONFIGURATION,
792 PVEC_SUBR,
793 PVEC_OTHER,
794 /* These should be last, check internal_equal to see why. */
795 PVEC_COMPILED,
796 PVEC_CHAR_TABLE,
797 PVEC_SUB_CHAR_TABLE,
798 PVEC_FONT /* Should be last because it's used for range checking. */
799 };
800
801 enum More_Lisp_Bits
802 {
803 /* For convenience, we also store the number of elements in these bits.
804 Note that this size is not necessarily the memory-footprint size, but
805 only the number of Lisp_Object fields (that need to be traced by GC).
806 The distinction is used, e.g., by Lisp_Process, which places extra
807 non-Lisp_Object fields at the end of the structure. */
808 PSEUDOVECTOR_SIZE_BITS = 12,
809 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
810
811 /* To calculate the memory footprint of the pseudovector, it's useful
812 to store the size of non-Lisp area in word_size units here. */
813 PSEUDOVECTOR_REST_BITS = 12,
814 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
815 << PSEUDOVECTOR_SIZE_BITS),
816
817 /* Used to extract pseudovector subtype information. */
818 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
819 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
820 };
821 \f
822 /* These functions extract various sorts of values from a Lisp_Object.
823 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
824 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
825 that cons. */
826
827 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
828 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
829 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
830 DEFINE_GDB_SYMBOL_END (VALMASK)
831
832 /* Largest and smallest representable fixnum values. These are the C
833 values. They are macros for use in static initializers. */
834 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
835 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
836
837 #if USE_LSB_TAG
838
839 LISP_MACRO_DEFUN (make_number, Lisp_Object, (EMACS_INT n), (n))
840 LISP_MACRO_DEFUN (XINT, EMACS_INT, (Lisp_Object a), (a))
841 LISP_MACRO_DEFUN (XFASTINT, EMACS_INT, (Lisp_Object a), (a))
842 LISP_MACRO_DEFUN (XSYMBOL, struct Lisp_Symbol *, (Lisp_Object a), (a))
843 LISP_MACRO_DEFUN (XTYPE, enum Lisp_Type, (Lisp_Object a), (a))
844 LISP_MACRO_DEFUN (XUNTAG, void *, (Lisp_Object a, int type), (a, type))
845
846 #else /* ! USE_LSB_TAG */
847
848 /* Although compiled only if ! USE_LSB_TAG, the following functions
849 also work when USE_LSB_TAG; this is to aid future maintenance when
850 the lisp_h_* macros are eventually removed. */
851
852 /* Make a Lisp integer representing the value of the low order
853 bits of N. */
854 INLINE Lisp_Object
855 make_number (EMACS_INT n)
856 {
857 EMACS_INT int0 = Lisp_Int0;
858 if (USE_LSB_TAG)
859 {
860 EMACS_UINT u = n;
861 n = u << INTTYPEBITS;
862 n += int0;
863 }
864 else
865 {
866 n &= INTMASK;
867 n += (int0 << VALBITS);
868 }
869 return XIL (n);
870 }
871
872 /* Extract A's value as a signed integer. */
873 INLINE EMACS_INT
874 XINT (Lisp_Object a)
875 {
876 EMACS_INT i = XLI (a);
877 if (! USE_LSB_TAG)
878 {
879 EMACS_UINT u = i;
880 i = u << INTTYPEBITS;
881 }
882 return i >> INTTYPEBITS;
883 }
884
885 /* Like XINT (A), but may be faster. A must be nonnegative.
886 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
887 integers have zero-bits in their tags. */
888 INLINE EMACS_INT
889 XFASTINT (Lisp_Object a)
890 {
891 EMACS_INT int0 = Lisp_Int0;
892 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
893 eassert (0 <= n);
894 return n;
895 }
896
897 /* Extract A's value as a symbol. */
898 INLINE struct Lisp_Symbol *
899 XSYMBOL (Lisp_Object a)
900 {
901 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
902 if (! USE_LSB_TAG)
903 i <<= GCTYPEBITS;
904 void *p = (char *) lispsym + i;
905 return p;
906 }
907
908 /* Extract A's type. */
909 INLINE enum Lisp_Type
910 XTYPE (Lisp_Object a)
911 {
912 EMACS_UINT i = XLI (a);
913 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
914 }
915
916 /* Extract A's pointer value, assuming A's type is TYPE. */
917 INLINE void *
918 XUNTAG (Lisp_Object a, int type)
919 {
920 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
921 return (void *) i;
922 }
923
924 #endif /* ! USE_LSB_TAG */
925
926 /* Extract the pointer hidden within A. */
927 LISP_MACRO_DEFUN (XPNTR, void *, (Lisp_Object a), (a))
928
929 /* Extract A's value as an unsigned integer. */
930 INLINE EMACS_UINT
931 XUINT (Lisp_Object a)
932 {
933 EMACS_UINT i = XLI (a);
934 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
935 }
936
937 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
938 right now, but XUINT should only be applied to objects we know are
939 integers. */
940 LISP_MACRO_DEFUN (XHASH, EMACS_INT, (Lisp_Object a), (a))
941
942 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
943 INLINE Lisp_Object
944 make_natnum (EMACS_INT n)
945 {
946 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
947 EMACS_INT int0 = Lisp_Int0;
948 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
949 }
950
951 /* Return true if X and Y are the same object. */
952 LISP_MACRO_DEFUN (EQ, bool, (Lisp_Object x, Lisp_Object y), (x, y))
953
954 /* Value is true if I doesn't fit into a Lisp fixnum. It is
955 written this way so that it also works if I is of unsigned
956 type or if I is a NaN. */
957
958 #define FIXNUM_OVERFLOW_P(i) \
959 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
960
961 INLINE ptrdiff_t
962 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
963 {
964 return num < lower ? lower : num <= upper ? num : upper;
965 }
966 \f
967
968 /* Extract a value or address from a Lisp_Object. */
969
970 LISP_MACRO_DEFUN (XCONS, struct Lisp_Cons *, (Lisp_Object a), (a))
971
972 INLINE struct Lisp_Vector *
973 XVECTOR (Lisp_Object a)
974 {
975 eassert (VECTORLIKEP (a));
976 return XUNTAG (a, Lisp_Vectorlike);
977 }
978
979 INLINE struct Lisp_String *
980 XSTRING (Lisp_Object a)
981 {
982 eassert (STRINGP (a));
983 return XUNTAG (a, Lisp_String);
984 }
985
986 /* The index of the C-defined Lisp symbol SYM.
987 This can be used in a static initializer. */
988 #define SYMBOL_INDEX(sym) i##sym
989
990 INLINE struct Lisp_Float *
991 XFLOAT (Lisp_Object a)
992 {
993 eassert (FLOATP (a));
994 return XUNTAG (a, Lisp_Float);
995 }
996
997 /* Pseudovector types. */
998
999 INLINE struct Lisp_Process *
1000 XPROCESS (Lisp_Object a)
1001 {
1002 eassert (PROCESSP (a));
1003 return XUNTAG (a, Lisp_Vectorlike);
1004 }
1005
1006 INLINE struct window *
1007 XWINDOW (Lisp_Object a)
1008 {
1009 eassert (WINDOWP (a));
1010 return XUNTAG (a, Lisp_Vectorlike);
1011 }
1012
1013 INLINE struct terminal *
1014 XTERMINAL (Lisp_Object a)
1015 {
1016 eassert (TERMINALP (a));
1017 return XUNTAG (a, Lisp_Vectorlike);
1018 }
1019
1020 INLINE struct Lisp_Subr *
1021 XSUBR (Lisp_Object a)
1022 {
1023 eassert (SUBRP (a));
1024 return XUNTAG (a, Lisp_Vectorlike);
1025 }
1026
1027 INLINE struct buffer *
1028 XBUFFER (Lisp_Object a)
1029 {
1030 eassert (BUFFERP (a));
1031 return XUNTAG (a, Lisp_Vectorlike);
1032 }
1033
1034 INLINE struct Lisp_Char_Table *
1035 XCHAR_TABLE (Lisp_Object a)
1036 {
1037 eassert (CHAR_TABLE_P (a));
1038 return XUNTAG (a, Lisp_Vectorlike);
1039 }
1040
1041 INLINE struct Lisp_Sub_Char_Table *
1042 XSUB_CHAR_TABLE (Lisp_Object a)
1043 {
1044 eassert (SUB_CHAR_TABLE_P (a));
1045 return XUNTAG (a, Lisp_Vectorlike);
1046 }
1047
1048 INLINE struct Lisp_Bool_Vector *
1049 XBOOL_VECTOR (Lisp_Object a)
1050 {
1051 eassert (BOOL_VECTOR_P (a));
1052 return XUNTAG (a, Lisp_Vectorlike);
1053 }
1054
1055 /* Construct a Lisp_Object from a value or address. */
1056
1057 INLINE Lisp_Object
1058 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1059 {
1060 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1061 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1062 return a;
1063 }
1064
1065 INLINE Lisp_Object
1066 make_lisp_symbol (struct Lisp_Symbol *sym)
1067 {
1068 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1069 eassert (XSYMBOL (a) == sym);
1070 return a;
1071 }
1072
1073 INLINE Lisp_Object
1074 builtin_lisp_symbol (int index)
1075 {
1076 return make_lisp_symbol (lispsym + index);
1077 }
1078
1079 #define XSETINT(a, b) ((a) = make_number (b))
1080 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1081 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1082 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1083 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1084 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1085 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1086 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1087
1088 /* Pseudovector types. */
1089
1090 #define XSETPVECTYPE(v, code) \
1091 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1092 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1093 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1094 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1095 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1096 | (lispsize)))
1097
1098 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1099 #define XSETPSEUDOVECTOR(a, b, code) \
1100 XSETTYPED_PSEUDOVECTOR (a, b, \
1101 (((struct vectorlike_header *) \
1102 XUNTAG (a, Lisp_Vectorlike)) \
1103 ->size), \
1104 code)
1105 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1106 (XSETVECTOR (a, b), \
1107 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1108 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1109
1110 #define XSETWINDOW_CONFIGURATION(a, b) \
1111 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1112 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1113 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1114 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1115 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1116 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1117 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1118 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1119 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1120 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1121
1122 /* Efficiently convert a pointer to a Lisp object and back. The
1123 pointer is represented as a Lisp integer, so the garbage collector
1124 does not know about it. The pointer should not have both Lisp_Int1
1125 bits set, which makes this conversion inherently unportable. */
1126
1127 INLINE void *
1128 XINTPTR (Lisp_Object a)
1129 {
1130 return XUNTAG (a, Lisp_Int0);
1131 }
1132
1133 INLINE Lisp_Object
1134 make_pointer_integer (void *p)
1135 {
1136 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1137 eassert (INTEGERP (a) && XINTPTR (a) == p);
1138 return a;
1139 }
1140
1141 /* Type checking. */
1142
1143 LISP_MACRO_DEFUN_VOID (CHECK_TYPE,
1144 (int ok, Lisp_Object predicate, Lisp_Object x),
1145 (ok, predicate, x))
1146
1147 /* Deprecated and will be removed soon. */
1148
1149 #define INTERNAL_FIELD(field) field ## _
1150
1151 /* See the macros in intervals.h. */
1152
1153 typedef struct interval *INTERVAL;
1154
1155 struct GCALIGNED Lisp_Cons
1156 {
1157 /* Car of this cons cell. */
1158 Lisp_Object car;
1159
1160 union
1161 {
1162 /* Cdr of this cons cell. */
1163 Lisp_Object cdr;
1164
1165 /* Used to chain conses on a free list. */
1166 struct Lisp_Cons *chain;
1167 } u;
1168 };
1169
1170 /* Take the car or cdr of something known to be a cons cell. */
1171 /* The _addr functions shouldn't be used outside of the minimal set
1172 of code that has to know what a cons cell looks like. Other code not
1173 part of the basic lisp implementation should assume that the car and cdr
1174 fields are not accessible. (What if we want to switch to
1175 a copying collector someday? Cached cons cell field addresses may be
1176 invalidated at arbitrary points.) */
1177 INLINE Lisp_Object *
1178 xcar_addr (Lisp_Object c)
1179 {
1180 return &XCONS (c)->car;
1181 }
1182 INLINE Lisp_Object *
1183 xcdr_addr (Lisp_Object c)
1184 {
1185 return &XCONS (c)->u.cdr;
1186 }
1187
1188 /* Use these from normal code. */
1189 LISP_MACRO_DEFUN (XCAR, Lisp_Object, (Lisp_Object c), (c))
1190 LISP_MACRO_DEFUN (XCDR, Lisp_Object, (Lisp_Object c), (c))
1191
1192 /* Use these to set the fields of a cons cell.
1193
1194 Note that both arguments may refer to the same object, so 'n'
1195 should not be read after 'c' is first modified. */
1196 INLINE void
1197 XSETCAR (Lisp_Object c, Lisp_Object n)
1198 {
1199 *xcar_addr (c) = n;
1200 }
1201 INLINE void
1202 XSETCDR (Lisp_Object c, Lisp_Object n)
1203 {
1204 *xcdr_addr (c) = n;
1205 }
1206
1207 /* Take the car or cdr of something whose type is not known. */
1208 INLINE Lisp_Object
1209 CAR (Lisp_Object c)
1210 {
1211 return (CONSP (c) ? XCAR (c)
1212 : NILP (c) ? Qnil
1213 : wrong_type_argument (Qlistp, c));
1214 }
1215 INLINE Lisp_Object
1216 CDR (Lisp_Object c)
1217 {
1218 return (CONSP (c) ? XCDR (c)
1219 : NILP (c) ? Qnil
1220 : wrong_type_argument (Qlistp, c));
1221 }
1222
1223 /* Take the car or cdr of something whose type is not known. */
1224 INLINE Lisp_Object
1225 CAR_SAFE (Lisp_Object c)
1226 {
1227 return CONSP (c) ? XCAR (c) : Qnil;
1228 }
1229 INLINE Lisp_Object
1230 CDR_SAFE (Lisp_Object c)
1231 {
1232 return CONSP (c) ? XCDR (c) : Qnil;
1233 }
1234
1235 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1236
1237 struct GCALIGNED Lisp_String
1238 {
1239 ptrdiff_t size;
1240 ptrdiff_t size_byte;
1241 INTERVAL intervals; /* Text properties in this string. */
1242 unsigned char *data;
1243 };
1244
1245 /* True if STR is a multibyte string. */
1246 INLINE bool
1247 STRING_MULTIBYTE (Lisp_Object str)
1248 {
1249 return 0 <= XSTRING (str)->size_byte;
1250 }
1251
1252 /* An upper bound on the number of bytes in a Lisp string, not
1253 counting the terminating null. This a tight enough bound to
1254 prevent integer overflow errors that would otherwise occur during
1255 string size calculations. A string cannot contain more bytes than
1256 a fixnum can represent, nor can it be so long that C pointer
1257 arithmetic stops working on the string plus its terminating null.
1258 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1259 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1260 would expose alloc.c internal details that we'd rather keep
1261 private.
