]> code.delx.au - gnu-emacs/blob - doc/misc/wisent.texi
Merge branch 'map'
[gnu-emacs] / doc / misc / wisent.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename ../../info/wisent.info
4 @set TITLE Wisent Parser Development
5 @set AUTHOR Eric M. Ludlam, David Ponce, and Richard Y. Kim
6 @settitle @value{TITLE}
7 @include docstyle.texi
8
9 @c *************************************************************************
10 @c @ Header
11 @c *************************************************************************
12
13 @c Merge all indexes into a single index for now.
14 @c We can always separate them later into two or more as needed.
15 @syncodeindex vr cp
16 @syncodeindex fn cp
17 @syncodeindex ky cp
18 @syncodeindex pg cp
19 @syncodeindex tp cp
20
21 @c @footnotestyle separate
22 @c @paragraphindent 2
23 @c @@smallbook
24 @c %**end of header
25
26 @copying
27 Copyright @copyright{} 1988--1993, 1995, 1998--2004, 2007, 2012--2015
28 Free Software Foundation, Inc.
29
30 @c Since we are both GNU manuals, we do not need to ack each other here.
31 @ignore
32 Some texts are borrowed or adapted from the manual of Bison version
33 1.35. The text in section entitled ``Understanding the automaton'' is
34 adapted from the section ``Understanding Your Parser'' in the manual
35 of Bison version 1.49.
36 @end ignore
37
38 @quotation
39 Permission is granted to copy, distribute and/or modify this document
40 under the terms of the GNU Free Documentation License, Version 1.3 or
41 any later version published by the Free Software Foundation; with no
42 Invariant Sections, with the Front-Cover Texts being ``A GNU Manual,''
43 and with the Back-Cover Texts as in (a) below. A copy of the license
44 is included in the section entitled ``GNU Free Documentation License''.
45
46 (a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
47 modify this GNU manual.''
48 @end quotation
49 @end copying
50
51 @dircategory Emacs misc features
52 @direntry
53 * Wisent: (wisent). Semantic Wisent parser development.
54 @end direntry
55
56 @iftex
57 @finalout
58 @end iftex
59
60 @c @setchapternewpage odd
61 @c @setchapternewpage off
62
63 @titlepage
64 @sp 10
65 @title @value{TITLE}
66 @author by @value{AUTHOR}
67 @page
68 @vskip 0pt plus 1 fill
69 @insertcopying
70 @end titlepage
71 @page
72
73 @macro semantic{}
74 @i{Semantic}
75 @end macro
76
77 @c *************************************************************************
78 @c @ Document
79 @c *************************************************************************
80 @contents
81
82 @node top
83 @top @value{TITLE}
84
85 Wisent (the European Bison ;-) is an Emacs Lisp implementation of the
86 GNU Compiler Compiler Bison.
87
88 This manual describes how to use Wisent to develop grammars for
89 programming languages, and how to use grammars to parse language
90 source in Emacs buffers.
91
92 It also describes how Wisent is used with the @semantic{} tool set
93 described in the @ref{Top, Semantic Manual, Semantic Manual, semantic}.
94
95 @ifnottex
96 @insertcopying
97 @end ifnottex
98
99 @menu
100 * Wisent Overview::
101 * Wisent Grammar::
102 * Wisent Parsing::
103 * Wisent Semantic::
104 * GNU Free Documentation License::
105 * Index::
106 @end menu
107
108 @node Wisent Overview
109 @chapter Wisent Overview
110
111 @dfn{Wisent} (the European Bison) is an implementation in Emacs Lisp
112 of the GNU Compiler Compiler Bison. Its code is a port of the C code
113 of GNU Bison 1.28 & 1.31.
114
115 For more details on the basic concepts for understanding Wisent, it is
116 worthwhile to read the @ref{Top, Bison Manual, , bison}.
117
118 Wisent can generate compilers compatible with the @semantic{} tool set.
119 See the @ref{Top, Semantic Manual, , semantic}.
120
121 It benefits from these Bison features:
122
123 @itemize @bullet
124 @item
125 It uses a fast but not so space-efficient encoding for the parse
126 tables, described in Corbett's PhD thesis from Berkeley:
127 @quotation
128 @cite{Static Semantics in Compiler Error Recovery}@*
129 June 1985, Report No. UCB/CSD 85/251.
130 @end quotation
131
132 @item
133 For generating the lookahead sets, Wisent uses the well-known
134 technique of F. DeRemer and T. Pennello described in:
135 @quotation
136 @cite{Efficient Computation of LALR(1) Look-Ahead Sets}@*
137 October 1982, ACM TOPLAS Vol 4 No 4, 615--49,
138 @uref{http://dx.doi.org/10.1145/69622.357187}.
139 @end quotation
140
141 @item
142 Wisent resolves shift/reduce conflicts using operator precedence and
143 associativity.
144
145 @item
146 Parser error recovery is accomplished using rules which match the
147 special token @code{error}.
148 @end itemize
149
150 Nevertheless there are some fundamental differences between Bison and
151 Wisent.
152
153 @itemize
154 @item
155 Wisent is intended to be used in Emacs. It reads and produces Emacs
156 Lisp data structures. All the additional code used in grammars is
157 Emacs Lisp code.
158
159 @item
160 Contrary to Bison, Wisent does not generate a parser which combines
161 Emacs Lisp code and grammar constructs. They exist separately.
162 Wisent reads the grammar from a Lisp data structure and then generates
163 grammar constructs as tables. Afterward, the derived tables can be
164 included and byte-compiled in separate Emacs Lisp files, and be used
165 at a later time by the Wisent's parser engine.
166
167 @item
168 Wisent allows multiple start nonterminals and allows a call to the
169 parsing function to be made for a particular start nonterminal. For
170 example, this is particularly useful to parse a region of an Emacs
171 buffer. @semantic{} heavily depends on the availability of this feature.
172 @end itemize
173
174 @node Wisent Grammar
175 @chapter Wisent Grammar
176
177 @cindex context-free grammar
178 @cindex rule
179 In order for Wisent to parse a language, it must be described by a
180 @dfn{context-free grammar}. That is a grammar specified as rules that
181 can be applied regardless of context. For more information, see
182 @ref{Language and Grammar, , , bison}, in the Bison manual.
183
184 @cindex terminal
185 @cindex nonterminal
186 The formal grammar is formulated using @dfn{terminal} and
187 @dfn{nonterminal} items. Terminals can be Emacs Lisp symbols or
188 characters, and nonterminals are symbols only.
189
190 @cindex token
191 Terminals (also known as @dfn{tokens}) represent the lexical
192 elements of the language like numbers, strings, etc..
193
194 For example @samp{PLUS} can represent the operator @samp{+}.
195
196 Nonterminal symbols are described by rules:
197
198 @example
199 @group
200 RESULT @equiv{} COMPONENTS@dots{}
201 @end group
202 @end example
203
204 @samp{RESULT} is a nonterminal that this rule describes and
205 @samp{COMPONENTS} are various terminals and nonterminals that are put
206 together by this rule.
207
208 For example, this rule:
209
210 @example
211 @group
212 exp @equiv{} exp PLUS exp
213 @end group
214 @end example
215
216 Says that two groupings of type @samp{exp}, with a @samp{PLUS} token
217 in between, can be combined into a larger grouping of type @samp{exp}.
218
219 @menu
220 * Grammar format::
221 * Example::
222 * Compiling a grammar::
223 * Conflicts::
224 @end menu
225
226 @node Grammar format
227 @section Grammar format
228
229 @cindex grammar format
230 To be acceptable by Wisent a context-free grammar must respect a
231 particular format. That is, must be represented as an Emacs Lisp list
232 of the form:
233
234 @code{(@var{terminals} @var{assocs} . @var{non-terminals})}
235
236 @table @var
237 @item terminals
238 Is the list of terminal symbols used in the grammar.
239
240 @cindex associativity
241 @item assocs
242 Specify the associativity of @var{terminals}. It is @code{nil} when
243 there is no associativity defined, or an alist of
244 @w{@code{(@var{assoc-type} . @var{assoc-value})}} elements.
245
246 @var{assoc-type} must be one of the @code{default-prec},
247 @code{nonassoc}, @code{left} or @code{right} symbols. When
248 @var{assoc-type} is @code{default-prec}, @var{assoc-value} must be
249 @code{nil} or @code{t} (the default). Otherwise it is a list of
250 tokens which must have been previously declared in @var{terminals}.