1262
1263 This is a macro for use in static initializers. The cast to
1264 ptrdiff_t ensures that the macro is signed. */
1265 #define STRING_BYTES_BOUND \
1266 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1267
1268 /* Mark STR as a unibyte string. */
1269 #define STRING_SET_UNIBYTE(STR) \
1270 do { \
1271 if (EQ (STR, empty_multibyte_string)) \
1272 (STR) = empty_unibyte_string; \
1273 else \
1274 XSTRING (STR)->size_byte = -1; \
1275 } while (false)
1276
1277 /* Mark STR as a multibyte string. Assure that STR contains only
1278 ASCII characters in advance. */
1279 #define STRING_SET_MULTIBYTE(STR) \
1280 do { \
1281 if (EQ (STR, empty_unibyte_string)) \
1282 (STR) = empty_multibyte_string; \
1283 else \
1284 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1285 } while (false)
1286
1287 /* Convenience functions for dealing with Lisp strings. */
1288
1289 INLINE unsigned char *
1290 SDATA (Lisp_Object string)
1291 {
1292 return XSTRING (string)->data;
1293 }
1294 INLINE char *
1295 SSDATA (Lisp_Object string)
1296 {
1297 /* Avoid "differ in sign" warnings. */
1298 return (char *) SDATA (string);
1299 }
1300 INLINE unsigned char
1301 SREF (Lisp_Object string, ptrdiff_t index)
1302 {
1303 return SDATA (string)[index];
1304 }
1305 INLINE void
1306 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1307 {
1308 SDATA (string)[index] = new;
1309 }
1310 INLINE ptrdiff_t
1311 SCHARS (Lisp_Object string)
1312 {
1313 return XSTRING (string)->size;
1314 }
1315
1316 #ifdef GC_CHECK_STRING_BYTES
1317 extern ptrdiff_t string_bytes (struct Lisp_String *);
1318 #endif
1319 INLINE ptrdiff_t
1320 STRING_BYTES (struct Lisp_String *s)
1321 {
1322 #ifdef GC_CHECK_STRING_BYTES
1323 return string_bytes (s);
1324 #else
1325 return s->size_byte < 0 ? s->size : s->size_byte;
1326 #endif
1327 }
1328
1329 INLINE ptrdiff_t
1330 SBYTES (Lisp_Object string)
1331 {
1332 return STRING_BYTES (XSTRING (string));
1333 }
1334 INLINE void
1335 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1336 {
1337 XSTRING (string)->size = newsize;
1338 }
1339
1340 /* Header of vector-like objects. This documents the layout constraints on
1341 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1342 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1343 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1344 because when two such pointers potentially alias, a compiler won't
1345 incorrectly reorder loads and stores to their size fields. See
1346 Bug#8546. */
1347 struct vectorlike_header
1348 {
1349 /* The only field contains various pieces of information:
1350 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1351 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1352 vector (0) or a pseudovector (1).
1353 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1354 of slots) of the vector.
1355 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1356 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1357 - b) number of Lisp_Objects slots at the beginning of the object
1358 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1359 traced by the GC;
1360 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1361 measured in word_size units. Rest fields may also include
1362 Lisp_Objects, but these objects usually needs some special treatment
1363 during GC.
1364 There are some exceptions. For PVEC_FREE, b) is always zero. For
1365 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1366 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1367 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1368 ptrdiff_t size;
1369 };
1370
1371 /* A regular vector is just a header plus an array of Lisp_Objects. */
1372
1373 struct Lisp_Vector
1374 {
1375 struct vectorlike_header header;
1376 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1377 };
1378
1379 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1380 enum
1381 {
1382 ALIGNOF_STRUCT_LISP_VECTOR
1383 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1384 };
1385
1386 /* A boolvector is a kind of vectorlike, with contents like a string. */
1387
1388 struct Lisp_Bool_Vector
1389 {
1390 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1391 just the subtype information. */
1392 struct vectorlike_header header;
1393 /* This is the size in bits. */
1394 EMACS_INT size;
1395 /* The actual bits, packed into bytes.
1396 Zeros fill out the last word if needed.
1397 The bits are in little-endian order in the bytes, and
1398 the bytes are in little-endian order in the words. */
1399 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1400 };
1401
1402 INLINE EMACS_INT
1403 bool_vector_size (Lisp_Object a)
1404 {
1405 EMACS_INT size = XBOOL_VECTOR (a)->size;
1406 eassume (0 <= size);
1407 return size;
1408 }
1409
1410 INLINE bits_word *
1411 bool_vector_data (Lisp_Object a)
1412 {
1413 return XBOOL_VECTOR (a)->data;
1414 }
1415
1416 INLINE unsigned char *
1417 bool_vector_uchar_data (Lisp_Object a)
1418 {
1419 return (unsigned char *) bool_vector_data (a);
1420 }
1421
1422 /* The number of data words and bytes in a bool vector with SIZE bits. */
1423
1424 INLINE EMACS_INT
1425 bool_vector_words (EMACS_INT size)
1426 {
1427 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1428 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1429 }
1430
1431 INLINE EMACS_INT
1432 bool_vector_bytes (EMACS_INT size)
1433 {
1434 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1435 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1436 }
1437
1438 /* True if A's Ith bit is set. */
1439
1440 INLINE bool
1441 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1442 {
1443 eassume (0 <= i && i < bool_vector_size (a));
1444 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1445 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1446 }
1447
1448 INLINE Lisp_Object
1449 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1450 {
1451 return bool_vector_bitref (a, i) ? Qt : Qnil;
1452 }
1453
1454 /* Set A's Ith bit to B. */
1455
1456 INLINE void
1457 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1458 {
1459 unsigned char *addr;
1460
1461 eassume (0 <= i && i < bool_vector_size (a));
1462 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1463
1464 if (b)
1465 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1466 else
1467 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1468 }
1469
1470 /* Some handy constants for calculating sizes
1471 and offsets, mostly of vectorlike objects. */
1472
1473 enum
1474 {
1475 header_size = offsetof (struct Lisp_Vector, contents),
1476 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1477 word_size = sizeof (Lisp_Object)
1478 };
1479
1480 /* Conveniences for dealing with Lisp arrays. */
1481
1482 INLINE Lisp_Object
1483 AREF (Lisp_Object array, ptrdiff_t idx)
1484 {
1485 return XVECTOR (array)->contents[idx];
1486 }
1487
1488 INLINE Lisp_Object *
1489 aref_addr (Lisp_Object array, ptrdiff_t idx)
1490 {
1491 return & XVECTOR (array)->contents[idx];
1492 }
1493
1494 INLINE ptrdiff_t
1495 ASIZE (Lisp_Object array)
1496 {
1497 return XVECTOR (array)->header.size;
1498 }
1499
1500 INLINE void
1501 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1502 {
1503 eassert (0 <= idx && idx < ASIZE (array));
1504 XVECTOR (array)->contents[idx] = val;
1505 }
1506
1507 INLINE void
1508 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1509 {
1510 /* Like ASET, but also can be used in the garbage collector:
1511 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1512 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1513 XVECTOR (array)->contents[idx] = val;
1514 }
1515
1516 /* True, since Qnil's representation is zero. Every place in the code
1517 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1518 to find such assumptions later if we change Qnil to be nonzero. */
1519 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1520
1521 /* Clear the object addressed by P, with size NBYTES, so that all its
1522 bytes are zero and all its Lisp values are nil. */
1523 INLINE void
1524 memclear (void *p, ptrdiff_t nbytes)
1525 {
1526 eassert (0 <= nbytes);
1527 verify (NIL_IS_ZERO);
1528 /* Since Qnil is zero, memset suffices. */
1529 memset (p, 0, nbytes);
1530 }
1531
1532 /* If a struct is made to look like a vector, this macro returns the length
1533 of the shortest vector that would hold that struct. */
1534
1535 #define VECSIZE(type) \
1536 ((sizeof (type) - header_size + word_size - 1) / word_size)
1537
1538 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1539 at the end and we need to compute the number of Lisp_Object fields (the
1540 ones that the GC needs to trace). */
1541
1542 #define PSEUDOVECSIZE(type, nonlispfield) \
1543 ((offsetof (type, nonlispfield) - header_size) / word_size)
1544
1545 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1546 should be integer expressions. This is not the same as
1547 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1548 returns true. For efficiency, prefer plain unsigned comparison if A
1549 and B's sizes both fit (after integer promotion). */
1550 #define UNSIGNED_CMP(a, op, b) \
1551 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1552 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1553 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1554
1555 /* True iff C is an ASCII character. */
1556 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1557
1558 /* A char-table is a kind of vectorlike, with contents are like a
1559 vector but with a few other slots. For some purposes, it makes
1560 sense to handle a char-table with type struct Lisp_Vector. An
1561 element of a char table can be any Lisp objects, but if it is a sub
1562 char-table, we treat it a table that contains information of a
1563 specific range of characters. A sub char-table is like a vector but
1564 with two integer fields between the header and Lisp data, which means
1565 that it has to be marked with some precautions (see mark_char_table
1566 in alloc.c). A sub char-table appears only in an element of a char-table,
1567 and there's no way to access it directly from Emacs Lisp program. */
1568
1569 enum CHARTAB_SIZE_BITS
1570 {
1571 CHARTAB_SIZE_BITS_0 = 6,
1572 CHARTAB_SIZE_BITS_1 = 4,
1573 CHARTAB_SIZE_BITS_2 = 5,
1574 CHARTAB_SIZE_BITS_3 = 7
1575 };
1576
1577 extern const int chartab_size[4];
1578
1579 struct Lisp_Char_Table
1580 {
1581 /* HEADER.SIZE is the vector's size field, which also holds the
1582 pseudovector type information. It holds the size, too.
1583 The size counts the defalt, parent, purpose, ascii,
1584 contents, and extras slots. */
1585 struct vectorlike_header header;
1586
1587 /* This holds a default value,
1588 which is used whenever the value for a specific character is nil. */
1589 Lisp_Object defalt;
1590
1591 /* This points to another char table, which we inherit from when the
1592 value for a specific character is nil. The `defalt' slot takes
1593 precedence over this. */
1594 Lisp_Object parent;
1595
1596 /* This is a symbol which says what kind of use this char-table is
1597 meant for. */
1598 Lisp_Object purpose;
1599
1600 /* The bottom sub char-table for characters of the range 0..127. It
1601 is nil if none of ASCII character has a specific value. */
1602 Lisp_Object ascii;
1603
1604 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1605
1606 /* These hold additional data. It is a vector. */
1607 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1608 };
1609
1610 struct Lisp_Sub_Char_Table
1611 {
1612 /* HEADER.SIZE is the vector's size field, which also holds the
1613 pseudovector type information. It holds the size, too. */
1614 struct vectorlike_header header;
1615
1616 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1617 char-table of depth 1 contains 16 elements, and each element
1618 covers 4096 (128*32) characters. A sub char-table of depth 2
1619 contains 32 elements, and each element covers 128 characters. A
1620 sub char-table of depth 3 contains 128 elements, and each element
1621 is for one character. */
1622 int depth;
1623
1624 /* Minimum character covered by the sub char-table. */
1625 int min_char;
1626
1627 /* Use set_sub_char_table_contents to set this. */
1628 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1629 };
1630
1631 INLINE Lisp_Object
1632 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1633 {
1634 struct Lisp_Char_Table *tbl = NULL;
1635 Lisp_Object val;
1636 do
1637 {
1638 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1639 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1640 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1641 if (NILP (val))
1642 val = tbl->defalt;
1643 }
1644 while (NILP (val) && ! NILP (tbl->parent));
1645
1646 return val;
1647 }
1648
1649 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1650 characters. Do not check validity of CT. */
1651 INLINE Lisp_Object
1652 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1653 {
1654 return (ASCII_CHAR_P (idx)
1655 ? CHAR_TABLE_REF_ASCII (ct, idx)
1656 : char_table_ref (ct, idx));
1657 }
1658
1659 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1660 8-bit European characters. Do not check validity of CT. */
1661 INLINE void
1662 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1663 {
1664 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1665 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1666 else
1667 char_table_set (ct, idx, val);
1668 }
1669
1670 /* This structure describes a built-in function.
1671 It is generated by the DEFUN macro only.
1672 defsubr makes it into a Lisp object. */
1673
1674 struct Lisp_Subr
1675 {
1676 struct vectorlike_header header;
1677 union {
1678 Lisp_Object (*a0) (void);
1679 Lisp_Object (*a1) (Lisp_Object);
1680 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1681 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1682 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1683 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1684 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1685 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1686 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1687 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1688 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1689 } function;
1690 short min_args, max_args;
1691 const char *symbol_name;
1692 const char *intspec;
1693 const char *doc;
1694 };
1695
1696 enum char_table_specials
1697 {
1698 /* This is the number of slots that every char table must have. This
1699 counts the ordinary slots and the top, defalt, parent, and purpose
1700 slots. */
1701 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1702
1703 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1704 when the latter is treated as an ordinary Lisp_Vector. */
1705 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1706 };
1707
1708 /* Return the number of "extra" slots in the char table CT. */
1709
1710 INLINE int
1711 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1712 {
1713 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1714 - CHAR_TABLE_STANDARD_SLOTS);
1715 }
1716
1717 /* Make sure that sub char-table contents slot is where we think it is. */
1718 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1719 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1720
1721 /***********************************************************************
1722 Symbols
1723 ***********************************************************************/
1724
1725 /* Value is name of symbol. */
1726
1727 LISP_MACRO_DEFUN (SYMBOL_VAL, Lisp_Object, (struct Lisp_Symbol *sym), (sym))
1728
1729 INLINE struct Lisp_Symbol *
1730 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1731 {
1732 eassert (sym->redirect == SYMBOL_VARALIAS);
1733 return sym->val.alias;
1734 }
1735 INLINE struct Lisp_Buffer_Local_Value *
1736 SYMBOL_BLV (struct Lisp_Symbol *sym)
1737 {
1738 eassert (sym->redirect == SYMBOL_LOCALIZED);
1739 return sym->val.blv;
1740 }
1741 INLINE union Lisp_Fwd *
1742 SYMBOL_FWD (struct Lisp_Symbol *sym)
1743 {
1744 eassert (sym->redirect == SYMBOL_FORWARDED);
1745 return sym->val.fwd;
1746 }
1747
1748 LISP_MACRO_DEFUN_VOID (SET_SYMBOL_VAL,
1749 (struct Lisp_Symbol *sym, Lisp_Object v), (sym, v))
1750
1751 INLINE void
1752 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1753 {
1754 eassert (sym->redirect == SYMBOL_VARALIAS);
1755 sym->val.alias = v;
1756 }
1757 INLINE void
1758 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1759 {
1760 eassert (sym->redirect == SYMBOL_LOCALIZED);
1761 sym->val.blv = v;
1762 }
1763 INLINE void
1764 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1765 {
1766 eassert (sym->redirect == SYMBOL_FORWARDED);
1767 sym->val.fwd = v;
1768 }
1769
1770 INLINE Lisp_Object
1771 SYMBOL_NAME (Lisp_Object sym)
1772 {
1773 return XSYMBOL (sym)->name;
1774 }
1775
1776 /* Value is true if SYM is an interned symbol. */
1777
1778 INLINE bool
1779 SYMBOL_INTERNED_P (Lisp_Object sym)
1780 {
1781 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1782 }
1783
1784 /* Value is true if SYM is interned in initial_obarray. */
1785
1786 INLINE bool
1787 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1788 {
1789 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1790 }
1791
1792 /* Value is non-zero if symbol is considered a constant, i.e. its
1793 value cannot be changed (there is an exception for keyword symbols,
1794 whose value can be set to the keyword symbol itself). */
1795
1796 LISP_MACRO_DEFUN (SYMBOL_CONSTANT_P, int, (Lisp_Object sym), (sym))
1797
1798 /* Placeholder for make-docfile to process. The actual symbol
1799 definition is done by lread.c's defsym. */
1800 #define DEFSYM(sym, name) /* empty */
1801
1802 \f
1803 /***********************************************************************
1804 Hash Tables
1805 ***********************************************************************/
1806
1807 /* The structure of a Lisp hash table. */
1808
1809 struct hash_table_test
1810 {
1811 /* Name of the function used to compare keys. */
1812 Lisp_Object name;
1813
1814 /* User-supplied hash function, or nil. */
1815 Lisp_Object user_hash_function;
1816
1817 /* User-supplied key comparison function, or nil. */
1818 Lisp_Object user_cmp_function;
1819
1820 /* C function to compare two keys. */
1821 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1822
1823 /* C function to compute hash code. */
1824 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1825 };
1826
1827 struct Lisp_Hash_Table
1828 {
1829 /* This is for Lisp; the hash table code does not refer to it. */
1830 struct vectorlike_header header;
1831
1832 /* Nil if table is non-weak. Otherwise a symbol describing the
1833 weakness of the table. */
1834 Lisp_Object weak;
1835
1836 /* When the table is resized, and this is an integer, compute the
1837 new size by adding this to the old size. If a float, compute the
1838 new size by multiplying the old size with this factor. */
1839 Lisp_Object rehash_size;
1840
1841 /* Resize hash table when number of entries/ table size is >= this
1842 ratio, a float. */
1843 Lisp_Object rehash_threshold;
1844
1845 /* Vector of hash codes. If hash[I] is nil, this means that the
1846 I-th entry is unused. */
1847 Lisp_Object hash;
1848
1849 /* Vector used to chain entries. If entry I is free, next[I] is the
1850 entry number of the next free item. If entry I is non-free,
1851 next[I] is the index of the next entry in the collision chain. */
1852 Lisp_Object next;
1853
1854 /* Index of first free entry in free list. */
1855 Lisp_Object next_free;
1856
1857 /* Bucket vector. A non-nil entry is the index of the first item in
1858 a collision chain. This vector's size can be larger than the
1859 hash table size to reduce collisions. */
1860 Lisp_Object index;
1861
1862 /* Only the fields above are traced normally by the GC. The ones below
1863 `count' are special and are either ignored by the GC or traced in
1864 a special way (e.g. because of weakness). */
1865
1866 /* Number of key/value entries in the table. */
1867 ptrdiff_t count;
1868
1869 /* Vector of keys and values. The key of item I is found at index
1870 2 * I, the value is found at index 2 * I + 1.
1871 This is gc_marked specially if the table is weak. */
1872 Lisp_Object key_and_value;
1873
1874 /* The comparison and hash functions. */
1875 struct hash_table_test test;
1876
1877 /* Next weak hash table if this is a weak hash table. The head
1878 of the list is in weak_hash_tables. */
1879 struct Lisp_Hash_Table *next_weak;
1880 };
1881
1882
1883 INLINE struct Lisp_Hash_Table *
1884 XHASH_TABLE (Lisp_Object a)
1885 {
1886 return XUNTAG (a, Lisp_Vectorlike);
1887 }
1888
1889 #define XSET_HASH_TABLE(VAR, PTR) \
1890 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1891
1892 INLINE bool
1893 HASH_TABLE_P (Lisp_Object a)
1894 {
1895 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1896 }
1897
1898 /* Value is the key part of entry IDX in hash table H. */
1899 INLINE Lisp_Object
1900 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1901 {
1902 return AREF (h->key_and_value, 2 * idx);
1903 }
1904
1905 /* Value is the value part of entry IDX in hash table H. */
1906 INLINE Lisp_Object
1907 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1908 {
1909 return AREF (h->key_and_value, 2 * idx + 1);
1910 }
1911
1912 /* Value is the index of the next entry following the one at IDX
1913 in hash table H. */
1914 INLINE Lisp_Object
1915 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1916 {
1917 return AREF (h->next, idx);
1918 }
1919
1920 /* Value is the hash code computed for entry IDX in hash table H. */
1921 INLINE Lisp_Object
1922 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1923 {
1924 return AREF (h->hash, idx);
1925 }
1926
1927 /* Value is the index of the element in hash table H that is the
1928 start of the collision list at index IDX in the index vector of H. */
1929 INLINE Lisp_Object
1930 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1931 {
1932 return AREF (h->index, idx);
1933 }
1934
1935 /* Value is the size of hash table H. */
1936 INLINE ptrdiff_t
1937 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1938 {
1939 return ASIZE (h->next);
1940 }
1941
1942 /* Default size for hash tables if not specified. */
1943
1944 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1945
1946 /* Default threshold specifying when to resize a hash table. The
1947 value gives the ratio of current entries in the hash table and the
1948 size of the hash table. */
1949
1950 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
1951
1952 /* Default factor by which to increase the size of a hash table. */
1953
1954 static double const DEFAULT_REHASH_SIZE = 1.5;
1955
1956 /* Combine two integers X and Y for hashing. The result might not fit
1957 into a Lisp integer. */
1958
1959 INLINE EMACS_UINT
1960 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
1961 {
1962 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
1963 }
1964
1965 /* Hash X, returning a value that fits into a fixnum. */
1966
1967 INLINE EMACS_UINT
1968 SXHASH_REDUCE (EMACS_UINT x)
1969 {
1970 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
1971 }
1972
1973 /* These structures are used for various misc types. */
1974
1975 struct Lisp_Misc_Any /* Supertype of all Misc types. */
1976 {
1977 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
1978 bool_bf gcmarkbit : 1;
1979 unsigned spacer : 15;
1980 };
1981
1982 struct Lisp_Marker
1983 {
1984 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
1985 bool_bf gcmarkbit : 1;
1986 unsigned spacer : 13;
1987 /* This flag is temporarily used in the functions
1988 decode/encode_coding_object to record that the marker position
1989 must be adjusted after the conversion. */
1990 bool_bf need_adjustment : 1;
1991 /* True means normal insertion at the marker's position
1992 leaves the marker after the inserted text. */
1993 bool_bf insertion_type : 1;
1994 /* This is the buffer that the marker points into, or 0 if it points nowhere.
1995 Note: a chain of markers can contain markers pointing into different
1996 buffers (the chain is per buffer_text rather than per buffer, so it's
1997 shared between indirect buffers). */
1998 /* This is used for (other than NULL-checking):
1999 - Fmarker_buffer
2000 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2001 - unchain_marker: to find the list from which to unchain.
2002 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2003 */
2004 struct buffer *buffer;
2005
2006 /* The remaining fields are meaningless in a marker that
2007 does not point anywhere. */
2008
2009 /* For markers that point somewhere,
2010 this is used to chain of all the markers in a given buffer. */
2011 /* We could remove it and use an array in buffer_text instead.
2012 That would also allow to preserve it ordered. */
2013 struct Lisp_Marker *next;
2014 /* This is the char position where the marker points. */
2015 ptrdiff_t charpos;
2016 /* This is the byte position.
2017 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2018 used to implement the functionality of markers, but rather to (ab)use
2019 markers as a cache for char<->byte mappings). */
2020 ptrdiff_t bytepos;
2021 };
2022
2023 /* START and END are markers in the overlay's buffer, and
2024 PLIST is the overlay's property list. */
2025 struct Lisp_Overlay
2026 /* An overlay's real data content is:
2027 - plist
2028 - buffer (really there are two buffer pointers, one per marker,
2029 and both points to the same buffer)
2030 - insertion type of both ends (per-marker fields)
2031 - start & start byte (of start marker)
2032 - end & end byte (of end marker)
2033 - next (singly linked list of overlays)
2034 - next fields of start and end markers (singly linked list of markers).
2035 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2036 */
2037 {
2038 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2039 bool_bf gcmarkbit : 1;
2040 unsigned spacer : 15;
2041 struct Lisp_Overlay *next;
2042 Lisp_Object start;
2043 Lisp_Object end;
2044 Lisp_Object plist;
2045 };
2046
2047 /* Types of data which may be saved in a Lisp_Save_Value. */
2048
2049 enum
2050 {
2051 SAVE_UNUSED,
2052 SAVE_INTEGER,
2053 SAVE_FUNCPOINTER,
2054 SAVE_POINTER,
2055 SAVE_OBJECT
2056 };
2057
2058 /* Number of bits needed to store one of the above values. */
2059 enum { SAVE_SLOT_BITS = 3 };
2060
2061 /* Number of slots in a save value where save_type is nonzero. */
2062 enum { SAVE_VALUE_SLOTS = 4 };
2063
2064 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2065
2066 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2067
2068 enum Lisp_Save_Type
2069 {
2070 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2071 SAVE_TYPE_INT_INT_INT
2072 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2073 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2074 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2075 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2076 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2077 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2078 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2079 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2080 SAVE_TYPE_FUNCPTR_PTR_OBJ
2081 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2082
2083 /* This has an extra bit indicating it's raw memory. */
2084 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2085 };
2086
2087 /* Special object used to hold a different values for later use.
2088
2089 This is mostly used to package C integers and pointers to call
2090 record_unwind_protect when two or more values need to be saved.
2091 For example:
2092
2093 ...
2094 struct my_data *md = get_my_data ();
2095 ptrdiff_t mi = get_my_integer ();
2096 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2097 ...
2098
2099 Lisp_Object my_unwind (Lisp_Object arg)
2100 {
2101 struct my_data *md = XSAVE_POINTER (arg, 0);
2102 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2103 ...
2104 }
2105
2106 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2107 saved objects and raise eassert if type of the saved object doesn't match
2108 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2109 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2110 slot 0 is a pointer. */
2111
2112 typedef void (*voidfuncptr) (void);
2113
2114 struct Lisp_Save_Value
2115 {
2116 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2117 bool_bf gcmarkbit : 1;
2118 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2119
2120 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2121 V's data entries are determined by V->save_type. E.g., if
2122 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2123 V->data[1] is an integer, and V's other data entries are unused.
2124
2125 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2126 a memory area containing V->data[1].integer potential Lisp_Objects. */
2127 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2128 union {
2129 void *pointer;
2130 voidfuncptr funcpointer;
2131 ptrdiff_t integer;
2132 Lisp_Object object;
2133 } data[SAVE_VALUE_SLOTS];
2134 };
2135
2136 /* Return the type of V's Nth saved value. */
2137 INLINE int
2138 save_type (struct Lisp_Save_Value *v, int n)
2139 {
2140 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2141 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2142 }
2143
2144 /* Get and set the Nth saved pointer. */
2145
2146 INLINE void *
2147 XSAVE_POINTER (Lisp_Object obj, int n)
2148 {
2149 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2150 return XSAVE_VALUE (obj)->data[n].pointer;
2151 }
2152 INLINE void
2153 set_save_pointer (Lisp_Object obj, int n, void *val)
2154 {
2155 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2156 XSAVE_VALUE (obj)->data[n].pointer = val;
2157 }
2158 INLINE voidfuncptr
2159 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2160 {
2161 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2162 return XSAVE_VALUE (obj)->data[n].funcpointer;
2163 }
2164
2165 /* Likewise for the saved integer. */
2166
2167 INLINE ptrdiff_t
2168 XSAVE_INTEGER (Lisp_Object obj, int n)
2169 {
2170 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2171 return XSAVE_VALUE (obj)->data[n].integer;
2172 }
2173 INLINE void
2174 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2175 {
2176 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2177 XSAVE_VALUE (obj)->data[n].integer = val;
2178 }
2179
2180 /* Extract Nth saved object. */
2181
2182 INLINE Lisp_Object
2183 XSAVE_OBJECT (Lisp_Object obj, int n)
2184 {
2185 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2186 return XSAVE_VALUE (obj)->data[n].object;
2187 }
2188
2189 /* A finalizer sentinel. */
2190 struct Lisp_Finalizer
2191 {
2192 struct Lisp_Misc_Any base;
2193
2194 /* Circular list of all active weak references. */
2195 struct Lisp_Finalizer *prev;
2196 struct Lisp_Finalizer *next;
2197
2198 /* Call FUNCTION when the finalizer becomes unreachable, even if
2199 FUNCTION contains a reference to the finalizer; i.e., call
2200 FUNCTION when it is reachable _only_ through finalizers. */
2201 Lisp_Object function;
2202 };
2203
2204 /* A miscellaneous object, when it's on the free list. */
2205 struct Lisp_Free
2206 {
2207 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2208 bool_bf gcmarkbit : 1;
2209 unsigned spacer : 15;
2210 union Lisp_Misc *chain;
2211 };
2212
2213 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2214 It uses one of these struct subtypes to get the type field. */
2215
2216 union Lisp_Misc
2217 {
2218 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2219 struct Lisp_Free u_free;
2220 struct Lisp_Marker u_marker;
2221 struct Lisp_Overlay u_overlay;
2222 struct Lisp_Save_Value u_save_value;
2223 struct Lisp_Finalizer u_finalizer;
2224 };
2225
2226 INLINE union Lisp_Misc *
2227 XMISC (Lisp_Object a)
2228 {
2229 return XUNTAG (a, Lisp_Misc);
2230 }
2231
2232 INLINE struct Lisp_Misc_Any *
2233 XMISCANY (Lisp_Object a)
2234 {
2235 eassert (MISCP (a));
2236 return & XMISC (a)->u_any;
2237 }
2238
2239 INLINE enum Lisp_Misc_Type
2240 XMISCTYPE (Lisp_Object a)
2241 {
2242 return XMISCANY (a)->type;
2243 }
2244
2245 INLINE struct Lisp_Marker *
2246 XMARKER (Lisp_Object a)
2247 {
2248 eassert (MARKERP (a));
2249 return & XMISC (a)->u_marker;
2250 }
2251
2252 INLINE struct Lisp_Overlay *
2253 XOVERLAY (Lisp_Object a)
2254 {
2255 eassert (OVERLAYP (a));
2256 return & XMISC (a)->u_overlay;
2257 }
2258
2259 INLINE struct Lisp_Save_Value *
2260 XSAVE_VALUE (Lisp_Object a)
2261 {
2262 eassert (SAVE_VALUEP (a));
2263 return & XMISC (a)->u_save_value;
2264 }
2265
2266 INLINE struct Lisp_Finalizer *
2267 XFINALIZER (Lisp_Object a)
2268 {
2269 eassert (FINALIZERP (a));
2270 return & XMISC (a)->u_finalizer;
2271 }
2272
2273 \f
2274 /* Forwarding pointer to an int variable.
2275 This is allowed only in the value cell of a symbol,
2276 and it means that the symbol's value really lives in the
2277 specified int variable. */
2278 struct Lisp_Intfwd
2279 {
2280 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2281 EMACS_INT *intvar;
2282 };
2283
2284 /* Boolean forwarding pointer to an int variable.
2285 This is like Lisp_Intfwd except that the ostensible
2286 "value" of the symbol is t if the bool variable is true,
2287 nil if it is false. */
2288 struct Lisp_Boolfwd
2289 {
2290 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2291 bool *boolvar;
2292 };
2293
2294 /* Forwarding pointer to a Lisp_Object variable.
2295 This is allowed only in the value cell of a symbol,
2296 and it means that the symbol's value really lives in the
2297 specified variable. */
2298 struct Lisp_Objfwd
2299 {
2300 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2301 Lisp_Object *objvar;
2302 };
2303
2304 /* Like Lisp_Objfwd except that value lives in a slot in the
2305 current buffer. Value is byte index of slot within buffer. */
2306 struct Lisp_Buffer_Objfwd
2307 {
2308 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2309 int offset;
2310 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2311 Lisp_Object predicate;
2312 };
2313
2314 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2315 the symbol has buffer-local or frame-local bindings. (Exception:
2316 some buffer-local variables are built-in, with their values stored
2317 in the buffer structure itself. They are handled differently,
2318 using struct Lisp_Buffer_Objfwd.)
2319
2320 The `realvalue' slot holds the variable's current value, or a
2321 forwarding pointer to where that value is kept. This value is the
2322 one that corresponds to the loaded binding. To read or set the
2323 variable, you must first make sure the right binding is loaded;
2324 then you can access the value in (or through) `realvalue'.
2325
2326 `buffer' and `frame' are the buffer and frame for which the loaded
2327 binding was found. If those have changed, to make sure the right
2328 binding is loaded it is necessary to find which binding goes with
2329 the current buffer and selected frame, then load it. To load it,
2330 first unload the previous binding, then copy the value of the new
2331 binding into `realvalue' (or through it). Also update
2332 LOADED-BINDING to point to the newly loaded binding.
2333
2334 `local_if_set' indicates that merely setting the variable creates a
2335 local binding for the current buffer. Otherwise the latter, setting
2336 the variable does not do that; only make-local-variable does that. */
2337
2338 struct Lisp_Buffer_Local_Value
2339 {
2340 /* True means that merely setting the variable creates a local
2341 binding for the current buffer. */
2342 bool_bf local_if_set : 1;
2343 /* True means this variable can have frame-local bindings, otherwise, it is
2344 can have buffer-local bindings. The two cannot be combined. */
2345 bool_bf frame_local : 1;
2346 /* True means that the binding now loaded was found.