251
252 For details, see @ref{Contextual Precedence, , , bison}, in the
253 Bison manual.
254
255 @item non-terminals
256 Is the list of nonterminal definitions. Each definition has the form:
257
258 @code{(@var{nonterm} . @var{rules})}
259
260 Where @var{nonterm} is the nonterminal symbol defined and
261 @var{rules} the list of rules that describe this nonterminal. Each
262 rule is a list:
263
264 @code{(@var{components} [@var{precedence}] [@var{action}])}
265
266 Where:
267
268 @table @var
269 @item components
270 Is a list of various terminals and nonterminals that are put together
271 by this rule.
272
273 For example,
274
275 @example
276 @group
277 (exp ((exp ?+ exp)) ;; exp: exp '+' exp
278 ) ;; ;
279 @end group
280 @end example
281
282 Says that two groupings of type @samp{exp}, with a @samp{+} token in
283 between, can be combined into a larger grouping of type @samp{exp}.
284
285 @cindex grammar coding conventions
286 By convention, a nonterminal symbol should be in lower case, such as
287 @samp{exp}, @samp{stmt} or @samp{declaration}. Terminal symbols
288 should be upper case to distinguish them from nonterminals: for
289 example, @samp{INTEGER}, @samp{IDENTIFIER}, @samp{IF} or
290 @samp{RETURN}. A terminal symbol that represents a particular keyword
291 in the language is conventionally the same as that keyword converted
292 to upper case. The terminal symbol @code{error} is reserved for error
293 recovery.
294
295 @cindex middle-rule actions
296 Scattered among the components can be @dfn{middle-rule} actions.
297 Usually only @var{action} is provided (@pxref{action}).
298
299 If @var{components} in a rule is @code{nil}, it means that the rule
300 can match the empty string. For example, here is how to define a
301 comma-separated sequence of zero or more @samp{exp} groupings:
302
303 @smallexample
304 @group
305 (expseq (nil) ;; expseq: ;; empty
306 ((expseq1)) ;; | expseq1
307 ) ;; ;
308
309 (expseq1 ((exp)) ;; expseq1: exp
310 ((expseq1 ?, exp)) ;; | expseq1 ',' exp
311 ) ;; ;
312 @end group
313 @end smallexample
314
315 @cindex precedence level
316 @item precedence
317 Assign the rule the precedence of the given terminal item, overriding
318 the precedence that would be deduced for it, that is the one of the
319 last terminal in it. Notice that only terminals declared in
320 @var{assocs} have a precedence level. The altered rule precedence
321 then affects how conflicts involving that rule are resolved.
322
323 @var{precedence} is an optional vector of one terminal item.
324
325 Here is how @var{precedence} solves the problem of unary minus.
326 First, declare a precedence for a fictitious terminal symbol named
327 @code{UMINUS}. There are no tokens of this type, but the symbol
328 serves to stand for its precedence:
329
330 @example
331 @dots{}
332 ((default-prec t) ;; This is the default
333 (left '+' '-')
334 (left '*')
335 (left UMINUS))
336 @end example
337
338 Now the precedence of @code{UMINUS} can be used in specific rules:
339
340 @smallexample
341 @group
342 (exp @dots{} ;; exp: @dots{}
343 ((exp ?- exp)) ;; | exp '-' exp
344 @dots{} ;; @dots{}
345 ((?- exp) [UMINUS]) ;; | '-' exp %prec UMINUS
346 @dots{} ;; @dots{}
347 ) ;; ;
348 @end group
349 @end smallexample
350
351 If you forget to append @code{[UMINUS]} to the rule for unary minus,
352 Wisent silently assumes that minus has its usual precedence. This
353 kind of problem can be tricky to debug, since one typically discovers
354 the mistake only by testing the code.
355
356 Using @code{(default-prec nil)} declaration makes it easier to
357 discover this kind of problem systematically. It causes rules that
358 lack a @var{precedence} modifier to have no precedence, even if the
359 last terminal symbol mentioned in their components has a declared
360 precedence.
361
362 If @code{(default-prec nil)} is in effect, you must specify
363 @var{precedence} for all rules that participate in precedence conflict
364 resolution. Then you will see any shift/reduce conflict until you
365 tell Wisent how to resolve it, either by changing your grammar or by
366 adding an explicit precedence. This will probably add declarations to
367 the grammar, but it helps to protect against incorrect rule
368 precedences.
369
370 The effect of @code{(default-prec nil)} can be reversed by giving
371 @code{(default-prec t)}, which is the default.
372
373 For more details, see @ref{Contextual Precedence, , , bison}, in the
374 Bison manual.
375
376 It is important to understand that @var{assocs} declarations defines
377 associativity but also assign a precedence level to terminals. All
378 terminals declared in the same @code{left}, @code{right} or
379 @code{nonassoc} association get the same precedence level. The
380 precedence level is increased at each new association.
381
382 On the other hand, @var{precedence} explicitly assign the precedence
383 level of the given terminal to a rule.
384
385 @cindex semantic actions
386 @item @anchor{action}action
387 An action is an optional Emacs Lisp function call, like this:
388
389 @code{(identity $1)}
390
391 The result of an action determines the semantic value of a rule.
392
393 From an implementation standpoint, the function call will be embedded
394 in a lambda expression, and several useful local variables will be
395 defined:
396
397 @table @code
398 @vindex $N
399 @item $@var{n}
400 Where @var{n} is a positive integer. Like in Bison, the value of
401 @code{$@var{n}} is the semantic value of the @var{n}th element of
402 @var{components}, starting from 1. It can be of any Lisp data
403 type.
404
405 @vindex $region@var{n}
406 @item $regionN
407 Where @var{n} is a positive integer. For each @code{$@var{n}}
408 variable defined there is a corresponding @code{$region@var{n}}
409 variable. Its value is a pair @code{(@var{start-pos} .
410 @var{end-pos})} that represent the start and end positions (in the
411 lexical input stream) of the @code{$@var{n}} value. It can be
412 @code{nil} when the component positions are not available, like for an
413 empty string component for example.
414
415 @vindex $region
416 @item $region
417 Its value is the leftmost and rightmost positions of input data
418 matched by all @var{components} in the rule. This is a pair
419 @code{(@var{leftmost-pos} . @var{rightmost-pos})}. It can be
420 @code{nil} when components positions are not available.
421
422 @vindex $nterm
423 @item $nterm
424 This variable is initialized with the nonterminal symbol
425 (@var{nonterm}) the rule belongs to. It could be useful to improve
426 error reporting or debugging. It is also used to automatically
427 provide incremental re-parse entry points for @semantic{} tags
428 (@pxref{Wisent Semantic}).
429
430 @vindex $action
431 @item $action
432 The value of @code{$action} is the symbolic name of the current
433 semantic action (@pxref{Debugging actions}).
434 @end table
435
436 When an action is not specified a default value is supplied, it is
437 @code{(identity $1)}. This means that the default semantic value of a
438 rule is the value of its first component. Excepted for a rule
439 matching the empty string, for which the default action is to return
440 @code{nil}.
441 @end table
442 @end table
443
444 @node Example
445 @section Example
446
447 @cindex grammar example
448 Here is an example to parse simple infix arithmetic expressions. See
449 @ref{Infix Calc, , , bison}, in the Bison manual for details.