2347 Presumably equivalent to (defcell!=valcell). */
2348 bool_bf found : 1;
2349 /* If non-NULL, a forwarding to the C var where it should also be set. */
2350 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2351 /* The buffer or frame for which the loaded binding was found. */
2352 Lisp_Object where;
2353 /* A cons cell that holds the default value. It has the form
2354 (SYMBOL . DEFAULT-VALUE). */
2355 Lisp_Object defcell;
2356 /* The cons cell from `where's parameter alist.
2357 It always has the form (SYMBOL . VALUE)
2358 Note that if `forward' is non-nil, VALUE may be out of date.
2359 Also if the currently loaded binding is the default binding, then
2360 this is `eq'ual to defcell. */
2361 Lisp_Object valcell;
2362 };
2363
2364 /* Like Lisp_Objfwd except that value lives in a slot in the
2365 current kboard. */
2366 struct Lisp_Kboard_Objfwd
2367 {
2368 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2369 int offset;
2370 };
2371
2372 union Lisp_Fwd
2373 {
2374 struct Lisp_Intfwd u_intfwd;
2375 struct Lisp_Boolfwd u_boolfwd;
2376 struct Lisp_Objfwd u_objfwd;
2377 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2378 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2379 };
2380
2381 INLINE enum Lisp_Fwd_Type
2382 XFWDTYPE (union Lisp_Fwd *a)
2383 {
2384 return a->u_intfwd.type;
2385 }
2386
2387 INLINE struct Lisp_Buffer_Objfwd *
2388 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2389 {
2390 eassert (BUFFER_OBJFWDP (a));
2391 return &a->u_buffer_objfwd;
2392 }
2393 \f
2394 /* Lisp floating point type. */
2395 struct Lisp_Float
2396 {
2397 union
2398 {
2399 double data;
2400 struct Lisp_Float *chain;
2401 } u;
2402 };
2403
2404 INLINE double
2405 XFLOAT_DATA (Lisp_Object f)
2406 {
2407 return XFLOAT (f)->u.data;
2408 }
2409
2410 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2411 representations, have infinities and NaNs, and do not trap on
2412 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2413 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2414 wanted here, but is not quite right because Emacs does not require
2415 all the features of C11 Annex F (and does not require C11 at all,
2416 for that matter). */
2417 enum
2418 {
2419 IEEE_FLOATING_POINT
2420 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2421 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2422 };
2423
2424 /* A character, declared with the following typedef, is a member
2425 of some character set associated with the current buffer. */
2426 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2427 #define _UCHAR_T
2428 typedef unsigned char UCHAR;
2429 #endif
2430
2431 /* Meanings of slots in a Lisp_Compiled: */
2432
2433 enum Lisp_Compiled
2434 {
2435 COMPILED_ARGLIST = 0,
2436 COMPILED_BYTECODE = 1,
2437 COMPILED_CONSTANTS = 2,
2438 COMPILED_STACK_DEPTH = 3,
2439 COMPILED_DOC_STRING = 4,
2440 COMPILED_INTERACTIVE = 5
2441 };
2442
2443 /* Flag bits in a character. These also get used in termhooks.h.
2444 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2445 (MUlti-Lingual Emacs) might need 22 bits for the character value
2446 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2447 enum char_bits
2448 {
2449 CHAR_ALT = 0x0400000,
2450 CHAR_SUPER = 0x0800000,
2451 CHAR_HYPER = 0x1000000,
2452 CHAR_SHIFT = 0x2000000,
2453 CHAR_CTL = 0x4000000,
2454 CHAR_META = 0x8000000,
2455
2456 CHAR_MODIFIER_MASK =
2457 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2458
2459 /* Actually, the current Emacs uses 22 bits for the character value
2460 itself. */
2461 CHARACTERBITS = 22
2462 };
2463 \f
2464 /* Data type checking. */
2465
2466 LISP_MACRO_DEFUN (NILP, bool, (Lisp_Object x), (x))
2467
2468 INLINE bool
2469 NUMBERP (Lisp_Object x)
2470 {
2471 return INTEGERP (x) || FLOATP (x);
2472 }
2473 INLINE bool
2474 NATNUMP (Lisp_Object x)
2475 {
2476 return INTEGERP (x) && 0 <= XINT (x);
2477 }
2478
2479 INLINE bool
2480 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2481 {
2482 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2483 }
2484
2485 #define TYPE_RANGED_INTEGERP(type, x) \
2486 (INTEGERP (x) \
2487 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2488 && XINT (x) <= TYPE_MAXIMUM (type))
2489
2490 LISP_MACRO_DEFUN (CONSP, bool, (Lisp_Object x), (x))
2491 LISP_MACRO_DEFUN (FLOATP, bool, (Lisp_Object x), (x))
2492 LISP_MACRO_DEFUN (MISCP, bool, (Lisp_Object x), (x))
2493 LISP_MACRO_DEFUN (SYMBOLP, bool, (Lisp_Object x), (x))
2494 LISP_MACRO_DEFUN (INTEGERP, bool, (Lisp_Object x), (x))
2495 LISP_MACRO_DEFUN (VECTORLIKEP, bool, (Lisp_Object x), (x))
2496 LISP_MACRO_DEFUN (MARKERP, bool, (Lisp_Object x), (x))
2497
2498 INLINE bool
2499 STRINGP (Lisp_Object x)
2500 {
2501 return XTYPE (x) == Lisp_String;
2502 }
2503 INLINE bool
2504 VECTORP (Lisp_Object x)
2505 {
2506 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2507 }
2508 INLINE bool
2509 OVERLAYP (Lisp_Object x)
2510 {
2511 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2512 }
2513 INLINE bool
2514 SAVE_VALUEP (Lisp_Object x)
2515 {
2516 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2517 }
2518
2519 INLINE bool
2520 FINALIZERP (Lisp_Object x)
2521 {
2522 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2523 }
2524
2525 INLINE bool
2526 AUTOLOADP (Lisp_Object x)
2527 {
2528 return CONSP (x) && EQ (Qautoload, XCAR (x));
2529 }
2530
2531 INLINE bool
2532 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2533 {
2534 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2535 }
2536
2537 INLINE bool
2538 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2539 {
2540 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2541 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2542 }
2543
2544 /* True if A is a pseudovector whose code is CODE. */
2545 INLINE bool
2546 PSEUDOVECTORP (Lisp_Object a, int code)
2547 {
2548 if (! VECTORLIKEP (a))
2549 return false;
2550 else
2551 {
2552 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2553 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2554 return PSEUDOVECTOR_TYPEP (h, code);
2555 }
2556 }
2557
2558
2559 /* Test for specific pseudovector types. */
2560
2561 INLINE bool
2562 WINDOW_CONFIGURATIONP (Lisp_Object a)
2563 {
2564 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2565 }
2566
2567 INLINE bool
2568 PROCESSP (Lisp_Object a)
2569 {
2570 return PSEUDOVECTORP (a, PVEC_PROCESS);
2571 }
2572
2573 INLINE bool
2574 WINDOWP (Lisp_Object a)
2575 {
2576 return PSEUDOVECTORP (a, PVEC_WINDOW);
2577 }
2578
2579 INLINE bool
2580 TERMINALP (Lisp_Object a)
2581 {
2582 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2583 }
2584
2585 INLINE bool
2586 SUBRP (Lisp_Object a)
2587 {
2588 return PSEUDOVECTORP (a, PVEC_SUBR);
2589 }
2590
2591 INLINE bool
2592 COMPILEDP (Lisp_Object a)
2593 {
2594 return PSEUDOVECTORP (a, PVEC_COMPILED);
2595 }
2596
2597 INLINE bool
2598 BUFFERP (Lisp_Object a)
2599 {
2600 return PSEUDOVECTORP (a, PVEC_BUFFER);
2601 }
2602
2603 INLINE bool
2604 CHAR_TABLE_P (Lisp_Object a)
2605 {
2606 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2607 }
2608
2609 INLINE bool
2610 SUB_CHAR_TABLE_P (Lisp_Object a)
2611 {
2612 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2613 }
2614
2615 INLINE bool
2616 BOOL_VECTOR_P (Lisp_Object a)
2617 {
2618 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2619 }
2620
2621 INLINE bool
2622 FRAMEP (Lisp_Object a)
2623 {
2624 return PSEUDOVECTORP (a, PVEC_FRAME);
2625 }
2626
2627 /* Test for image (image . spec) */
2628 INLINE bool
2629 IMAGEP (Lisp_Object x)
2630 {
2631 return CONSP (x) && EQ (XCAR (x), Qimage);
2632 }
2633
2634 /* Array types. */
2635 INLINE bool
2636 ARRAYP (Lisp_Object x)
2637 {
2638 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2639 }
2640 \f
2641 INLINE void
2642 CHECK_LIST (Lisp_Object x)
2643 {
2644 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2645 }
2646
2647 LISP_MACRO_DEFUN_VOID (CHECK_LIST_CONS, (Lisp_Object x, Lisp_Object y), (x, y))
2648 LISP_MACRO_DEFUN_VOID (CHECK_SYMBOL, (Lisp_Object x), (x))
2649 LISP_MACRO_DEFUN_VOID (CHECK_NUMBER, (Lisp_Object x), (x))
2650
2651 INLINE void
2652 CHECK_STRING (Lisp_Object x)
2653 {
2654 CHECK_TYPE (STRINGP (x), Qstringp, x);
2655 }
2656 INLINE void
2657 CHECK_STRING_CAR (Lisp_Object x)
2658 {
2659 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2660 }
2661 INLINE void
2662 CHECK_CONS (Lisp_Object x)
2663 {
2664 CHECK_TYPE (CONSP (x), Qconsp, x);
2665 }
2666 INLINE void
2667 CHECK_VECTOR (Lisp_Object x)
2668 {
2669 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2670 }
2671 INLINE void
2672 CHECK_BOOL_VECTOR (Lisp_Object x)
2673 {
2674 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2675 }
2676 /* This is a bit special because we always need size afterwards. */
2677 INLINE ptrdiff_t
2678 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2679 {
2680 if (VECTORP (x))
2681 return ASIZE (x);
2682 if (STRINGP (x))
2683 return SCHARS (x);
2684 wrong_type_argument (Qarrayp, x);
2685 }
2686 INLINE void
2687 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2688 {
2689 CHECK_TYPE (ARRAYP (x), predicate, x);
2690 }
2691 INLINE void
2692 CHECK_BUFFER (Lisp_Object x)
2693 {
2694 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2695 }
2696 INLINE void
2697 CHECK_WINDOW (Lisp_Object x)
2698 {
2699 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2700 }
2701 #ifdef subprocesses
2702 INLINE void
2703 CHECK_PROCESS (Lisp_Object x)
2704 {
2705 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2706 }
2707 #endif
2708 INLINE void
2709 CHECK_NATNUM (Lisp_Object x)
2710 {
2711 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2712 }
2713
2714 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2715 do { \
2716 CHECK_NUMBER (x); \
2717 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2718 args_out_of_range_3 \
2719 (x, \
2720 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2721 ? MOST_NEGATIVE_FIXNUM \
2722 : (lo)), \
2723 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2724 } while (false)
2725 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2726 do { \
2727 if (TYPE_SIGNED (type)) \
2728 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2729 else \
2730 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2731 } while (false)
2732
2733 #define CHECK_NUMBER_COERCE_MARKER(x) \
2734 do { \
2735 if (MARKERP ((x))) \
2736 XSETFASTINT (x, marker_position (x)); \
2737 else \
2738 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2739 } while (false)
2740
2741 INLINE double
2742 XFLOATINT (Lisp_Object n)
2743 {
2744 return extract_float (n);
2745 }
2746
2747 INLINE void
2748 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2749 {
2750 CHECK_TYPE (FLOATP (x) || INTEGERP (x), Qnumberp, x);
2751 }
2752
2753 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2754 do { \
2755 if (MARKERP (x)) \
2756 XSETFASTINT (x, marker_position (x)); \
2757 else \
2758 CHECK_TYPE (INTEGERP (x) || FLOATP (x), Qnumber_or_marker_p, x); \
2759 } while (false)
2760
2761 /* Since we can't assign directly to the CAR or CDR fields of a cons
2762 cell, use these when checking that those fields contain numbers. */
2763 INLINE void
2764 CHECK_NUMBER_CAR (Lisp_Object x)
2765 {
2766 Lisp_Object tmp = XCAR (x);
2767 CHECK_NUMBER (tmp);
2768 XSETCAR (x, tmp);
2769 }
2770
2771 INLINE void
2772 CHECK_NUMBER_CDR (Lisp_Object x)
2773 {
2774 Lisp_Object tmp = XCDR (x);
2775 CHECK_NUMBER (tmp);
2776 XSETCDR (x, tmp);
2777 }
2778 \f
2779 /* Define a built-in function for calling from Lisp.
2780 `lname' should be the name to give the function in Lisp,
2781 as a null-terminated C string.
2782 `fnname' should be the name of the function in C.
2783 By convention, it starts with F.
2784 `sname' should be the name for the C constant structure
2785 that records information on this function for internal use.
2786 By convention, it should be the same as `fnname' but with S instead of F.
2787 It's too bad that C macros can't compute this from `fnname'.
2788 `minargs' should be a number, the minimum number of arguments allowed.
2789 `maxargs' should be a number, the maximum number of arguments allowed,
2790 or else MANY or UNEVALLED.
2791 MANY means pass a vector of evaluated arguments,
2792 in the form of an integer number-of-arguments
2793 followed by the address of a vector of Lisp_Objects
2794 which contains the argument values.
2795 UNEVALLED means pass the list of unevaluated arguments
2796 `intspec' says how interactive arguments are to be fetched.
2797 If the string starts with a `(', `intspec' is evaluated and the resulting
2798 list is the list of arguments.
2799 If it's a string that doesn't start with `(', the value should follow
2800 the one of the doc string for `interactive'.
2801 A null string means call interactively with no arguments.
2802 `doc' is documentation for the user. */
2803
2804 /* This version of DEFUN declares a function prototype with the right
2805 arguments, so we can catch errors with maxargs at compile-time. */
2806 #ifdef _MSC_VER
2807 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2808 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2809 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2810 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2811 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2812 { (Lisp_Object (__cdecl *)(void))fnname }, \
2813 minargs, maxargs, lname, intspec, 0}; \
2814 Lisp_Object fnname
2815 #else /* not _MSC_VER */
2816 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2817 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2818 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2819 { .a ## maxargs = fnname }, \
2820 minargs, maxargs, lname, intspec, 0}; \
2821 Lisp_Object fnname
2822 #endif
2823
2824 /* True if OBJ is a Lisp function. */
2825 INLINE bool
2826 FUNCTIONP (Lisp_Object obj)
2827 {
2828 return functionp (obj);
2829 }
2830
2831 /* defsubr (Sname);
2832 is how we define the symbol for function `name' at start-up time. */
2833 extern void defsubr (struct Lisp_Subr *);
2834
2835 enum maxargs
2836 {
2837 MANY = -2,
2838 UNEVALLED = -1
2839 };
2840
2841 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2842 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2843
2844 /* Call a function F that accepts many args, passing it the remaining args,
2845 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2846 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2847 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2848 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
2849
2850 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2851 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2852 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2853 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2854 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2855
2856 /* Macros we use to define forwarded Lisp variables.
2857 These are used in the syms_of_FILENAME functions.
2858
2859 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2860 lisp variable is actually a field in `struct emacs_globals'. The
2861 field's name begins with "f_", which is a convention enforced by
2862 these macros. Each such global has a corresponding #define in
2863 globals.h; the plain name should be used in the code.
2864
2865 E.g., the global "cons_cells_consed" is declared as "int
2866 f_cons_cells_consed" in globals.h, but there is a define:
2867
2868 #define cons_cells_consed globals.f_cons_cells_consed
2869
2870 All C code uses the `cons_cells_consed' name. This is all done
2871 this way to support indirection for multi-threaded Emacs. */
2872
2873 #define DEFVAR_LISP(lname, vname, doc) \
2874 do { \
2875 static struct Lisp_Objfwd o_fwd; \
2876 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
2877 } while (false)
2878 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
2879 do { \
2880 static struct Lisp_Objfwd o_fwd; \
2881 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
2882 } while (false)
2883 #define DEFVAR_BOOL(lname, vname, doc) \
2884 do { \
2885 static struct Lisp_Boolfwd b_fwd; \
2886 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
2887 } while (false)
2888 #define DEFVAR_INT(lname, vname, doc) \
2889 do { \
2890 static struct Lisp_Intfwd i_fwd; \
2891 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
2892 } while (false)
2893
2894 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
2895 do { \
2896 static struct Lisp_Objfwd o_fwd; \
2897 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
2898 } while (false)
2899
2900 #define DEFVAR_KBOARD(lname, vname, doc) \
2901 do { \
2902 static struct Lisp_Kboard_Objfwd ko_fwd; \
2903 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
2904 } while (false)
2905 \f
2906 /* Save and restore the instruction and environment pointers,
2907 without affecting the signal mask. */
2908
2909 #ifdef HAVE__SETJMP
2910 typedef jmp_buf sys_jmp_buf;
2911 # define sys_setjmp(j) _setjmp (j)
2912 # define sys_longjmp(j, v) _longjmp (j, v)
2913 #elif defined HAVE_SIGSETJMP
2914 typedef sigjmp_buf sys_jmp_buf;
2915 # define sys_setjmp(j) sigsetjmp (j, 0)
2916 # define sys_longjmp(j, v) siglongjmp (j, v)
2917 #else
2918 /* A platform that uses neither _longjmp nor siglongjmp; assume
2919 longjmp does not affect the sigmask. */
2920 typedef jmp_buf sys_jmp_buf;
2921 # define sys_setjmp(j) setjmp (j)
2922 # define sys_longjmp(j, v) longjmp (j, v)
2923 #endif
2924
2925 \f
2926 /* Elisp uses several stacks:
2927 - the C stack.
2928 - the bytecode stack: used internally by the bytecode interpreter.
2929 Allocated from the C stack.
2930 - The specpdl stack: keeps track of active unwind-protect and
2931 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
2932 managed stack.
2933 - The handler stack: keeps track of active catch tags and condition-case
2934 handlers. Allocated in a manually managed stack implemented by a
2935 doubly-linked list allocated via xmalloc and never freed. */
2936
2937 /* Structure for recording Lisp call stack for backtrace purposes. */
2938
2939 /* The special binding stack holds the outer values of variables while
2940 they are bound by a function application or a let form, stores the
2941 code to be executed for unwind-protect forms.
2942
2943 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
2944 used all over the place, needs to be fast, and needs to know the size of
2945 union specbinding. But only eval.c should access it. */
2946
2947 enum specbind_tag {
2948 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
2949 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
2950 SPECPDL_UNWIND_INT, /* Likewise, on int. */
2951 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
2952 SPECPDL_BACKTRACE, /* An element of the backtrace. */
2953 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
2954 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
2955 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
2956 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
2957 };
2958
2959 union specbinding
2960 {
2961 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2962 struct {
2963 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2964 void (*func) (Lisp_Object);
2965 Lisp_Object arg;
2966 } unwind;
2967 struct {
2968 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2969 void (*func) (void *);
2970 void *arg;
2971 } unwind_ptr;
2972 struct {
2973 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2974 void (*func) (int);
2975 int arg;
2976 } unwind_int;
2977 struct {
2978 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2979 void (*func) (void);
2980 } unwind_void;
2981 struct {
2982 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2983 /* `where' is not used in the case of SPECPDL_LET. */
2984 Lisp_Object symbol, old_value, where;
2985 } let;
2986 struct {
2987 ENUM_BF (specbind_tag) kind : CHAR_BIT;
2988 bool_bf debug_on_exit : 1;
2989 Lisp_Object function;
2990 Lisp_Object *args;
2991 ptrdiff_t nargs;
2992 } bt;
2993 };
2994
2995 extern union specbinding *specpdl;
2996 extern union specbinding *specpdl_ptr;
2997 extern ptrdiff_t specpdl_size;
2998
2999 INLINE ptrdiff_t
3000 SPECPDL_INDEX (void)
3001 {
3002 return specpdl_ptr - specpdl;
3003 }
3004
3005 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3006 control structures. A struct handler contains all the information needed to
3007 restore the state of the interpreter after a non-local jump.
3008
3009 handler structures are chained together in a doubly linked list; the `next'
3010 member points to the next outer catchtag and the `nextfree' member points in
3011 the other direction to the next inner element (which is typically the next
3012 free element since we mostly use it on the deepest handler).
3013
3014 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3015 member is TAG, and then unbinds to it. The `val' member is used to
3016 hold VAL while the stack is unwound; `val' is returned as the value
3017 of the catch form.
3018
3019 All the other members are concerned with restoring the interpreter
3020 state.
3021
3022 Members are volatile if their values need to survive _longjmp when
3023 a 'struct handler' is a local variable. */
3024
3025 enum handlertype { CATCHER, CONDITION_CASE };
3026
3027 struct handler
3028 {
3029 enum handlertype type;
3030 Lisp_Object tag_or_ch;
3031 Lisp_Object val;
3032 struct handler *next;
3033 struct handler *nextfree;
3034
3035 /* The bytecode interpreter can have several handlers active at the same
3036 time, so when we longjmp to one of them, it needs to know which handler
3037 this was and what was the corresponding internal state. This is stored
3038 here, and when we longjmp we make sure that handlerlist points to the
3039 proper handler. */
3040 Lisp_Object *bytecode_top;
3041 int bytecode_dest;
3042
3043 /* Most global vars are reset to their value via the specpdl mechanism,
3044 but a few others are handled by storing their value here. */
3045 #if true /* GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS, but defined later. */
3046 struct gcpro *gcpro;
3047 #endif
3048 sys_jmp_buf jmp;
3049 EMACS_INT lisp_eval_depth;
3050 ptrdiff_t pdlcount;
3051 int poll_suppress_count;
3052 int interrupt_input_blocked;
3053 struct byte_stack *byte_stack;
3054 };
3055
3056 /* Fill in the components of c, and put it on the list. */
3057 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3058 if (handlerlist->nextfree) \
3059 (c) = handlerlist->nextfree; \
3060 else \
3061 { \
3062 (c) = xmalloc (sizeof (struct handler)); \
3063 (c)->nextfree = NULL; \
3064 handlerlist->nextfree = (c); \
3065 } \
3066 (c)->type = (handlertype); \
3067 (c)->tag_or_ch = (tag_ch_val); \
3068 (c)->val = Qnil; \
3069 (c)->next = handlerlist; \
3070 (c)->lisp_eval_depth = lisp_eval_depth; \
3071 (c)->pdlcount = SPECPDL_INDEX (); \
3072 (c)->poll_suppress_count = poll_suppress_count; \
3073 (c)->interrupt_input_blocked = interrupt_input_blocked;\
3074 (c)->gcpro = gcprolist; \
3075 (c)->byte_stack = byte_stack_list; \
3076 handlerlist = (c);
3077
3078
3079 extern Lisp_Object memory_signal_data;
3080
3081 /* An address near the bottom of the stack.
3082 Tells GC how to save a copy of the stack. */
3083 extern char *stack_bottom;
3084
3085 /* Check quit-flag and quit if it is non-nil.
3086 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3087 So the program needs to do QUIT at times when it is safe to quit.
3088 Every loop that might run for a long time or might not exit
3089 ought to do QUIT at least once, at a safe place.
3090 Unless that is impossible, of course.
3091 But it is very desirable to avoid creating loops where QUIT is impossible.
3092
3093 Exception: if you set immediate_quit to true,
3094 then the handler that responds to the C-g does the quit itself.
3095 This is a good thing to do around a loop that has no side effects
3096 and (in particular) cannot call arbitrary Lisp code.
3097
3098 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3099 a request to exit Emacs when it is safe to do. */
3100
3101 extern void process_pending_signals (void);
3102 extern bool volatile pending_signals;
3103
3104 extern void process_quit_flag (void);
3105 #define QUIT \
3106 do { \
3107 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3108 process_quit_flag (); \
3109 else if (pending_signals) \
3110 process_pending_signals (); \
3111 } while (false)
3112
3113
3114 /* True if ought to quit now. */
3115
3116 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3117 \f
3118 extern Lisp_Object Vascii_downcase_table;
3119 extern Lisp_Object Vascii_canon_table;
3120 \f
3121 /* Structure for recording stack slots that need marking. */
3122
3123 /* This is a chain of structures, each of which points at a Lisp_Object
3124 variable whose value should be marked in garbage collection.
3125 Normally every link of the chain is an automatic variable of a function,
3126 and its `val' points to some argument or local variable of the function.
3127 On exit to the function, the chain is set back to the value it had on entry.
3128 This way, no link remains in the chain when the stack frame containing the
3129 link disappears.
3130
3131 Every function that can call Feval must protect in this fashion all
3132 Lisp_Object variables whose contents will be used again. */
3133
3134 extern struct gcpro *gcprolist;
3135
3136 struct gcpro
3137 {
3138 struct gcpro *next;
3139
3140 /* Address of first protected variable. */
3141 volatile Lisp_Object *var;
3142
3143 /* Number of consecutive protected variables. */
3144 ptrdiff_t nvars;
3145
3146 #ifdef DEBUG_GCPRO
3147 /* File name where this record is used. */
3148 const char *name;
3149
3150 /* Line number in this file. */
3151 int lineno;
3152
3153 /* Index in the local chain of records. */
3154 int idx;
3155
3156 /* Nesting level. */
3157 int level;
3158 #endif
3159 };
3160
3161 /* Values of GC_MARK_STACK during compilation:
3162
3163 0 Use GCPRO as before
3164 1 Do the real thing, make GCPROs and UNGCPRO no-ops.
3165 2 Mark the stack, and check that everything GCPRO'd is
3166 marked.
3167 3 Mark using GCPRO's, mark stack last, and count how many
3168 dead objects are kept alive.
3169
3170 Formerly, method 0 was used. Currently, method 1 is used unless
3171 otherwise specified by hand when building, e.g.,
3172 "make CPPFLAGS='-DGC_MARK_STACK=GC_USE_GCPROS_AS_BEFORE'".
3173 Methods 2 and 3 are present mainly to debug the transition from 0 to 1. */
3174
3175 #define GC_USE_GCPROS_AS_BEFORE 0
3176 #define GC_MAKE_GCPROS_NOOPS 1
3177 #define GC_MARK_STACK_CHECK_GCPROS 2
3178 #define GC_USE_GCPROS_CHECK_ZOMBIES 3
3179
3180 #ifndef GC_MARK_STACK
3181 #define GC_MARK_STACK GC_MAKE_GCPROS_NOOPS
3182 #endif
3183
3184 /* Whether we do the stack marking manually. */
3185 #define BYTE_MARK_STACK !(GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3186 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3187
3188
3189 #if GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS
3190
3191 /* Do something silly with gcproN vars just so gcc shuts up. */
3192 /* You get warnings from MIPSPro... */
3193
3194 #define GCPRO1(varname) ((void) gcpro1)
3195 #define GCPRO2(varname1, varname2) ((void) gcpro2, (void) gcpro1)
3196 #define GCPRO3(varname1, varname2, varname3) \
3197 ((void) gcpro3, (void) gcpro2, (void) gcpro1)
3198 #define GCPRO4(varname1, varname2, varname3, varname4) \
3199 ((void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3200 #define GCPRO5(varname1, varname2, varname3, varname4, varname5) \
3201 ((void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, (void) gcpro1)
3202 #define GCPRO6(varname1, varname2, varname3, varname4, varname5, varname6) \
3203 ((void) gcpro6, (void) gcpro5, (void) gcpro4, (void) gcpro3, (void) gcpro2, \
3204 (void) gcpro1)
3205 #define GCPRO7(a, b, c, d, e, f, g) (GCPRO6 (a, b, c, d, e, f), (void) gcpro7)
3206 #define UNGCPRO ((void) 0)
3207
3208 #else /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3209
3210 #ifndef DEBUG_GCPRO
3211
3212 #define GCPRO1(a) \
3213 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3214 gcprolist = &gcpro1; }
3215
3216 #define GCPRO2(a, b) \
3217 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3218 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3219 gcprolist = &gcpro2; }
3220
3221 #define GCPRO3(a, b, c) \
3222 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3223 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3224 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3225 gcprolist = &gcpro3; }
3226
3227 #define GCPRO4(a, b, c, d) \
3228 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3229 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3230 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3231 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3232 gcprolist = &gcpro4; }
3233
3234 #define GCPRO5(a, b, c, d, e) \
3235 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3236 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3237 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3238 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3239 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3240 gcprolist = &gcpro5; }
3241
3242 #define GCPRO6(a, b, c, d, e, f) \
3243 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3244 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3245 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3246 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3247 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3248 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3249 gcprolist = &gcpro6; }
3250
3251 #define GCPRO7(a, b, c, d, e, f, g) \
3252 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3253 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3254 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3255 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3256 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3257 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3258 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3259 gcprolist = &gcpro7; }
3260
3261 #define UNGCPRO (gcprolist = gcpro1.next)
3262
3263 #else /* !DEBUG_GCPRO */
3264
3265 extern int gcpro_level;
3266
3267 #define GCPRO1(a) \
3268 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3269 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3270 gcpro1.level = gcpro_level++; \
3271 gcprolist = &gcpro1; }
3272
3273 #define GCPRO2(a, b) \
3274 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3275 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3276 gcpro1.level = gcpro_level; \
3277 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3278 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3279 gcpro2.level = gcpro_level++; \
3280 gcprolist = &gcpro2; }
3281
3282 #define GCPRO3(a, b, c) \
3283 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3284 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3285 gcpro1.level = gcpro_level; \
3286 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3287 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3288 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3289 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3290 gcpro3.level = gcpro_level++; \
3291 gcprolist = &gcpro3; }
3292
3293 #define GCPRO4(a, b, c, d) \
3294 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3295 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3296 gcpro1.level = gcpro_level; \
3297 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3298 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3299 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3300 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3301 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3302 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3303 gcpro4.level = gcpro_level++; \
3304 gcprolist = &gcpro4; }
3305
3306 #define GCPRO5(a, b, c, d, e) \
3307 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3308 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3309 gcpro1.level = gcpro_level; \
3310 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3311 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3312 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3313 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3314 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3315 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3316 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3317 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3318 gcpro5.level = gcpro_level++; \
3319 gcprolist = &gcpro5; }
3320
3321 #define GCPRO6(a, b, c, d, e, f) \
3322 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3323 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3324 gcpro1.level = gcpro_level; \
3325 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3326 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3327 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3328 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3329 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3330 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3331 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3332 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3333 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3334 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3335 gcpro6.level = gcpro_level++; \
3336 gcprolist = &gcpro6; }
3337
3338 #define GCPRO7(a, b, c, d, e, f, g) \
3339 { gcpro1.next = gcprolist; gcpro1.var = &(a); gcpro1.nvars = 1; \
3340 gcpro1.name = __FILE__; gcpro1.lineno = __LINE__; gcpro1.idx = 1; \
3341 gcpro1.level = gcpro_level; \
3342 gcpro2.next = &gcpro1; gcpro2.var = &(b); gcpro2.nvars = 1; \
3343 gcpro2.name = __FILE__; gcpro2.lineno = __LINE__; gcpro2.idx = 2; \
3344 gcpro3.next = &gcpro2; gcpro3.var = &(c); gcpro3.nvars = 1; \
3345 gcpro3.name = __FILE__; gcpro3.lineno = __LINE__; gcpro3.idx = 3; \
3346 gcpro4.next = &gcpro3; gcpro4.var = &(d); gcpro4.nvars = 1; \
3347 gcpro4.name = __FILE__; gcpro4.lineno = __LINE__; gcpro4.idx = 4; \
3348 gcpro5.next = &gcpro4; gcpro5.var = &(e); gcpro5.nvars = 1; \
3349 gcpro5.name = __FILE__; gcpro5.lineno = __LINE__; gcpro5.idx = 5; \
3350 gcpro6.next = &gcpro5; gcpro6.var = &(f); gcpro6.nvars = 1; \
3351 gcpro6.name = __FILE__; gcpro6.lineno = __LINE__; gcpro6.idx = 6; \
3352 gcpro7.next = &gcpro6; gcpro7.var = &(g); gcpro7.nvars = 1; \
3353 gcpro7.name = __FILE__; gcpro7.lineno = __LINE__; gcpro7.idx = 7; \
3354 gcpro7.level = gcpro_level++; \
3355 gcprolist = &gcpro7; }
3356
3357 #define UNGCPRO \
3358 (--gcpro_level != gcpro1.level \
3359 ? emacs_abort () \
3360 : (void) (gcprolist = gcpro1.next))
3361
3362 #endif /* DEBUG_GCPRO */
3363 #endif /* GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS */
3364
3365
3366 /* Evaluate expr, UNGCPRO, and then return the value of expr. */
3367 #define RETURN_UNGCPRO(expr) \
3368 do \
3369 { \
3370 Lisp_Object ret_ungc_val; \
3371 ret_ungc_val = (expr); \
3372 UNGCPRO; \
3373 return ret_ungc_val; \
3374 } \
3375 while (false)
3376
3377 /* Call staticpro (&var) to protect static variable `var'. */
3378
3379 void staticpro (Lisp_Object *);
3380 \f
3381 /* Forward declarations for prototypes. */
3382 struct window;
3383 struct frame;
3384
3385 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3386
3387 INLINE void
3388 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3389 {
3390 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3391 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3392 }
3393
3394 /* Functions to modify hash tables. */
3395
3396 INLINE void
3397 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3398 {
3399 gc_aset (h->key_and_value, 2 * idx, val);
3400 }
3401
3402 INLINE void
3403 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3404 {
3405 gc_aset (h->key_and_value, 2 * idx + 1, val);
3406 }
3407
3408 /* Use these functions to set Lisp_Object
3409 or pointer slots of struct Lisp_Symbol. */
3410
3411 INLINE void
3412 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3413 {
3414 XSYMBOL (sym)->function = function;
3415 }
3416
3417 INLINE void
3418 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3419 {
3420 XSYMBOL (sym)->plist = plist;
3421 }
3422
3423 INLINE void
3424 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3425 {
3426 XSYMBOL (sym)->next = next;
3427 }
3428
3429 /* Buffer-local (also frame-local) variable access functions. */
3430
3431 INLINE int
3432 blv_found (struct Lisp_Buffer_Local_Value *blv)
3433 {
3434 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3435 return blv->found;
3436 }
3437
3438 /* Set overlay's property list. */
3439
3440 INLINE void
3441 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3442 {
3443 XOVERLAY (overlay)->plist = plist;
3444 }
3445
3446 /* Get text properties of S. */
3447
3448 INLINE INTERVAL
3449 string_intervals (Lisp_Object s)
3450 {
3451 return XSTRING (s)->intervals;
3452 }
3453
3454 /* Set text properties of S to I. */
3455
3456 INLINE void
3457 set_string_intervals (Lisp_Object s, INTERVAL i)
3458 {
3459 XSTRING (s)->intervals = i;
3460 }
3461
3462 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3463 of setting slots directly. */
3464
3465 INLINE void
3466 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3467 {
3468 XCHAR_TABLE (table)->defalt = val;
3469 }
3470 INLINE void
3471 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3472 {
3473 XCHAR_TABLE (table)->purpose = val;
3474 }
3475
3476 /* Set different slots in (sub)character tables. */
3477
3478 INLINE void
3479 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3480 {
3481 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3482 XCHAR_TABLE (table)->extras[idx] = val;
3483 }
3484
3485 INLINE void
3486 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3487 {
3488 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3489 XCHAR_TABLE (table)->contents[idx] = val;
3490 }
3491
3492 INLINE void
3493 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3494 {
3495 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3496 }
3497
3498 /* Defined in data.c. */
3499 extern Lisp_Object indirect_function (Lisp_Object);
3500 extern Lisp_Object find_symbol_value (Lisp_Object);
3501 enum Arith_Comparison {
3502 ARITH_EQUAL,
3503 ARITH_NOTEQUAL,
3504 ARITH_LESS,
3505 ARITH_GRTR,
3506 ARITH_LESS_OR_EQUAL,
3507 ARITH_GRTR_OR_EQUAL
3508 };
3509 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3510 enum Arith_Comparison comparison);
3511
3512 /* Convert the integer I to an Emacs representation, either the integer
3513 itself, or a cons of two or three integers, or if all else fails a float.