450
451 @lisp
452 @group
453 '(
454 ;; Terminals
455 (NUM)
456
457 ;; Terminal associativity & precedence
458 ((nonassoc ?=)
459 (left ?- ?+)
460 (left ?* ?/)
461 (left NEG)
462 (right ?^))
463
464 ;; Rules
465 (input
466 ((line))
467 ((input line)
468 (format "%s %s" $1 $2))
469 )
470
471 (line
472 ((?;)
473 (progn ";"))
474 ((exp ?;)
475 (format "%s;" $1))
476 ((error ?;)
477 (progn "Error;")))
478 )
479
480 (exp
481 ((NUM)
482 (string-to-number $1))
483 ((exp ?= exp)
484 (= $1 $3))
485 ((exp ?+ exp)
486 (+ $1 $3))
487 ((exp ?- exp)
488 (- $1 $3))
489 ((exp ?* exp)
490 (* $1 $3))
491 ((exp ?/ exp)
492 (/ $1 $3))
493 ((?- exp) [NEG]
494 (- $2))
495 ((exp ?^ exp)
496 (expt $1 $3))
497 ((?\( exp ?\))
498 (progn $2))
499 )
500 )
501 @end group
502 @end lisp
503
504 In the bison-like @dfn{WY} format (@pxref{Wisent Semantic}) the
505 grammar looks like this:
506
507 @example
508 @group
509 %token <number> NUM
510
511 %nonassoc '=' ;; comparison
512 %left '-' '+'
513 %left '*' '/'
514 %left NEG ;; negation--unary minus
515 %right '^' ;; exponentiation
516
517 %%
518
519 input:
520 line
521 | input line
522 (format "%s %s" $1 $2)
523 ;
524
525 line:
526 ';'
527 @{";"@}
528 | exp ';'
529 (format "%s;" $1)
530 | error ';'
531 @{"Error;"@}
532 ;
533
534 exp:
535 NUM
536 (string-to-number $1)
537 | exp '=' exp
538 (= $1 $3)
539 | exp '+' exp
540 (+ $1 $3)
541 | exp '-' exp
542 (- $1 $3)
543 | exp '*' exp
544 (* $1 $3)
545 | exp '/' exp
546 (/ $1 $3)
547 | '-' exp %prec NEG
548 (- $2)
549 | exp '^' exp
550 (expt $1 $3)
551 | '(' exp ')'
552 @{$2@}
553 ;
554
555 %%
556 @end group
557 @end example
558
559 @node Compiling a grammar
560 @section Compiling a grammar
561
562 @cindex automaton
563 After providing a context-free grammar in a suitable format, it must
564 be translated into a set of tables (an @dfn{automaton}) that will be
565 used to derive the parser. Like Bison, Wisent translates grammars that
566 must be @dfn{LALR(1)}.
567
568 @cindex LALR(1) grammar
569 @cindex look-ahead token
570 A grammar is @acronym{LALR(1)} if it is possible to tell how to parse
571 any portion of an input string with just a single token of look-ahead:
572 the @dfn{look-ahead token}. See @ref{Language and Grammar, , ,
573 bison}, in the Bison manual for more information.
574
575 @cindex grammar compilation
576 Grammar translation (compilation) is achieved by the function:
577
578 @cindex compiling a grammar
579 @vindex wisent-single-start-flag
580 @findex wisent-compile-grammar
581 @defun wisent-compile-grammar grammar &optional start-list
582 Compile @var{grammar} and return an @acronym{LALR(1)} automaton.
583
584 Optional argument @var{start-list} is a list of start symbols
585 (nonterminals). If @code{nil} the first nonterminal defined in the
586 grammar is the default start symbol. If @var{start-list} contains
587 only one element, it defines the start symbol. If @var{start-list}
588 contains more than one element, all are defined as potential start
589 symbols, unless @code{wisent-single-start-flag} is non-@code{nil}. In
590 that case the first element of @var{start-list} defines the start
591 symbol and others are ignored.
592
593 The @acronym{LALR(1)} automaton is a vector of the form:
594
595 @code{[@var{actions gotos starts functions}]}
596
597 @table @var
598 @item actions
599 A state/token matrix telling the parser what to do at every state
600 based on the current look-ahead token. That is shift, reduce, accept
601 or error. See also @ref{Wisent Parsing}.
602
603 @item gotos
604 A state/nonterminal matrix telling the parser the next state to go to
605 after reducing with each rule.
606
607 @item starts
608 An alist which maps the allowed start symbols (nonterminals) to
609 lexical tokens that will be first shifted into the parser stack.
610
611 @item functions
612 An obarray of semantic action symbols. A semantic action is actually
613 an Emacs Lisp function (lambda expression).
614 @end table
615 @end defun
616
617 @node Conflicts
618 @section Conflicts
619
620 Normally, a grammar should produce an automaton where at each state
621 the parser has only one action to do (@pxref{Wisent Parsing}).
622
623 @cindex ambiguous grammar
624 In certain cases, a grammar can produce an automaton where, at some
625 states, there are more than one action possible. Such a grammar is
626 @dfn{ambiguous}, and generates @dfn{conflicts}.
627
628 @cindex deterministic automaton
629 The parser can't be driven by an automaton which isn't completely
630 @dfn{deterministic}, that is which contains conflicts. It is
631 necessary to resolve the conflicts to eliminate them. Wisent resolves
632 conflicts like Bison does.
633
634 @cindex grammar conflicts
635 @cindex conflicts resolution
636 There are two sorts of conflicts:
637
638 @table @dfn
639 @cindex shift/reduce conflicts
640 @item shift/reduce conflicts
641 When either a shift or a reduction would be valid at the same state.
642
643 Such conflicts are resolved by choosing to shift, unless otherwise
644 directed by operator precedence declarations.
645 See @ref{Shift/Reduce , , , bison}, in the Bison manual for more
646 information.
647
648 @cindex reduce/reduce conflicts
649 @item reduce/reduce conflicts
650 That occurs if there are two or more rules that apply to the same
651 sequence of input. This usually indicates a serious error in the
652 grammar.
653
654 Such conflicts are resolved by choosing to use the rule that appears
655 first in the grammar, but it is very risky to rely on this. Every
656 reduce/reduce conflict must be studied and usually eliminated. See
657 @ref{Reduce/Reduce , , , bison}, in the Bison manual for more
658 information.
659 @end table
660
661 @menu
662 * Grammar Debugging::
663 * Understanding the automaton::
664 @end menu
665
666 @node Grammar Debugging
667 @subsection Grammar debugging
668
669 @cindex grammar debugging
670 @cindex grammar verbose description
671 To help writing a new grammar, @code{wisent-compile-grammar} can
672 produce a verbose report containing a detailed description of the
673 grammar and parser (equivalent to what Bison reports with the
674 @option{--verbose} option).
675
676 To enable the verbose report you can set to non-@code{nil} the
677 variable:
678
679 @vindex wisent-verbose-flag
680 @deffn Option wisent-verbose-flag
681 non-@code{nil} means to report verbose information on generated parser.
682 @end deffn
683
684 Or interactively use the command:
685
686 @findex wisent-toggle-verbose-flag
687 @deffn Command wisent-toggle-verbose-flag
688 Toggle whether to report verbose information on generated parser.
689 @end deffn
690
691 The verbose report is printed in the temporary buffer
692 @file{*wisent-log*} when running interactively, or in file
693 @file{wisent.output} when running in batch mode. Different
694 reports are separated from each other by a line like this:
695
696 @example
697 @group
698 *** Wisent @var{source-file} - 2002-06-27 17:33
699 @end group
700 @end example
701
702 where @var{source-file} is the name of the Emacs Lisp file from which
703 the grammar was read. See @ref{Understanding the automaton}, for
704 details on the verbose report.
705
706 @table @strong
707 @item Please Note
708 To help debugging the grammar compiler itself, you can set this
709 variable to print the content of some internal data structures:
710
711 @vindex wisent-debug-flag
712 @defvar wisent-debug-flag
713 non-@code{nil} means enable some debug stuff.
714 @end defvar
715 @end table
716
717 @node Understanding the automaton
718 @subsection Understanding the automaton
719
720 @cindex understanding the automaton
721 This section (took from the manual of Bison 1.49) describes how to use
722 the verbose report printed by @code{wisent-compile-grammar} to
723 understand the generated automaton, to tune or fix a grammar.
724
725 We will use the following example:
726
727 @example
728 @group
729 (let ((wisent-verbose-flag t)) ;; Print a verbose report!
730 (wisent-compile-grammar
731 '((NUM STR) ; %token NUM STR
732
733 ((left ?+ ?-) ; %left '+' '-';
734 (left ?*)) ; %left '*'
735
736 (exp ; exp:
737 ((exp ?+ exp)) ; exp '+' exp
738 ((exp ?- exp)) ; | exp '-' exp
739 ((exp ?* exp)) ; | exp '*' exp
740 ((exp ?/ exp)) ; | exp '/' exp
741 ((NUM)) ; | NUM
742 ) ; ;
743
744 (useless ; useless:
745 ((STR)) ; STR
746 ) ; ;
747 )
748 'nil) ; no %start declarations
749 )
750 @end group
751 @end example
752
753 When evaluating the above expression, grammar compilation first issues
754 the following two clear messages:
755
756 @example
757 @group
758 Grammar contains 1 useless nonterminals and 1 useless rules
759 Grammar contains 7 shift/reduce conflicts
760 @end group
761 @end example
762
763 The @file{*wisent-log*} buffer details things!
764
765 The first section reports conflicts that were solved using precedence
766 and/or associativity:
767
768 @example
769 @group
770 Conflict in state 7 between rule 1 and token '+' resolved as reduce.
771 Conflict in state 7 between rule 1 and token '-' resolved as reduce.
772 Conflict in state 7 between rule 1 and token '*' resolved as shift.
773 Conflict in state 8 between rule 2 and token '+' resolved as reduce.
774 Conflict in state 8 between rule 2 and token '-' resolved as reduce.
775 Conflict in state 8 between rule 2 and token '*' resolved as shift.
776 Conflict in state 9 between rule 3 and token '+' resolved as reduce.
777 Conflict in state 9 between rule 3 and token '-' resolved as reduce.
778 Conflict in state 9 between rule 3 and token '*' resolved as reduce.
779 @end group
780 @end example
781
782 The next section reports useless tokens, nonterminal and rules (note
783 that useless tokens might be used by the scanner):
784
785 @example
786 @group
787 Useless nonterminals:
788
789 useless
790
791
792 Terminals which are not used:
793
794 STR
795
796
797 Useless rules:
798
799 #6 useless: STR;
800 @end group
801 @end example
802
803 The next section lists states that still have conflicts:
804
805 @example
806 @group
807 State 7 contains 1 shift/reduce conflict.
808 State 8 contains 1 shift/reduce conflict.
809 State 9 contains 1 shift/reduce conflict.
810 State 10 contains 4 shift/reduce conflicts.
811 @end group
812 @end example
813
814 The next section reproduces the grammar used:
815
816 @example
817 @group
818 Grammar
819
820 Number, Rule
821 1 exp -> exp '+' exp
822 2 exp -> exp '-' exp
823 3 exp -> exp '*' exp
824 4 exp -> exp '/' exp
825 5 exp -> NUM
826 @end group
827 @end example
828
829 And reports the uses of the symbols:
830
831 @example
832 @group
833 Terminals, with rules where they appear
834
835 $EOI (-1)
836 error (1)
837 NUM (2) 5
838 STR (3) 6
839 '+' (4) 1
840 '-' (5) 2
841 '*' (6) 3
842 '/' (7) 4
843
844
845 Nonterminals, with rules where they appear
846
847 exp (8)
848 on left: 1 2 3 4 5, on right: 1 2 3 4
849 @end group
850 @end example
851
852 The report then details the automaton itself, describing each state
853 with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
854 item is a production rule together with a point (marked by @samp{.})
855 that the input cursor.
856
857 @example
858 @group
859 state 0
860
861 NUM shift, and go to state 1
862
863 exp go to state 2
864 @end group
865 @end example
866
867 State 0 corresponds to being at the very beginning of the parsing, in
868 the initial rule, right before the start symbol (@samp{exp}). When
869 the parser returns to this state right after having reduced a rule
870 that produced an @samp{exp}, it jumps to state 2. If there is no such
871 transition on a nonterminal symbol, and the lookahead is a @samp{NUM},
872 then this token is shifted on the parse stack, and the control flow
873 jumps to state 1. Any other lookahead triggers a parse error.
874
875 In the state 1...
876
877 @example
878 @group
879 state 1
880
881 exp -> NUM . (rule 5)
882
883 $default reduce using rule 5 (exp)
884 @end group
885 @end example
886
887 the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead
888 (@samp{$default}), the parser will reduce it. If it was coming from
889 state 0, then, after this reduction it will return to state 0, and
890 will jump to state 2 (@samp{exp: go to state 2}).
891
892 @example
893 @group
894 state 2
895
896 exp -> exp . '+' exp (rule 1)
897 exp -> exp . '-' exp (rule 2)
898 exp -> exp . '*' exp (rule 3)
899 exp -> exp . '/' exp (rule 4)
900
901 $EOI shift, and go to state 11
902 '+' shift, and go to state 3
903 '-' shift, and go to state 4
904 '*' shift, and go to state 5
905 '/' shift, and go to state 6
906 @end group
907 @end example
908
909 In state 2, the automaton can only shift a symbol. For instance,
910 because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
911 @samp{+}, it will be shifted on the parse stack, and the automaton
912 control will jump to state 3, corresponding to the item
913 @samp{exp -> exp . '+' exp}:
914
915 @example
916 @group
917 state 3
918
919 exp -> exp '+' . exp (rule 1)
920
921 NUM shift, and go to state 1
922
923 exp go to state 7
924 @end group
925 @end example
926
927 Since there is no default action, any other token than those listed
928 above will trigger a parse error.
929
930 The interpretation of states 4 to 6 is straightforward:
931
932 @example
933 @group
934 state 4
935
936 exp -> exp '-' . exp (rule 2)
937
938 NUM shift, and go to state 1
939
940 exp go to state 8
941
942
943
944 state 5
945
946 exp -> exp '*' . exp (rule 3)
947
948 NUM shift, and go to state 1
949
950 exp go to state 9
951
952
953
954 state 6
955
956 exp -> exp '/' . exp (rule 4)
957
958 NUM shift, and go to state 1
959
960 exp go to state 10
961 @end group
962 @end example
963
964 As was announced in beginning of the report, @samp{State 7 contains 1
965 shift/reduce conflict.}:
966
967 @example
968 @group
969 state 7
970
971 exp -> exp . '+' exp (rule 1)
972 exp -> exp '+' exp . (rule 1)
973 exp -> exp . '-' exp (rule 2)
974 exp -> exp . '*' exp (rule 3)
975 exp -> exp . '/' exp (rule 4)
976
977 '*' shift, and go to state 5
978 '/' shift, and go to state 6
979
980 '/' [reduce using rule 1 (exp)]
981 $default reduce using rule 1 (exp)
982 @end group
983 @end example
984
985 Indeed, there are two actions associated to the lookahead @samp{/}:
986 either shifting (and going to state 6), or reducing rule 1. The
987 conflict means that either the grammar is ambiguous, or the parser
988 lacks information to make the right decision. Indeed the grammar is
989 ambiguous, as, since we did not specify the precedence of @samp{/},
990 the sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM
991 / NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM +
992 NUM) / NUM}, which corresponds to reducing rule 1.
993
994 Because in @acronym{LALR(1)} parsing a single decision can be made,
995 Wisent arbitrarily chose to disable the reduction, see
996 @ref{Conflicts}. Discarded actions are reported in between square
997 brackets.
998
999 Note that all the previous states had a single possible action: either
1000 shifting the next token and going to the corresponding state, or
1001 reducing a single rule. In the other cases, i.e., when shifting
1002 @emph{and} reducing is possible or when @emph{several} reductions are
1003 possible, the lookahead is required to select the action. State 7 is
1004 one such state: if the lookahead is @samp{*} or @samp{/} then the
1005 action is shifting, otherwise the action is reducing rule 1. In other
1006 words, the first two items, corresponding to rule 1, are not eligible
1007 when the lookahead is @samp{*}, since we specified that @samp{*} has
1008 higher precedence that @samp{+}. More generally, some items are
1009 eligible only with some set of possible lookaheads.
1010
1011 States 8 to 10 are similar:
1012
1013 @example
1014 @group
1015 state 8
1016
1017 exp -> exp . '+' exp (rule 1)
1018 exp -> exp . '-' exp (rule 2)
1019 exp -> exp '-' exp . (rule 2)
1020 exp -> exp . '*' exp (rule 3)
1021 exp -> exp . '/' exp (rule 4)
1022
1023 '*' shift, and go to state 5
1024 '/' shift, and go to state 6
1025
1026 '/' [reduce using rule 2 (exp)]
1027 $default reduce using rule 2 (exp)
1028
1029
1030 state 9
1031
1032 exp -> exp . '+' exp (rule 1)
1033 exp -> exp . '-' exp (rule 2)
1034 exp -> exp . '*' exp (rule 3)
1035 exp -> exp '*' exp . (rule 3)
1036 exp -> exp . '/' exp (rule 4)
1037
1038 '/' shift, and go to state 6
1039
1040 '/' [reduce using rule 3 (exp)]
1041 $default reduce using rule 3 (exp)
1042
1043
1044 state 10
1045
1046 exp -> exp . '+' exp (rule 1)
1047 exp -> exp . '-' exp (rule 2)
1048 exp -> exp . '*' exp (rule 3)
1049 exp -> exp . '/' exp (rule 4)
1050 exp -> exp '/' exp . (rule 4)
1051
1052 '+' shift, and go to state 3
1053 '-' shift, and go to state 4
1054 '*' shift, and go to state 5
1055 '/' shift, and go to state 6
1056
1057 '+' [reduce using rule 4 (exp)]
1058 '-' [reduce using rule 4 (exp)]
1059 '*' [reduce using rule 4 (exp)]
1060 '/' [reduce using rule 4 (exp)]
1061 $default reduce using rule 4 (exp)
1062 @end group
1063 @end example
1064
1065 Observe that state 10 contains conflicts due to the lack of precedence
1066 of @samp{/} wrt @samp{+}, @samp{-}, and @samp{*}, but also because the
1067 associativity of @samp{/} is not specified.