3514 I should not have side effects. */
3515 #define INTEGER_TO_CONS(i) \
3516 (! FIXNUM_OVERFLOW_P (i) \
3517 ? make_number (i) \
3518 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16) \
3519 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16)) \
3520 && FIXNUM_OVERFLOW_P ((i) >> 16)) \
3521 ? Fcons (make_number ((i) >> 16), make_number ((i) & 0xffff)) \
3522 : ! ((FIXNUM_OVERFLOW_P (INTMAX_MIN >> 16 >> 24) \
3523 || FIXNUM_OVERFLOW_P (UINTMAX_MAX >> 16 >> 24)) \
3524 && FIXNUM_OVERFLOW_P ((i) >> 16 >> 24)) \
3525 ? Fcons (make_number ((i) >> 16 >> 24), \
3526 Fcons (make_number ((i) >> 16 & 0xffffff), \
3527 make_number ((i) & 0xffff))) \
3528 : make_float (i))
3529
3530 /* Convert the Emacs representation CONS back to an integer of type
3531 TYPE, storing the result the variable VAR. Signal an error if CONS
3532 is not a valid representation or is out of range for TYPE. */
3533 #define CONS_TO_INTEGER(cons, type, var) \
3534 (TYPE_SIGNED (type) \
3535 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3536 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3537 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3538 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3539
3540 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3541 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3542 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3543 Lisp_Object);
3544 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3545 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3546 extern void syms_of_data (void);
3547 extern void swap_in_global_binding (struct Lisp_Symbol *);
3548
3549 /* Defined in cmds.c */
3550 extern void syms_of_cmds (void);
3551 extern void keys_of_cmds (void);
3552
3553 /* Defined in coding.c. */
3554 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3555 ptrdiff_t, bool, bool, Lisp_Object);
3556 extern void init_coding (void);
3557 extern void init_coding_once (void);
3558 extern void syms_of_coding (void);
3559
3560 /* Defined in character.c. */
3561 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3562 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3563 extern void syms_of_character (void);
3564
3565 /* Defined in charset.c. */
3566 extern void init_charset (void);
3567 extern void init_charset_once (void);
3568 extern void syms_of_charset (void);
3569 /* Structure forward declarations. */
3570 struct charset;
3571
3572 /* Defined in syntax.c. */
3573 extern void init_syntax_once (void);
3574 extern void syms_of_syntax (void);
3575
3576 /* Defined in fns.c. */
3577 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3578 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3579 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3580 extern void sweep_weak_hash_tables (void);
3581 EMACS_UINT hash_string (char const *, ptrdiff_t);
3582 EMACS_UINT sxhash (Lisp_Object, int);
3583 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3584 Lisp_Object, Lisp_Object);
3585 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3586 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3587 EMACS_UINT);
3588 extern struct hash_table_test hashtest_eql, hashtest_equal;
3589 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3590 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3591 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3592 ptrdiff_t, ptrdiff_t);
3593 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3594 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3595 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3596 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3597 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3598 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3599 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3600 extern void clear_string_char_byte_cache (void);
3601 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3602 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3603 extern Lisp_Object string_to_multibyte (Lisp_Object);
3604 extern Lisp_Object string_make_unibyte (Lisp_Object);
3605 extern void syms_of_fns (void);
3606
3607 /* Defined in floatfns.c. */
3608 extern void syms_of_floatfns (void);
3609 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3610
3611 /* Defined in fringe.c. */
3612 extern void syms_of_fringe (void);
3613 extern void init_fringe (void);
3614 #ifdef HAVE_WINDOW_SYSTEM
3615 extern void mark_fringe_data (void);
3616 extern void init_fringe_once (void);
3617 #endif /* HAVE_WINDOW_SYSTEM */
3618
3619 /* Defined in image.c. */
3620 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3621 extern void reset_image_types (void);
3622 extern void syms_of_image (void);
3623
3624 /* Defined in insdel.c. */
3625 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3626 extern _Noreturn void buffer_overflow (void);
3627 extern void make_gap (ptrdiff_t);
3628 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3629 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3630 ptrdiff_t, bool, bool);
3631 extern int count_combining_before (const unsigned char *,
3632 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3633 extern int count_combining_after (const unsigned char *,
3634 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3635 extern void insert (const char *, ptrdiff_t);
3636 extern void insert_and_inherit (const char *, ptrdiff_t);
3637 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3638 bool, bool, bool);
3639 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3640 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3641 ptrdiff_t, ptrdiff_t, bool);
3642 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3643 extern void insert_char (int);
3644 extern void insert_string (const char *);
3645 extern void insert_before_markers (const char *, ptrdiff_t);
3646 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3647 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3648 ptrdiff_t, ptrdiff_t,
3649 ptrdiff_t, bool);
3650 extern void del_range (ptrdiff_t, ptrdiff_t);
3651 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3652 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3653 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3654 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3655 ptrdiff_t, ptrdiff_t, bool);
3656 extern void modify_text (ptrdiff_t, ptrdiff_t);
3657 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3658 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3659 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3660 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3661 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3662 ptrdiff_t, ptrdiff_t);
3663 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3664 ptrdiff_t, ptrdiff_t);
3665 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3666 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3667 const char *, ptrdiff_t, ptrdiff_t, bool);
3668 extern void syms_of_insdel (void);
3669
3670 /* Defined in dispnew.c. */
3671 #if (defined PROFILING \
3672 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3673 _Noreturn void __executable_start (void);
3674 #endif
3675 extern Lisp_Object Vwindow_system;
3676 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3677
3678 /* Defined in xdisp.c. */
3679 extern bool noninteractive_need_newline;
3680 extern Lisp_Object echo_area_buffer[2];
3681 extern void add_to_log (const char *, Lisp_Object, Lisp_Object);
3682 extern void check_message_stack (void);
3683 extern void setup_echo_area_for_printing (bool);
3684 extern bool push_message (void);
3685 extern void pop_message_unwind (void);
3686 extern Lisp_Object restore_message_unwind (Lisp_Object);
3687 extern void restore_message (void);
3688 extern Lisp_Object current_message (void);
3689 extern void clear_message (bool, bool);
3690 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3691 extern void message1 (const char *);
3692 extern void message1_nolog (const char *);
3693 extern void message3 (Lisp_Object);
3694 extern void message3_nolog (Lisp_Object);
3695 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3696 extern void message_with_string (const char *, Lisp_Object, bool);
3697 extern void message_log_maybe_newline (void);
3698 extern void update_echo_area (void);
3699 extern void truncate_echo_area (ptrdiff_t);
3700 extern void redisplay (void);
3701
3702 void set_frame_cursor_types (struct frame *, Lisp_Object);
3703 extern void syms_of_xdisp (void);
3704 extern void init_xdisp (void);
3705 extern Lisp_Object safe_eval (Lisp_Object);
3706 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3707 int *, int *, int *, int *, int *);
3708
3709 /* Defined in xsettings.c. */
3710 extern void syms_of_xsettings (void);
3711
3712 /* Defined in vm-limit.c. */
3713 extern void memory_warnings (void *, void (*warnfun) (const char *));
3714
3715 /* Defined in character.c. */
3716 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3717 ptrdiff_t *, ptrdiff_t *);
3718
3719 /* Defined in alloc.c. */
3720 extern void check_pure_size (void);
3721 extern void free_misc (Lisp_Object);
3722 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3723 extern void malloc_warning (const char *);
3724 extern _Noreturn void memory_full (size_t);
3725 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3726 extern bool survives_gc_p (Lisp_Object);
3727 extern void mark_object (Lisp_Object);
3728 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3729 extern void refill_memory_reserve (void);
3730 #endif
3731 extern const char *pending_malloc_warning;
3732 extern Lisp_Object zero_vector;
3733 extern Lisp_Object *stack_base;
3734 extern EMACS_INT consing_since_gc;
3735 extern EMACS_INT gc_relative_threshold;
3736 extern EMACS_INT memory_full_cons_threshold;
3737 extern Lisp_Object list1 (Lisp_Object);
3738 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3739 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3740 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3741 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3742 Lisp_Object);
3743 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3744 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3745
3746 /* Build a frequently used 2/3/4-integer lists. */
3747
3748 INLINE Lisp_Object
3749 list2i (EMACS_INT x, EMACS_INT y)
3750 {
3751 return list2 (make_number (x), make_number (y));
3752 }
3753
3754 INLINE Lisp_Object
3755 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3756 {
3757 return list3 (make_number (x), make_number (y), make_number (w));
3758 }
3759
3760 INLINE Lisp_Object
3761 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3762 {
3763 return list4 (make_number (x), make_number (y),
3764 make_number (w), make_number (h));
3765 }
3766
3767 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3768 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3769 extern _Noreturn void string_overflow (void);
3770 extern Lisp_Object make_string (const char *, ptrdiff_t);
3771 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3772 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3773 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3774
3775 /* Make unibyte string from C string when the length isn't known. */
3776
3777 INLINE Lisp_Object
3778 build_unibyte_string (const char *str)
3779 {
3780 return make_unibyte_string (str, strlen (str));
3781 }
3782
3783 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3784 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3785 extern Lisp_Object make_uninit_string (EMACS_INT);
3786 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3787 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3788 extern Lisp_Object make_specified_string (const char *,
3789 ptrdiff_t, ptrdiff_t, bool);
3790 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3791 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3792
3793 /* Make a string allocated in pure space, use STR as string data. */
3794
3795 INLINE Lisp_Object
3796 build_pure_c_string (const char *str)
3797 {
3798 return make_pure_c_string (str, strlen (str));
3799 }
3800
3801 /* Make a string from the data at STR, treating it as multibyte if the
3802 data warrants. */
3803
3804 INLINE Lisp_Object
3805 build_string (const char *str)
3806 {
3807 return make_string (str, strlen (str));
3808 }
3809
3810 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3811 extern void make_byte_code (struct Lisp_Vector *);
3812 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3813
3814 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3815 be sure that GC cannot happen until the vector is completely
3816 initialized. E.g. the following code is likely to crash:
3817
3818 v = make_uninit_vector (3);
3819 ASET (v, 0, obj0);
3820 ASET (v, 1, Ffunction_can_gc ());
3821 ASET (v, 2, obj1); */
3822
3823 INLINE Lisp_Object
3824 make_uninit_vector (ptrdiff_t size)
3825 {
3826 Lisp_Object v;
3827 struct Lisp_Vector *p;
3828
3829 p = allocate_vector (size);
3830 XSETVECTOR (v, p);
3831 return v;
3832 }
3833
3834 /* Like above, but special for sub char-tables. */
3835
3836 INLINE Lisp_Object
3837 make_uninit_sub_char_table (int depth, int min_char)
3838 {
3839 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3840 Lisp_Object v = make_uninit_vector (slots);
3841
3842 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3843 XSUB_CHAR_TABLE (v)->depth = depth;
3844 XSUB_CHAR_TABLE (v)->min_char = min_char;
3845 return v;
3846 }
3847
3848 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3849 enum pvec_type);
3850
3851 /* Allocate partially initialized pseudovector where all Lisp_Object
3852 slots are set to Qnil but the rest (if any) is left uninitialized. */
3853
3854 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3855 ((type *) allocate_pseudovector (VECSIZE (type), \
3856 PSEUDOVECSIZE (type, field), \
3857 PSEUDOVECSIZE (type, field), tag))
3858
3859 /* Allocate fully initialized pseudovector where all Lisp_Object
3860 slots are set to Qnil and the rest (if any) is zeroed. */
3861
3862 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3863 ((type *) allocate_pseudovector (VECSIZE (type), \
3864 PSEUDOVECSIZE (type, field), \
3865 VECSIZE (type), tag))
3866
3867 extern bool gc_in_progress;
3868 extern bool abort_on_gc;
3869 extern Lisp_Object make_float (double);
3870 extern void display_malloc_warning (void);
3871 extern ptrdiff_t inhibit_garbage_collection (void);
3872 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3873 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3874 Lisp_Object, Lisp_Object);
3875 extern Lisp_Object make_save_ptr (void *);
3876 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3877 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3878 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3879 Lisp_Object);
3880 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3881 extern void free_save_value (Lisp_Object);
3882 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3883 extern void free_marker (Lisp_Object);
3884 extern void free_cons (struct Lisp_Cons *);
3885 extern void init_alloc_once (void);
3886 extern void init_alloc (void);
3887 extern void syms_of_alloc (void);
3888 extern struct buffer * allocate_buffer (void);
3889 extern int valid_lisp_object_p (Lisp_Object);
3890 extern int relocatable_string_data_p (const char *);
3891 #ifdef GC_CHECK_CONS_LIST
3892 extern void check_cons_list (void);
3893 #else
3894 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3895 #endif
3896
3897 #ifdef REL_ALLOC
3898 /* Defined in ralloc.c. */
3899 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3900 extern void r_alloc_free (void **);
3901 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3902 extern void r_alloc_reset_variable (void **, void **);
3903 extern void r_alloc_inhibit_buffer_relocation (int);
3904 #endif
3905
3906 /* Defined in chartab.c. */
3907 extern Lisp_Object copy_char_table (Lisp_Object);
3908 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3909 int *, int *);
3910 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3911 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3912 Lisp_Object),
3913 Lisp_Object, Lisp_Object, Lisp_Object);
3914 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3915 Lisp_Object, Lisp_Object,
3916 Lisp_Object, struct charset *,
3917 unsigned, unsigned);
3918 extern Lisp_Object uniprop_table (Lisp_Object);
3919 extern void syms_of_chartab (void);
3920
3921 /* Defined in print.c. */
3922 extern Lisp_Object Vprin1_to_string_buffer;
3923 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3924 extern void temp_output_buffer_setup (const char *);
3925 extern int print_level;
3926 extern void write_string (const char *, int);
3927 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3928 Lisp_Object);
3929 extern Lisp_Object internal_with_output_to_temp_buffer
3930 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3931 #define FLOAT_TO_STRING_BUFSIZE 350
3932 extern int float_to_string (char *, double);
3933 extern void init_print_once (void);
3934 extern void syms_of_print (void);
3935
3936 /* Defined in doprnt.c. */
3937 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3938 va_list);
3939 extern ptrdiff_t esprintf (char *, char const *, ...)
3940 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3941 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3942 char const *, ...)
3943 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3944 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3945 char const *, va_list)
3946 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3947
3948 /* Defined in lread.c. */
3949 extern Lisp_Object check_obarray (Lisp_Object);
3950 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3951 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3952 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3953 extern void init_symbol (Lisp_Object, Lisp_Object);
3954 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3955 INLINE void
3956 LOADHIST_ATTACH (Lisp_Object x)
3957 {
3958 if (initialized)
3959 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3960 }
3961 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3962 Lisp_Object *, Lisp_Object, bool);
3963 extern Lisp_Object string_to_number (char const *, int, bool);
3964 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3965 Lisp_Object);
3966 extern void dir_warning (const char *, Lisp_Object);
3967 extern void init_obarray (void);
3968 extern void init_lread (void);
3969 extern void syms_of_lread (void);
3970
3971 INLINE Lisp_Object
3972 intern (const char *str)
3973 {
3974 return intern_1 (str, strlen (str));
3975 }
3976
3977 INLINE Lisp_Object
3978 intern_c_string (const char *str)
3979 {
3980 return intern_c_string_1 (str, strlen (str));
3981 }
3982
3983 /* Defined in eval.c. */
3984 extern EMACS_INT lisp_eval_depth;
3985 extern Lisp_Object Vautoload_queue;
3986 extern Lisp_Object Vrun_hooks;
3987 extern Lisp_Object Vsignaling_function;
3988 extern Lisp_Object inhibit_lisp_code;
3989 extern struct handler *handlerlist;
3990
3991 /* To run a normal hook, use the appropriate function from the list below.
3992 The calling convention:
3993
3994 if (!NILP (Vrun_hooks))
3995 call1 (Vrun_hooks, Qmy_funny_hook);
3996
3997 should no longer be used. */
3998 extern void run_hook (Lisp_Object);
3999 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
4000 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
4001 Lisp_Object (*funcall)
4002 (ptrdiff_t nargs, Lisp_Object *args));
4003 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
4004 extern _Noreturn void xsignal0 (Lisp_Object);
4005 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
4006 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
4007 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
4008 Lisp_Object);
4009 extern _Noreturn void signal_error (const char *, Lisp_Object);
4010 extern Lisp_Object eval_sub (Lisp_Object form);
4011 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
4012 extern Lisp_Object call0 (Lisp_Object);
4013 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
4014 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
4015 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4016 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4017 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4018 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4019 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4020 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
4021 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
4022 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
4023 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
4024 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
4025 extern Lisp_Object internal_condition_case_n
4026 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
4027 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
4028 extern void specbind (Lisp_Object, Lisp_Object);
4029 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
4030 extern void record_unwind_protect_ptr (void (*) (void *), void *);
4031 extern void record_unwind_protect_int (void (*) (int), int);
4032 extern void record_unwind_protect_void (void (*) (void));
4033 extern void record_unwind_protect_nothing (void);
4034 extern void clear_unwind_protect (ptrdiff_t);
4035 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
4036 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
4037 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
4038 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
4039 extern _Noreturn void verror (const char *, va_list)
4040 ATTRIBUTE_FORMAT_PRINTF (1, 0);
4041 extern void un_autoload (Lisp_Object);
4042 extern Lisp_Object call_debugger (Lisp_Object arg);
4043 extern void init_eval_once (void);
4044 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
4045 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
4046 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
4047 extern void init_eval (void);
4048 extern void syms_of_eval (void);
4049 extern void unwind_body (Lisp_Object);
4050 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
4051 extern void mark_specpdl (void);
4052 extern void get_backtrace (Lisp_Object array);
4053 Lisp_Object backtrace_top_function (void);
4054 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
4055 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
4056
4057
4058 /* Defined in editfns.c. */
4059 extern void insert1 (Lisp_Object);
4060 extern Lisp_Object format2 (const char *, Lisp_Object, Lisp_Object);
4061 extern Lisp_Object save_excursion_save (void);
4062 extern Lisp_Object save_restriction_save (void);
4063 extern void save_excursion_restore (Lisp_Object);
4064 extern void save_restriction_restore (Lisp_Object);
4065 extern _Noreturn void time_overflow (void);
4066 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
4067 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
4068 ptrdiff_t, bool);
4069 extern void init_editfns (void);
4070 extern void syms_of_editfns (void);
4071
4072 /* Defined in buffer.c. */
4073 extern bool mouse_face_overlay_overlaps (Lisp_Object);
4074 extern _Noreturn void nsberror (Lisp_Object);
4075 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
4076 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
4077 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
4078 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
4079 Lisp_Object, Lisp_Object, Lisp_Object);
4080 extern bool overlay_touches_p (ptrdiff_t);
4081 extern Lisp_Object other_buffer_safely (Lisp_Object);
4082 extern Lisp_Object get_truename_buffer (Lisp_Object);
4083 extern void init_buffer_once (void);
4084 extern void init_buffer (int);
4085 extern void syms_of_buffer (void);
4086 extern void keys_of_buffer (void);
4087
4088 /* Defined in marker.c. */
4089
4090 extern ptrdiff_t marker_position (Lisp_Object);
4091 extern ptrdiff_t marker_byte_position (Lisp_Object);
4092 extern void clear_charpos_cache (struct buffer *);
4093 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
4094 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
4095 extern void unchain_marker (struct Lisp_Marker *marker);
4096 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
4097 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
4098 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
4099 ptrdiff_t, ptrdiff_t);
4100 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
4101 extern void syms_of_marker (void);
4102
4103 /* Defined in fileio.c. */
4104
4105 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
4106 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
4107 Lisp_Object, Lisp_Object, Lisp_Object,
4108 Lisp_Object, int);
4109 extern void close_file_unwind (int);
4110 extern void fclose_unwind (void *);
4111 extern void restore_point_unwind (Lisp_Object);
4112 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
4113 extern _Noreturn void report_file_error (const char *, Lisp_Object);
4114 extern bool internal_delete_file (Lisp_Object);
4115 extern Lisp_Object emacs_readlinkat (int, const char *);
4116 extern bool file_directory_p (const char *);
4117 extern bool file_accessible_directory_p (Lisp_Object);
4118 extern void init_fileio (void);
4119 extern void syms_of_fileio (void);
4120 extern Lisp_Object make_temp_name (Lisp_Object, bool);
4121
4122 /* Defined in search.c. */
4123 extern void shrink_regexp_cache (void);
4124 extern void restore_search_regs (void);
4125 extern void record_unwind_save_match_data (void);
4126 struct re_registers;
4127 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
4128 struct re_registers *,
4129 Lisp_Object, bool, bool);
4130 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
4131 Lisp_Object);
4132
4133 INLINE ptrdiff_t
4134 fast_string_match (Lisp_Object regexp, Lisp_Object string)
4135 {
4136 return fast_string_match_internal (regexp, string, Qnil);
4137 }
4138
4139 INLINE ptrdiff_t
4140 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4141 {
4142 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4143 }
4144
4145 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4146 ptrdiff_t);
4147 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4148 ptrdiff_t, ptrdiff_t, Lisp_Object);
4149 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4150 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4151 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4152 ptrdiff_t, bool);
4153 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4154 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4155 ptrdiff_t, ptrdiff_t *);
4156 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4157 ptrdiff_t, ptrdiff_t *);
4158 extern void syms_of_search (void);
4159 extern void clear_regexp_cache (void);
4160
4161 /* Defined in minibuf.c. */
4162
4163 extern Lisp_Object Vminibuffer_list;
4164 extern Lisp_Object last_minibuf_string;
4165 extern Lisp_Object get_minibuffer (EMACS_INT);
4166 extern void init_minibuf_once (void);
4167 extern void syms_of_minibuf (void);
4168
4169 /* Defined in callint.c. */
4170
4171 extern void syms_of_callint (void);
4172
4173 /* Defined in casefiddle.c. */
4174
4175 extern void syms_of_casefiddle (void);
4176 extern void keys_of_casefiddle (void);
4177
4178 /* Defined in casetab.c. */
4179
4180 extern void init_casetab_once (void);
4181 extern void syms_of_casetab (void);
4182
4183 /* Defined in keyboard.c. */
4184
4185 extern Lisp_Object echo_message_buffer;
4186 extern struct kboard *echo_kboard;
4187 extern void cancel_echoing (void);
4188 extern Lisp_Object last_undo_boundary;
4189 extern bool input_pending;
4190 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4191 extern sigjmp_buf return_to_command_loop;
4192 #endif
4193 extern Lisp_Object menu_bar_items (Lisp_Object);
4194 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4195 extern void discard_mouse_events (void);
4196 #ifdef USABLE_SIGIO
4197 void handle_input_available_signal (int);
4198 #endif
4199 extern Lisp_Object pending_funcalls;
4200 extern bool detect_input_pending (void);
4201 extern bool detect_input_pending_ignore_squeezables (void);
4202 extern bool detect_input_pending_run_timers (bool);
4203 extern void safe_run_hooks (Lisp_Object);
4204 extern void cmd_error_internal (Lisp_Object, const char *);
4205 extern Lisp_Object command_loop_1 (void);
4206 extern Lisp_Object read_menu_command (void);
4207 extern Lisp_Object recursive_edit_1 (void);
4208 extern void record_auto_save (void);
4209 extern void force_auto_save_soon (void);
4210 extern void init_keyboard (void);
4211 extern void syms_of_keyboard (void);
4212 extern void keys_of_keyboard (void);
4213
4214 /* Defined in indent.c. */
4215 extern ptrdiff_t current_column (void);
4216 extern void invalidate_current_column (void);
4217 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4218 extern void syms_of_indent (void);
4219
4220 /* Defined in frame.c. */
4221 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4222 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4223 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4224 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4225 extern void frames_discard_buffer (Lisp_Object);
4226 extern void syms_of_frame (void);
4227
4228 /* Defined in emacs.c. */
4229 extern char **initial_argv;
4230 extern int initial_argc;
4231 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4232 extern bool display_arg;
4233 #endif
4234 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4235 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4236 extern _Noreturn void terminate_due_to_signal (int, int);
4237 #ifdef WINDOWSNT
4238 extern Lisp_Object Vlibrary_cache;
4239 #endif
4240 #if HAVE_SETLOCALE
4241 void fixup_locale (void);
4242 void synchronize_system_messages_locale (void);
4243 void synchronize_system_time_locale (void);
4244 #else
4245 INLINE void fixup_locale (void) {}
4246 INLINE void synchronize_system_messages_locale (void) {}
4247 INLINE void synchronize_system_time_locale (void) {}
4248 #endif
4249 extern void shut_down_emacs (int, Lisp_Object);
4250
4251 /* True means don't do interactive redisplay and don't change tty modes. */
4252 extern bool noninteractive;
4253
4254 /* True means remove site-lisp directories from load-path. */
4255 extern bool no_site_lisp;
4256
4257 /* Pipe used to send exit notification to the daemon parent at
4258 startup. On Windows, we use a kernel event instead. */
4259 #ifndef WINDOWSNT
4260 extern int daemon_pipe[2];
4261 #define IS_DAEMON (daemon_pipe[1] != 0)
4262 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4263 #else /* WINDOWSNT */
4264 extern void *w32_daemon_event;
4265 #define IS_DAEMON (w32_daemon_event != NULL)
4266 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4267 #endif
4268
4269 /* True if handling a fatal error already. */
4270 extern bool fatal_error_in_progress;
4271
4272 /* True means don't do use window-system-specific display code. */
4273 extern bool inhibit_window_system;
4274 /* True means that a filter or a sentinel is running. */
4275 extern bool running_asynch_code;
4276
4277 /* Defined in process.c. */
4278 extern void kill_buffer_processes (Lisp_Object);
4279 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4280 struct Lisp_Process *, int);
4281 /* Max value for the first argument of wait_reading_process_output. */
4282 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4283 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4284 The bug merely causes a bogus warning, but the warning is annoying. */
4285 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4286 #else
4287 # define WAIT_READING_MAX INTMAX_MAX
4288 #endif
4289 #ifdef HAVE_TIMERFD
4290 extern void add_timer_wait_descriptor (int);
4291 #endif
4292 extern void add_keyboard_wait_descriptor (int);
4293 extern void delete_keyboard_wait_descriptor (int);
4294 #ifdef HAVE_GPM
4295 extern void add_gpm_wait_descriptor (int);
4296 extern void delete_gpm_wait_descriptor (int);
4297 #endif
4298 extern void init_process_emacs (void);
4299 extern void syms_of_process (void);
4300 extern void setup_process_coding_systems (Lisp_Object);
4301
4302 /* Defined in callproc.c. */
4303 #ifndef DOS_NT
4304 _Noreturn
4305 #endif
4306 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4307 extern void init_callproc_1 (void);
4308 extern void init_callproc (void);
4309 extern void set_initial_environment (void);
4310 extern void syms_of_callproc (void);
4311
4312 /* Defined in doc.c. */
4313 extern Lisp_Object read_doc_string (Lisp_Object);
4314 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4315 extern void syms_of_doc (void);
4316 extern int read_bytecode_char (bool);
4317
4318 /* Defined in bytecode.c. */
4319 extern void syms_of_bytecode (void);
4320 extern struct byte_stack *byte_stack_list;
4321 #if BYTE_MARK_STACK
4322 extern void mark_byte_stack (void);
4323 #endif
4324 extern void unmark_byte_stack (void);
4325 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4326 Lisp_Object, ptrdiff_t, Lisp_Object *);
4327
4328 /* Defined in macros.c. */
4329 extern void init_macros (void);
4330 extern void syms_of_macros (void);
4331
4332 /* Defined in undo.c. */
4333 extern void truncate_undo_list (struct buffer *);
4334 extern void record_insert (ptrdiff_t, ptrdiff_t);
4335 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4336 extern void record_first_change (void);
4337 extern void record_change (ptrdiff_t, ptrdiff_t);
4338 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4339 Lisp_Object, Lisp_Object,
4340 Lisp_Object);
4341 extern void syms_of_undo (void);
4342
4343 /* Defined in textprop.c. */
4344 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4345
4346 /* Defined in menu.c. */
4347 extern void syms_of_menu (void);
4348
4349 /* Defined in xmenu.c. */
4350 extern void syms_of_xmenu (void);
4351
4352 /* Defined in termchar.h. */
4353 struct tty_display_info;
4354
4355 /* Defined in termhooks.h. */
4356 struct terminal;
4357
4358 /* Defined in sysdep.c. */
4359 #ifndef HAVE_GET_CURRENT_DIR_NAME
4360 extern char *get_current_dir_name (void);
4361 #endif
4362 extern void stuff_char (char c);
4363 extern void init_foreground_group (void);
4364 extern void sys_subshell (void);
4365 extern void sys_suspend (void);
4366 extern void discard_tty_input (void);
4367 extern void init_sys_modes (struct tty_display_info *);
4368 extern void reset_sys_modes (struct tty_display_info *);
4369 extern void init_all_sys_modes (void);
4370 extern void reset_all_sys_modes (void);
4371 extern void child_setup_tty (int);
4372 extern void setup_pty (int);
4373 extern int set_window_size (int, int, int);
4374 extern EMACS_INT get_random (void);
4375 extern void seed_random (void *, ptrdiff_t);
4376 extern void init_random (void);
4377 extern void emacs_backtrace (int);
4378 extern _Noreturn void emacs_abort (void) NO_INLINE;
4379 extern int emacs_open (const char *, int, int);
4380 extern int emacs_pipe (int[2]);
4381 extern int emacs_close (int);
4382 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4383 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4384 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4385 extern void emacs_perror (char const *);
4386
4387 extern void unlock_all_files (void);
4388 extern void lock_file (Lisp_Object);
4389 extern void unlock_file (Lisp_Object);
4390 extern void unlock_buffer (struct buffer *);
4391 extern void syms_of_filelock (void);
4392 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4393
4394 /* Defined in sound.c. */
4395 extern void syms_of_sound (void);
4396
4397 /* Defined in category.c. */
4398 extern void init_category_once (void);
4399 extern Lisp_Object char_category_set (int);
4400 extern void syms_of_category (void);
4401
4402 /* Defined in ccl.c. */
4403 extern void syms_of_ccl (void);
4404
4405 /* Defined in dired.c. */
4406 extern void syms_of_dired (void);
4407 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4408 Lisp_Object, Lisp_Object,
4409 bool, Lisp_Object);
4410
4411 /* Defined in term.c. */
4412 extern int *char_ins_del_vector;
4413 extern void syms_of_term (void);
4414 extern _Noreturn void fatal (const char *msgid, ...)