1068
1069 Finally, the state 11 (plus 12) is named the @dfn{final state}, or the
1070 @dfn{accepting state}:
1071
1072 @example
1073 @group
1074 state 11
1075
1076 $EOI shift, and go to state 12
1077
1078
1079
1080 state 12
1081
1082 $default accept
1083 @end group
1084 @end example
1085
1086 The end of input is shifted @samp{$EOI shift,} and the parser exits
1087 successfully (@samp{go to state 12}, that terminates).
1088
1089 @node Wisent Parsing
1090 @chapter Wisent Parsing
1091
1092 @cindex bottom-up parser
1093 @cindex shift-reduce parser
1094 The Wisent's parser is what is called a @dfn{bottom-up} or
1095 @dfn{shift-reduce} parser which repeatedly:
1096
1097 @table @dfn
1098 @cindex shift
1099 @item shift
1100 That is pushes the value of the last lexical token read (the
1101 look-ahead token) into a value stack, and reads a new one.
1102
1103 @cindex reduce
1104 @item reduce
1105 That is replaces a nonterminal by its semantic value. The values of
1106 the components which form the right hand side of a rule are popped
1107 from the value stack and reduced by the semantic action of this rule.
1108 The result is pushed back on top of value stack.
1109 @end table
1110
1111 The parser will stop on:
1112
1113 @table @dfn
1114 @cindex accept
1115 @item accept
1116 When all input has been successfully parsed. The semantic value of
1117 the start nonterminal is on top of the value stack.
1118
1119 @cindex syntax error
1120 @item error
1121 When a syntax error (an unexpected token in input) has been detected.
1122 At this point the parser issues an error message and either stops or
1123 calls a recovery routine to try to resume parsing.
1124 @end table
1125
1126 @cindex table-driven parser
1127 The above elementary actions are driven by the @acronym{LALR(1)}
1128 automaton built by @code{wisent-compile-grammar} from a context-free
1129 grammar.
1130
1131 The Wisent's parser is entered by calling the function:
1132
1133 @findex wisent-parse
1134 @defun wisent-parse automaton lexer &optional error start
1135 Parse input using the automaton specified in @var{automaton}.
1136
1137 @table @var
1138 @item automaton
1139 Is an @acronym{LALR(1)} automaton generated by
1140 @code{wisent-compile-grammar} (@pxref{Wisent Grammar}).
1141
1142 @item lexer
1143 Is a function with no argument called by the parser to obtain the next
1144 terminal (token) in input (@pxref{Writing a lexer}).
1145
1146 @item error
1147 Is an optional reporting function called when a parse error occurs.
1148 It receives a message string to report. It defaults to the function
1149 @code{wisent-message} (@pxref{Report errors}).
1150
1151 @item start
1152 Specify the start symbol (nonterminal) used by the parser as its goal.
1153 It defaults to the start symbol defined in the grammar
1154 (@pxref{Wisent Grammar}).
1155 @end table
1156 @end defun
1157
1158 The following two normal hooks permit to do some useful processing
1159 respectively before to start parsing, and after the parser terminated.
1160
1161 @vindex wisent-pre-parse-hook
1162 @defvar wisent-pre-parse-hook
1163 Normal hook run just before entering the @var{LR} parser engine.
1164 @end defvar
1165
1166 @vindex wisent-post-parse-hook
1167 @defvar wisent-post-parse-hook
1168 Normal hook run just after the @var{LR} parser engine terminated.
1169 @end defvar
1170
1171 @menu
1172 * Writing a lexer::
1173 * Actions goodies::
1174 * Report errors::
1175 * Error recovery::
1176 * Debugging actions::
1177 @end menu
1178
1179 @node Writing a lexer
1180 @section What the parser must receive
1181
1182 It is important to understand that the parser does not parse
1183 characters, but lexical tokens, and does not know anything about
1184 characters in text streams!
1185
1186 @cindex lexical analysis
1187 @cindex lexer
1188 @cindex scanner
1189 Reading input data to produce lexical tokens is performed by a lexer
1190 (also called a scanner) in a lexical analysis step, before the syntax
1191 analysis step performed by the parser. The parser automatically calls
1192 the lexer when it needs the next token to parse.
1193
1194 @cindex lexical tokens
1195 A Wisent's lexer is an Emacs Lisp function with no argument. It must
1196 return a valid lexical token of the form:
1197
1198 @code{(@var{token-class value} [@var{start} . @var{end}])}
1199
1200 @table @var
1201 @item token-class
1202 Is a category of lexical token identifying a terminal as specified in
1203 the grammar (@pxref{Wisent Grammar}). It can be a symbol or a character
1204 literal.
1205
1206 @item value
1207 Is the value of the lexical token. It can be of any valid Emacs Lisp
1208 data type.
1209
1210 @item start
1211 @itemx end
1212 Are the optional beginning and ending positions of @var{value} in the
1213 input stream.
1214 @end table
1215
1216 When there are no more tokens to read the lexer must return the token
1217 @code{(list wisent-eoi-term)} to each request.
1218
1219 @vindex wisent-eoi-term
1220 @defvar wisent-eoi-term
1221 Predefined constant, End-Of-Input terminal symbol.
1222 @end defvar
1223
1224 @code{wisent-lex} is an example of a lexer that reads lexical tokens
1225 produced by a @semantic{} lexer, and translates them into lexical tokens
1226 suitable to the Wisent parser. See also @ref{Wisent Lex}.
1227
1228 To call the lexer in a semantic action use the function
1229 @code{wisent-lexer}. See also @ref{Actions goodies}.
1230
1231 @node Actions goodies
1232 @section Variables and macros useful in grammar actions.
1233
1234 @vindex wisent-input
1235 @defvar wisent-input
1236 The last token read.
1237 This variable only has meaning in the scope of @code{wisent-parse}.
1238 @end defvar
1239
1240 @findex wisent-lexer
1241 @defun wisent-lexer
1242 Obtain the next terminal in input.
1243 @end defun
1244
1245 @findex wisent-region
1246 @defun wisent-region &rest positions
1247 Return the start/end positions of the region including
1248 @var{positions}. Each element of @var{positions} is a pair
1249 @w{@code{(@var{start-pos} . @var{end-pos})}} or @code{nil}. The
1250 returned value is the pair @w{@code{(@var{min-start-pos} .
1251 @var{max-end-pos})}} or @code{nil} if no @var{positions} are
1252 available.
1253 @end defun
1254
1255 @node Report errors
1256 @section The error reporting function
1257
1258 @cindex error reporting
1259 When the parser encounters a syntax error it calls a user-defined
1260 function. It must be an Emacs Lisp function with one argument: a
1261 string containing the message to report.
1262
1263 By default the parser uses this function to report error messages:
1264
1265 @findex wisent-message
1266 @defun wisent-message string &rest args
1267 Print a one-line message if @code{wisent-parse-verbose-flag} is set.
1268 Pass @var{string} and @var{args} arguments to @dfn{message}.
1269 @end defun
1270
1271 @table @strong
1272 @item Please Note:
1273 @code{wisent-message} uses the following function to print lexical
1274 tokens:
1275
1276 @defun wisent-token-to-string token
1277 Return a printed representation of lexical token @var{token}.
1278 @end defun
1279
1280 The general printed form of a lexical token is:
1281
1282 @w{@code{@var{token}(@var{value})@@@var{location}}}
1283 @end table
1284
1285 To control the verbosity of the parser you can set to non-@code{nil}
1286 this variable:
1287
1288 @vindex wisent-parse-verbose-flag
1289 @deffn Option wisent-parse-verbose-flag
1290 non-@code{nil} means to issue more messages while parsing.
1291 @end deffn
1292
1293 Or interactively use the command:
1294
1295 @findex wisent-parse-toggle-verbose-flag
1296 @deffn Command wisent-parse-toggle-verbose-flag
1297 Toggle whether to issue more messages while parsing.
1298 @end deffn
1299
1300 When the error reporting function is entered the variable
1301 @code{wisent-input} contains the unexpected token as returned by the
1302 lexer.
1303
1304 The error reporting function can be called from a semantic action too
1305 using the special macro @code{wisent-error}. When called from a
1306 semantic action entered by error recovery (@pxref{Error recovery}) the
1307 value of the variable @code{wisent-recovering} is non-@code{nil}.