4415 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4416
4417 /* Defined in terminal.c. */
4418 extern void syms_of_terminal (void);
4419
4420 /* Defined in font.c. */
4421 extern void syms_of_font (void);
4422 extern void init_font (void);
4423
4424 #ifdef HAVE_WINDOW_SYSTEM
4425 /* Defined in fontset.c. */
4426 extern void syms_of_fontset (void);
4427 #endif
4428
4429 /* Defined in gfilenotify.c */
4430 #ifdef HAVE_GFILENOTIFY
4431 extern void globals_of_gfilenotify (void);
4432 extern void syms_of_gfilenotify (void);
4433 #endif
4434
4435 /* Defined in inotify.c */
4436 #ifdef HAVE_INOTIFY
4437 extern void syms_of_inotify (void);
4438 #endif
4439
4440 #ifdef HAVE_W32NOTIFY
4441 /* Defined on w32notify.c. */
4442 extern void syms_of_w32notify (void);
4443 #endif
4444
4445 /* Defined in xfaces.c. */
4446 extern Lisp_Object Vface_alternative_font_family_alist;
4447 extern Lisp_Object Vface_alternative_font_registry_alist;
4448 extern void syms_of_xfaces (void);
4449
4450 #ifdef HAVE_X_WINDOWS
4451 /* Defined in xfns.c. */
4452 extern void syms_of_xfns (void);
4453
4454 /* Defined in xsmfns.c. */
4455 extern void syms_of_xsmfns (void);
4456
4457 /* Defined in xselect.c. */
4458 extern void syms_of_xselect (void);
4459
4460 /* Defined in xterm.c. */
4461 extern void init_xterm (void);
4462 extern void syms_of_xterm (void);
4463 #endif /* HAVE_X_WINDOWS */
4464
4465 #ifdef HAVE_WINDOW_SYSTEM
4466 /* Defined in xterm.c, nsterm.m, w32term.c. */
4467 extern char *x_get_keysym_name (int);
4468 #endif /* HAVE_WINDOW_SYSTEM */
4469
4470 #ifdef HAVE_LIBXML2
4471 /* Defined in xml.c. */
4472 extern void syms_of_xml (void);
4473 extern void xml_cleanup_parser (void);
4474 #endif
4475
4476 #ifdef HAVE_ZLIB
4477 /* Defined in decompress.c. */
4478 extern void syms_of_decompress (void);
4479 #endif
4480
4481 #ifdef HAVE_DBUS
4482 /* Defined in dbusbind.c. */
4483 void init_dbusbind (void);
4484 void syms_of_dbusbind (void);
4485 #endif
4486
4487
4488 /* Defined in profiler.c. */
4489 extern bool profiler_memory_running;
4490 extern void malloc_probe (size_t);
4491 extern void syms_of_profiler (void);
4492
4493
4494 #ifdef DOS_NT
4495 /* Defined in msdos.c, w32.c. */
4496 extern char *emacs_root_dir (void);
4497 #endif /* DOS_NT */
4498
4499 /* Defined in lastfile.c. */
4500 extern char my_edata[];
4501 extern char my_endbss[];
4502 extern char *my_endbss_static;
4503
4504 /* True means ^G can quit instantly. */
4505 extern bool immediate_quit;
4506
4507 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4508 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4509 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4510 extern void xfree (void *);
4511 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4512 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4513 ATTRIBUTE_ALLOC_SIZE ((2,3));
4514 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4515
4516 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4517 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4518 extern void dupstring (char **, char const *);
4519
4520 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4521 null byte. This is like stpcpy, except the source is a Lisp string. */
4522
4523 INLINE char *
4524 lispstpcpy (char *dest, Lisp_Object string)
4525 {
4526 ptrdiff_t len = SBYTES (string);
4527 memcpy (dest, SDATA (string), len + 1);
4528 return dest + len;
4529 }
4530
4531 extern void xputenv (const char *);
4532
4533 extern char *egetenv_internal (const char *, ptrdiff_t);
4534
4535 INLINE char *
4536 egetenv (const char *var)
4537 {
4538 /* When VAR is a string literal, strlen can be optimized away. */
4539 return egetenv_internal (var, strlen (var));
4540 }
4541
4542 /* Set up the name of the machine we're running on. */
4543 extern void init_system_name (void);
4544
4545 /* Return the absolute value of X. X should be a signed integer
4546 expression without side effects, and X's absolute value should not
4547 exceed the maximum for its promoted type. This is called 'eabs'
4548 because 'abs' is reserved by the C standard. */
4549 #define eabs(x) ((x) < 0 ? -(x) : (x))
4550
4551 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4552 fixnum. */
4553
4554 #define make_fixnum_or_float(val) \
4555 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4556
4557 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4558 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4559
4560 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4561
4562 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4563
4564 #define USE_SAFE_ALLOCA \
4565 ptrdiff_t sa_avail = MAX_ALLOCA; \
4566 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4567
4568 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4569
4570 /* SAFE_ALLOCA allocates a simple buffer. */
4571
4572 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4573 ? AVAIL_ALLOCA (size) \
4574 : (sa_must_free = true, record_xmalloc (size)))
4575
4576 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4577 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4578 positive. The code is tuned for MULTIPLIER being a constant. */
4579
4580 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4581 do { \
4582 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4583 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4584 else \
4585 { \
4586 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4587 sa_must_free = true; \
4588 record_unwind_protect_ptr (xfree, buf); \
4589 } \
4590 } while (false)
4591
4592 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4593
4594 #define SAFE_ALLOCA_STRING(ptr, string) \
4595 do { \
4596 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4597 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4598 } while (false)
4599
4600 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4601
4602 #define SAFE_FREE() \
4603 do { \
4604 if (sa_must_free) { \
4605 sa_must_free = false; \
4606 unbind_to (sa_count, Qnil); \
4607 } \
4608 } while (false)
4609
4610
4611 /* Return floor (NBYTES / WORD_SIZE). */
4612
4613 INLINE ptrdiff_t
4614 lisp_word_count (ptrdiff_t nbytes)
4615 {
4616 if (-1 >> 1 == -1)
4617 switch (word_size)
4618 {
4619 case 2: return nbytes >> 1;
4620 case 4: return nbytes >> 2;
4621 case 8: return nbytes >> 3;
4622 case 16: return nbytes >> 4;
4623 }
4624 return nbytes / word_size - (nbytes % word_size < 0);
4625 }
4626
4627 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4628
4629 #define SAFE_ALLOCA_LISP(buf, nelt) \
4630 do { \
4631 if ((nelt) <= lisp_word_count (sa_avail)) \
4632 (buf) = AVAIL_ALLOCA ((nelt) * word_size); \
4633 else if ((nelt) <= min (PTRDIFF_MAX, SIZE_MAX) / word_size) \
4634 { \
4635 Lisp_Object arg_; \
4636 (buf) = xmalloc ((nelt) * word_size); \
4637 arg_ = make_save_memory (buf, nelt); \
4638 sa_must_free = true; \
4639 record_unwind_protect (free_save_value, arg_); \
4640 } \
4641 else \
4642 memory_full (SIZE_MAX); \
4643 } while (false)
4644
4645
4646 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4647 block-scoped conses and strings. These objects are not
4648 managed by the garbage collector, so they are dangerous: passing them
4649 out of their scope (e.g., to user code) results in undefined behavior.
4650 Conversely, they have better performance because GC is not involved.
4651
4652 This feature is experimental and requires careful debugging.
4653 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4654
4655 #ifndef USE_STACK_LISP_OBJECTS
4656 # define USE_STACK_LISP_OBJECTS true
4657 #endif
4658
4659 /* USE_STACK_LISP_OBJECTS requires GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS. */
4660
4661 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
4662 # undef USE_STACK_LISP_OBJECTS
4663 # define USE_STACK_LISP_OBJECTS false
4664 #endif
4665
4666 #ifdef GC_CHECK_STRING_BYTES
4667 enum { defined_GC_CHECK_STRING_BYTES = true };
4668 #else
4669 enum { defined_GC_CHECK_STRING_BYTES = false };
4670 #endif
4671
4672 /* Struct inside unions that are typically no larger and aligned enough. */
4673
4674 union Aligned_Cons
4675 {
4676 struct Lisp_Cons s;
4677 double d; intmax_t i; void *p;
4678 };
4679
4680 union Aligned_String
4681 {
4682 struct Lisp_String s;
4683 double d; intmax_t i; void *p;
4684 };
4685
4686 /* True for stack-based cons and string implementations, respectively.
4687 Use stack-based strings only if stack-based cons also works.
4688 Otherwise, STACK_CONS would create heap-based cons cells that
4689 could point to stack-based strings, which is a no-no. */
4690
4691 enum
4692 {
4693 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4694 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4695 USE_STACK_STRING = (USE_STACK_CONS
4696 && !defined_GC_CHECK_STRING_BYTES
4697 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4698 };
4699
4700 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4701 use these only in macros like AUTO_CONS that declare a local
4702 variable whose lifetime will be clear to the programmer. */
4703 #define STACK_CONS(a, b) \
4704 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4705 #define AUTO_CONS_EXPR(a, b) \
4706 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4707
4708 /* Declare NAME as an auto Lisp cons or short list if possible, a
4709 GC-based one otherwise. This is in the sense of the C keyword
4710 'auto'; i.e., the object has the lifetime of the containing block.
4711 The resulting object should not be made visible to user Lisp code. */
4712
4713 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4714 #define AUTO_LIST1(name, a) \
4715 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4716 #define AUTO_LIST2(name, a, b) \
4717 Lisp_Object name = (USE_STACK_CONS \
4718 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4719 : list2 (a, b))
4720 #define AUTO_LIST3(name, a, b, c) \
4721 Lisp_Object name = (USE_STACK_CONS \
4722 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4723 : list3 (a, b, c))
4724 #define AUTO_LIST4(name, a, b, c, d) \
4725 Lisp_Object name \
4726 = (USE_STACK_CONS \
4727 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4728 STACK_CONS (d, Qnil)))) \
4729 : list4 (a, b, c, d))
4730
4731 /* Check whether stack-allocated strings are ASCII-only. */
4732
4733 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4734 extern const char *verify_ascii (const char *);
4735 #else
4736 # define verify_ascii(str) (str)
4737 #endif
4738
4739 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4740 Take its value from STR. STR is not necessarily copied and should
4741 contain only ASCII characters. The resulting Lisp string should
4742 not be modified or made visible to user code. */
4743
4744 #define AUTO_STRING(name, str) \
4745 Lisp_Object name = \
4746 (USE_STACK_STRING \
4747 ? (make_lisp_ptr \
4748 ((&(union Aligned_String) \
4749 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4750 Lisp_String)) \
4751 : build_string (verify_ascii (str)))
4752
4753 /* Loop over all tails of a list, checking for cycles.
4754 FIXME: Make tortoise and n internal declarations.
4755 FIXME: Unroll the loop body so we don't need `n'. */
4756 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4757 for ((tortoise) = (hare) = (list), (n) = true; \
4758 CONSP (hare); \
4759 (hare = XCDR (hare), (n) = !(n), \
4760 ((n) \
4761 ? (EQ (hare, tortoise) \
4762 ? xsignal1 (Qcircular_list, list) \
4763 : (void) 0) \
4764 /* Move tortoise before the next iteration, in case */ \
4765 /* the next iteration does an Fsetcdr. */ \
4766 : (void) ((tortoise) = XCDR (tortoise)))))
4767
4768 /* Do a `for' loop over alist values. */
4769
4770 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4771 for ((list_var) = (head_var); \
4772 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4773 (list_var) = XCDR (list_var))
4774
4775 /* Check whether it's time for GC, and run it if so. */
4776
4777 INLINE void
4778 maybe_gc (void)
4779 {
4780 if ((consing_since_gc > gc_cons_threshold
4781 && consing_since_gc > gc_relative_threshold)
4782 || (!NILP (Vmemory_full)
4783 && consing_since_gc > memory_full_cons_threshold))
4784 Fgarbage_collect ();
4785 }
4786
4787 INLINE bool
4788 functionp (Lisp_Object object)
4789 {
4790 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4791 {
4792 object = Findirect_function (object, Qt);
4793
4794 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4795 {
4796 /* Autoloaded symbols are functions, except if they load
4797 macros or keymaps. */
4798 int i;
4799 for (i = 0; i < 4 && CONSP (object); i++)
4800 object = XCDR (object);
4801
4802 return ! (CONSP (object) && !NILP (XCAR (object)));
4803 }
4804 }
4805
4806 if (SUBRP (object))
4807 return XSUBR (object)->max_args != UNEVALLED;
4808 else if (COMPILEDP (object))
4809 return true;
4810 else if (CONSP (object))
4811 {
4812 Lisp_Object car = XCAR (object);
4813 return EQ (car, Qlambda) || EQ (car, Qclosure);
4814 }
4815 else
4816 return false;
4817 }
4818
4819 INLINE_HEADER_END
4820
4821 #endif /* EMACS_LISP_H */