1308
1309 @node Error recovery
1310 @section Error recovery
1311
1312 @cindex error recovery
1313 The error recovery mechanism of the Wisent's parser conforms to the
1314 one Bison uses. See @ref{Error Recovery, , , bison}, in the Bison
1315 manual for details.
1316
1317 @cindex error token
1318 To recover from a syntax error you must write rules to recognize the
1319 special token @code{error}. This is a terminal symbol that is
1320 automatically defined and reserved for error handling.
1321
1322 When the parser encounters a syntax error, it pops the state stack
1323 until it finds a state that allows shifting the @code{error} token.
1324 After it has been shifted, if the old look-ahead token is not
1325 acceptable to be shifted next, the parser reads tokens and discards
1326 them until it finds a token which is acceptable.
1327
1328 @cindex error recovery strategy
1329 Strategies for error recovery depend on the choice of error rules in
1330 the grammar. A simple and useful strategy is simply to skip the rest
1331 of the current statement if an error is detected:
1332
1333 @example
1334 @group
1335 (statement (( error ?; )) ;; on error, skip until ';' is read
1336 )
1337 @end group
1338 @end example
1339
1340 It is also useful to recover to the matching close-delimiter of an
1341 opening-delimiter that has already been parsed:
1342
1343 @example
1344 @group
1345 (primary (( ?@{ expr ?@} ))
1346 (( ?@{ error ?@} ))
1347 @dots{}
1348 )
1349 @end group
1350 @end example
1351
1352 @cindex error recovery actions
1353 Note that error recovery rules may have actions, just as any other
1354 rules can. Here are some predefined hooks, variables, functions or
1355 macros, useful in such actions:
1356
1357 @vindex wisent-nerrs
1358 @defvar wisent-nerrs
1359 The number of parse errors encountered so far.
1360 @end defvar
1361
1362 @vindex wisent-recovering
1363 @defvar wisent-recovering
1364 non-@code{nil} means that the parser is recovering.
1365 This variable only has meaning in the scope of @code{wisent-parse}.
1366 @end defvar
1367
1368 @findex wisent-error
1369 @defun wisent-error msg
1370 Call the user supplied error reporting function with message
1371 @var{msg} (@pxref{Report errors}).
1372
1373 For an example of use, @xref{wisent-skip-token}.
1374 @end defun
1375
1376 @findex wisent-errok
1377 @defun wisent-errok
1378 Resume generating error messages immediately for subsequent syntax
1379 errors.
1380
1381 The parser suppress error message for syntax errors that happens
1382 shortly after the first, until three consecutive input tokens have
1383 been successfully shifted.
1384
1385 Calling @code{wisent-errok} in an action, make error messages resume
1386 immediately. No error messages will be suppressed if you call it in
1387 an error rule's action.
1388
1389 For an example of use, @xref{wisent-skip-token}.
1390 @end defun
1391
1392 @findex wisent-clearin
1393 @defun wisent-clearin
1394 Discard the current lookahead token.
1395 This will cause a new lexical token to be read.
1396
1397 In an error rule's action the previous lookahead token is reanalyzed
1398 immediately. @code{wisent-clearin} may be called to clear this token.
1399
1400 For example, suppose that on a parse error, an error handling routine
1401 is called that advances the input stream to some point where parsing
1402 should once again commence. The next symbol returned by the lexical
1403 scanner is probably correct. The previous lookahead token ought to
1404 be discarded with @code{wisent-clearin}.
1405
1406 For an example of use, @xref{wisent-skip-token}.
1407 @end defun
1408
1409 @findex wisent-abort
1410 @defun wisent-abort
1411 Abort parsing and save the lookahead token.
1412 @end defun
1413
1414 @findex wisent-set-region
1415 @defun wisent-set-region start end
1416 Change the region of text matched by the current nonterminal.
1417 @var{start} and @var{end} are respectively the beginning and end
1418 positions of the region occupied by the group of components associated
1419 to this nonterminal. If @var{start} or @var{end} values are not a
1420 valid positions the region is set to @code{nil}.
1421
1422 For an example of use, @xref{wisent-skip-token}.
1423 @end defun
1424
1425 @vindex wisent-discarding-token-functions
1426 @defvar wisent-discarding-token-functions
1427 List of functions to be called when discarding a lexical token.
1428 These functions receive the lexical token discarded.
1429 When the parser encounters unexpected tokens, it can discards them,
1430 based on what directed by error recovery rules. Either when the
1431 parser reads tokens until one is found that can be shifted, or when an
1432 semantic action calls the function @code{wisent-skip-token} or
1433 @code{wisent-skip-block}.
1434 For language specific hooks, make sure you define this as a local
1435 hook.
1436
1437 For example, in @semantic{}, this hook is set to the function
1438 @code{wisent-collect-unmatched-syntax} to collect unmatched lexical
1439 tokens (@pxref{Useful functions}).
1440 @end defvar
1441
1442 @findex wisent-skip-token
1443 @defun wisent-skip-token
1444 @anchor{wisent-skip-token}
1445 Skip the lookahead token in order to resume parsing.
1446 Return @code{nil}.
1447 Must be used in error recovery semantic actions.
1448
1449 It typically looks like this:
1450
1451 @lisp
1452 @group
1453 (wisent-message "%s: skip %s" $action
1454 (wisent-token-to-string wisent-input))
1455 (run-hook-with-args
1456 'wisent-discarding-token-functions wisent-input)
1457 (wisent-clearin)
1458 (wisent-errok)))
1459 @end group
1460 @end lisp
1461 @end defun
1462
1463 @findex wisent-skip-block
1464 @defun wisent-skip-block
1465 Safely skip a block in order to resume parsing.
1466 Return @code{nil}.
1467 Must be used in error recovery semantic actions.
1468
1469 A block is data between an open-delimiter (syntax class @code{(}) and
1470 a matching close-delimiter (syntax class @code{)}):
1471
1472 @example
1473 @group
1474 (a parenthesized block)
1475 [a block between brackets]
1476 @{a block between braces@}
1477 @end group
1478 @end example
1479
1480 The following example uses @code{wisent-skip-block} to safely skip a
1481 block delimited by @samp{LBRACE} (@code{@{}) and @samp{RBRACE}
1482 (@code{@}}) tokens, when a syntax error occurs in
1483 @samp{other-components}:
1484
1485 @example
1486 @group
1487 (block ((LBRACE other-components RBRACE))
1488 ((LBRACE RBRACE))
1489 ((LBRACE error)
1490 (wisent-skip-block))
1491 )
1492 @end group
1493 @end example
1494 @end defun
1495
1496 @node Debugging actions
1497 @section Debugging semantic actions
1498
1499 @cindex semantic action symbols
1500 Each semantic action is represented by a symbol interned in an
1501 @dfn{obarray} that is part of the @acronym{LALR(1)} automaton
1502 (@pxref{Compiling a grammar}). @code{symbol-function} on a semantic
1503 action symbol return the semantic action lambda expression.
1504
1505 A semantic action symbol name has the form
1506 @code{@var{nonterminal}:@var{index}}, where @var{nonterminal} is the
1507 name of the nonterminal symbol the action belongs to, and @var{index}
1508 is an action sequence number within the scope of @var{nonterminal}.
1509 For example, this nonterminal definition:
1510
1511 @example
1512 @group
1513 input:
1514 line [@code{input:0}]
1515 | input line
1516 (format "%s %s" $1 $2) [@code{input:1}]
1517 ;
1518 @end group
1519 @end example
1520
1521 Will produce two semantic actions, and associated symbols:
1522
1523 @table @code
1524 @item input:0
1525 A default action that returns @code{$1}.
1526
1527 @item input:1
1528 That returns @code{(format "%s %s" $1 $2)}.
1529 @end table
1530
1531 @cindex debugging semantic actions
1532 Debugging uses the Lisp debugger to investigate what is happening
1533 during execution of semantic actions.
1534 Three commands are available to debug semantic actions. They receive
1535 two arguments:
1536
1537 @itemize @bullet
1538 @item The automaton that contains the semantic action.
1539
1540 @item The semantic action symbol.
1541 @end itemize
1542
1543 @findex wisent-debug-on-entry
1544 @deffn Command wisent-debug-on-entry automaton function
1545 Request @var{automaton}'s @var{function} to invoke debugger each time it is called.
1546 @var{function} must be a semantic action symbol that exists in @var{automaton}.
1547 @end deffn
1548
1549 @findex wisent-cancel-debug-on-entry
1550 @deffn Command wisent-cancel-debug-on-entry automaton function
1551 Undo effect of @code{wisent-debug-on-entry} on @var{automaton}'s @var{function}.
1552 @var{function} must be a semantic action symbol that exists in @var{automaton}.
1553 @end deffn
1554
1555 @findex wisent-debug-show-entry
1556 @deffn Command wisent-debug-show-entry automaton function
1557 Show the source of @var{automaton}'s semantic action @var{function}.
1558 @var{function} must be a semantic action symbol that exists in @var{automaton}.
1559 @end deffn
1560
1561 @node Wisent Semantic
1562 @chapter How to use Wisent with Semantic
1563
1564 @cindex tags
1565 This section presents how the Wisent's parser can be used to produce
1566 @dfn{tags} for the @semantic{} tool set.
1567
1568 @semantic{} tags form a hierarchy of Emacs Lisp data structures that
1569 describes a program in a way independent of programming languages.
1570 Tags map program declarations, like functions, methods, variables,
1571 data types, classes, includes, grammar rules, etc..
1572
1573 @cindex WY grammar format
1574 To use the Wisent parser with @semantic{} you have to define
1575 your grammar in @dfn{WY} form, a grammar format very close
1576 to the one used by Bison.
1577
1578 Please @inforef{top, Semantic Grammar Framework Manual, grammar-fw}
1579 for more information on @semantic{} grammars.
1580
1581 @menu
1582 * Grammar styles::
1583 * Wisent Lex::
1584 @end menu
1585
1586 @node Grammar styles
1587 @section Grammar styles
1588
1589 @cindex grammar styles
1590 @semantic{} parsing heavily depends on how you wrote the grammar.
1591 There are mainly two styles to write a Wisent's grammar intended to be
1592 used with the @semantic{} tool set: the @dfn{Iterative style} and the
1593 @dfn{Bison style}. Each one has pros and cons, and in certain cases
1594 it can be worth a mix of the two styles!
1595
1596 @menu
1597 * Iterative style::
1598 * Bison style::
1599 * Mixed style::
1600 * Start nonterminals::
1601 * Useful functions::
1602 @end menu
1603
1604 @node Iterative style
1605 @subsection Iterative style
1606
1607 @cindex grammar iterative style
1608 The @dfn{iterative style} is the preferred style to use with @semantic{}.
1609 It relies on an iterative parser back-end mechanism which parses start
1610 nonterminals one at a time and automagically skips unexpected lexical
1611 tokens in input.
1612
1613 Compared to rule-based iterative functions (@pxref{Bison style}),
1614 iterative parsers are better in that they can handle obscure errors
1615 more cleanly.
1616
1617 @cindex raw tag
1618 Each start nonterminal must produces a @dfn{raw tag} by calling a
1619 @code{TAG}-like grammar macro with appropriate parameters. See also
1620 @ref{Start nonterminals}.
1621
1622 @cindex expanded tag
1623 Then, each parsing iteration automatically translates a raw tag into
1624 @dfn{expanded tags}, updating the raw tag structure with internal
1625 properties and buffer related data.
1626
1627 After parsing completes, it results in a tree of expanded tags.
1628
1629 The following example is a snippet of the iterative style Java grammar
1630 provided in the @semantic{} distribution in the file
1631 @file{semantic/wisent/java-tags.wy}.
1632
1633 @example
1634 @group
1635 @dots{}
1636 ;; Alternate entry points
1637 ;; - Needed by partial re-parse
1638 %start formal_parameter
1639 @dots{}
1640 ;; - Needed by EXPANDFULL clauses
1641 %start formal_parameters
1642 @dots{}
1643
1644 formal_parameter_list
1645 : PAREN_BLOCK
1646 (EXPANDFULL $1 formal_parameters)
1647 ;
1648
1649 formal_parameters
1650 : LPAREN
1651 ()
1652 | RPAREN
1653 ()
1654 | formal_parameter COMMA
1655 | formal_parameter RPAREN
1656 ;
1657
1658 formal_parameter
1659 : formal_parameter_modifier_opt type variable_declarator_id
1660 (VARIABLE-TAG $3 $2 nil :typemodifiers $1)
1661 ;
1662 @end group
1663 @end example
1664
1665 @findex EXPANDFULL
1666 It shows the use of the @code{EXPANDFULL} grammar macro to parse a
1667 @samp{PAREN_BLOCK} which contains a @samp{formal_parameter_list}.
1668 @code{EXPANDFULL} tells to recursively parse @samp{formal_parameters}
1669 inside @samp{PAREN_BLOCK}. The parser iterates until it digested all
1670 available input data inside the @samp{PAREN_BLOCK}, trying to match
1671 any of the @samp{formal_parameters} rules:
1672
1673 @itemize
1674 @item @samp{LPAREN}
1675
1676 @item @samp{RPAREN}
1677
1678 @item @samp{formal_parameter COMMA}
1679
1680 @item @samp{formal_parameter RPAREN}
1681 @end itemize
1682
1683 At each iteration it will return a @samp{formal_parameter} raw tag,
1684 or @code{nil} to skip unwanted (single @samp{LPAREN} or @samp{RPAREN}
1685 for example) or unexpected input data. Those raw tags will be
1686 automatically expanded by the iterative back-end parser.
1687
1688 @node Bison style
1689 @subsection Bison style
1690
1691 @cindex grammar bison style
1692 What we call the @dfn{Bison style} is the traditional style of Bison's
1693 grammars. Compared to iterative style, it is not straightforward to
1694 use grammars written in Bison style in @semantic{}. Mainly because such
1695 grammars are designed to parse the whole input data in one pass, and
1696 don't use the iterative parser back-end mechanism (@pxref{Iterative
1697 style}). With Bison style the parser is called once to parse the
1698 grammar start nonterminal.
1699
1700 The following example is a snippet of the Bison style Java grammar
1701 provided in the @semantic{} distribution in the file
1702 @file{semantic/wisent/java.wy}.
1703
1704 @example
1705 @group
1706 %start formal_parameter
1707 @dots{}
1708
1709 formal_parameter_list
1710 : formal_parameter_list COMMA formal_parameter
1711 (cons $3 $1)
1712 | formal_parameter
1713 (list $1)
1714 ;
1715
1716 formal_parameter
1717 : formal_parameter_modifier_opt type variable_declarator_id
1718 (EXPANDTAG
1719 (VARIABLE-TAG $3 $2 :typemodifiers $1)
1720 )
1721 ;
1722 @end group
1723 @end example
1724
1725 The first consequence is that syntax errors are not automatically
1726 handled by @semantic{}. Thus, it is necessary to explicitly handle
1727 them at the grammar level, providing error recovery rules to skip
1728 unexpected input data.
1729
1730 The second consequence is that the iterative parser can't do automatic
1731 tag expansion, except for the start nonterminal value. It is
1732 necessary to explicitly expand tags from concerned semantic actions by
1733 calling the grammar macro @code{EXPANDTAG} with a raw tag as
1734 parameter. See also @ref{Start nonterminals}, for incremental
1735 re-parse considerations.
1736
1737 @node Mixed style
1738 @subsection Mixed style
1739
1740 @cindex grammar mixed style
1741 @example
1742 @group
1743 %start grammar
1744 ;; Reparse
1745 %start prologue epilogue declaration nonterminal rule
1746 @dots{}
1747
1748 %%
1749
1750 grammar:
1751 prologue
1752 | epilogue
1753 | declaration
1754 | nonterminal
1755 | PERCENT_PERCENT
1756 ;
1757 @dots{}
1758
1759 nonterminal:
1760 SYMBOL COLON rules SEMI
1761 (TAG $1 'nonterminal :children $3)
1762 ;
1763
1764 rules:
1765 lifo_rules
1766 (apply 'nconc (nreverse $1))
1767 ;
1768
1769 lifo_rules:
1770 lifo_rules OR rule
1771 (cons $3 $1)
1772 | rule
1773 (list $1)
1774 ;
1775
1776 rule:
1777 rhs
1778 (let* ((rhs $1)
1779 name type comps prec action elt)
1780 @dots{}
1781 (EXPANDTAG
1782 (TAG name 'rule :type type :value comps :prec prec :expr action)
1783 ))
1784 ;
1785 @end group
1786 @end example
1787
1788 This example shows how iterative and Bison styles can be combined in
1789 the same grammar to obtain a good compromise between grammar
1790 complexity and an efficient parsing strategy in an interactive
1791 environment.
1792
1793 @samp{nonterminal} is parsed using iterative style via the main
1794 @samp{grammar} rule. The semantic action uses the @code{TAG} macro to
1795 produce a raw tag, automagically expanded by @semantic{}.
1796
1797 But @samp{rules} part is parsed in Bison style! Why?
1798
1799 Rule delimiters are the colon (@code{:}), that follows the nonterminal
1800 name, and a final semicolon (@code{;}). Unfortunately these
1801 delimiters are not @code{open-paren}/@code{close-paren} type, and the
1802 Emacs' syntactic analyzer can't easily isolate data between them to
1803 produce a @samp{RULES_PART} parenthesis-block-like lexical token.
1804 Consequently it is not possible to use @code{EXPANDFULL} to iterate in
1805 @samp{RULES_PART}, like this:
1806
1807 @example
1808 @group
1809 nonterminal:
1810 SYMBOL COLON rules SEMI
1811 (TAG $1 'nonterminal :children $3)
1812 ;
1813
1814 rules:
1815 RULES_PART ;; @strong{Map a parenthesis-block-like lexical token}
1816 (EXPANDFULL $1 'rules)
1817 ;
1818
1819 rules:
1820 COLON
1821 ()
1822 OR
1823 ()
1824 SEMI
1825 ()
1826 rhs
1827 rhs
1828 (let* ((rhs $1)
1829 name type comps prec action elt)
1830 @dots{}
1831 (TAG name 'rule :type type :value comps :prec prec :expr action)
1832 )
1833 ;
1834 @end group
1835 @end example
1836
1837 In such cases, when it is difficult for Emacs to obtain
1838 parenthesis-block-like lexical tokens, the best solution is to use the
1839 traditional Bison style with error recovery!
1840
1841 In some extreme cases, it can also be convenient to extend the lexer,
1842 to deliver new lexical tokens, to simplify the grammar.
1843
1844 @node Start nonterminals
1845 @subsection Start nonterminals
1846
1847 @cindex start nonterminals
1848 @cindex @code{reparse-symbol} property
1849 When you write a grammar for @semantic{}, it is important to carefully
1850 indicate the start nonterminals. Each one defines an entry point in
1851 the grammar, and after parsing its semantic value is returned to the
1852 back-end iterative engine. Consequently:
1853
1854 @strong{The semantic value of a start nonterminal must be a produced
1855 by a TAG like grammar macro}.
1856
1857 Start nonterminals are declared by @code{%start} statements. When
1858 nothing is specified the first nonterminal that appears in the grammar
1859 is the start nonterminal.
1860
1861 Generally, the following nonterminals must be declared as start
1862 symbols:
1863
1864 @itemize @bullet
1865 @item The main grammar entry point
1866 @quotation
1867 Of course!
1868 @end quotation
1869
1870 @item nonterminals passed to @code{EXPAND}/@code{EXPANDFULL}
1871 @quotation
1872 These grammar macros recursively parse a part of input data, based on
1873 rules of the given nonterminal.
1874
1875 For example, the following will parse @samp{PAREN_BLOCK} data using
1876 the @samp{formal_parameters} rules:
1877
1878 @example
1879 @group
1880 formal_parameter_list
1881 : PAREN_BLOCK
1882 (EXPANDFULL $1 formal_parameters)
1883 ;
1884 @end group
1885 @end example
1886
1887 The semantic value of @samp{formal_parameters} becomes the value of
1888 the @code{EXPANDFULL} expression. It is a list of @semantic{} tags
1889 spliced in the tags tree.
1890
1891 Because the automaton must know that @samp{formal_parameters} is a
1892 start symbol, you must declare it like this:
1893
1894 @example
1895 @group
1896 %start formal_parameters
1897 @end group
1898 @end example
1899 @end quotation
1900 @end itemize
1901
1902 @cindex incremental re-parse
1903 @cindex reparse-symbol
1904 The @code{EXPANDFULL} macro has a side effect it is important to know,
1905 related to the incremental re-parse mechanism of @semantic{}: the
1906 nonterminal symbol parameter passed to @code{EXPANDFULL} also becomes
1907 the @code{reparse-symbol} property of the tag returned by the
1908 @code{EXPANDFULL} expression.
1909
1910 When buffer's data mapped by a tag is modified, @semantic{}
1911 schedules an incremental re-parse of that data, using the tag's
1912 @code{reparse-symbol} property as start nonterminal.
1913
1914 @strong{The rules associated to such start symbols must be carefully
1915 reviewed to ensure that the incremental parser will work!}
1916
1917 Things are a little bit different when the grammar is written in Bison
1918 style.
1919
1920 @strong{The @code{reparse-symbol} property is set to the nonterminal
1921 symbol the rule that explicitly uses @code{EXPANDTAG} belongs to.}
1922
1923 For example:
1924
1925 @example
1926 @group
1927 rule:
1928 rhs
1929 (let* ((rhs $1)
1930 name type comps prec action elt)
1931 @dots{}
1932 (EXPANDTAG
1933 (TAG name 'rule :type type :value comps :prec prec :expr action)
1934 ))
1935 ;
1936 @end group
1937 @end example
1938
1939 Set the @code{reparse-symbol} property of the expanded tag to
1940 @samp{rule}. A important consequence is that:
1941
1942 @strong{Every nonterminal having any rule that calls @code{EXPANDTAG}
1943 in a semantic action, should be declared as a start symbol!}
1944
1945 @node Useful functions
1946 @subsection Useful functions
1947
1948 Here is a description of some predefined functions it might be useful
1949 to know when writing new code to use Wisent in @semantic{}:
1950
1951 @findex wisent-collect-unmatched-syntax
1952 @defun wisent-collect-unmatched-syntax input
1953 Add @var{input} lexical token to the cache of unmatched tokens, in
1954 variable @code{semantic-unmatched-syntax-cache}.
1955
1956 See implementation of the function @code{wisent-skip-token} in
1957 @ref{Error recovery}, for an example of use.
1958 @end defun
1959
1960 @node Wisent Lex
1961 @section The Wisent Lex lexer
1962
1963 @findex semantic-lex
1964 The lexical analysis step of @semantic{} is performed by the general
1965 function @code{semantic-lex}. For more information, @inforef{Writing
1966 Lexers, ,semantic-langdev}.
1967
1968 @code{semantic-lex} produces lexical tokens of the form:
1969
1970 @example
1971 @group
1972 @code{(@var{token-class start} . @var{end})}
1973 @end group
1974 @end example
1975
1976 @table @var
1977 @item token-class
1978 Is a symbol that identifies a lexical token class, like @code{symbol},
1979 @code{string}, @code{number}, or @code{PAREN_BLOCK}.
1980
1981 @item start
1982 @itemx end
1983 Are the start and end positions of mapped data in the input buffer.
1984 @end table
1985
1986 The Wisent's parser doesn't depend on the nature of analyzed input
1987 stream (buffer, string, etc.), and requires that lexical tokens have a
1988 different form (@pxref{Writing a lexer}):
1989
1990 @example
1991 @group
1992 @code{(@var{token-class value} [@var{start} . @var{end}])}
1993 @end group
1994 @end example
1995
1996 @cindex lexical token mapping
1997 @code{wisent-lex} is the default Wisent's lexer used in @semantic{}.
1998
1999 @vindex wisent-lex-istream
2000 @findex wisent-lex
2001 @defun wisent-lex
2002 Return the next available lexical token in Wisent's form.
2003
2004 The variable @code{wisent-lex-istream} contains the list of lexical
2005 tokens produced by @code{semantic-lex}. Pop the next token available
2006 and convert it to a form suitable for the Wisent's parser.
2007 @end defun
2008
2009 Mapping of lexical tokens as produced by @code{semantic-lex} into
2010 equivalent Wisent lexical tokens is straightforward:
2011
2012 @example
2013 @group
2014 (@var{token-class start} . @var{end})
2015 @result{} (@var{token-class value start} . @var{end})
2016 @end group
2017 @end example
2018
2019 @var{value} is the input @code{buffer-substring} from @var{start} to
2020 @var{end}.
2021
2022 @node GNU Free Documentation License
2023 @appendix GNU Free Documentation License
2024
2025 @include doclicense.texi
2026
2027 @node Index
2028 @unnumbered Index
2029 @printindex cp
2030
2031 @iftex
2032 @contents
2033 @summarycontents
2034 @end iftex
2035
2036 @bye
2037
2038 @c Following comments are for the benefit of ispell.
2039
2040 @c LocalWords: Wisent automagically wisent Wisent's LALR obarray