]> code.delx.au - gnu-emacs/blob - src/editfns.c
Merge branch 'map'
[gnu-emacs] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static struct lisp_time lisp_time_struct (Lisp_Object, int *);
68 static void set_time_zone_rule (char const *);
69 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
70 bool, struct tm *);
71 static long int tm_gmtoff (struct tm *);
72 static int tm_diff (struct tm *, struct tm *);
73 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
74
75 #ifndef HAVE_TM_GMTOFF
76 # define HAVE_TM_GMTOFF false
77 #endif
78
79 /* The startup value of the TZ environment variable; null if unset. */
80 static char const *initial_tz;
81
82 /* A valid but unlikely setting for the TZ environment variable.
83 It is OK (though a bit slower) if the user chooses this value. */
84 static char dump_tz_string[] = "TZ=UtC0";
85
86 /* The cached value of Vsystem_name. This is used only to compare it
87 to Vsystem_name, so it need not be visible to the GC. */
88 static Lisp_Object cached_system_name;
89
90 static void
91 init_and_cache_system_name (void)
92 {
93 init_system_name ();
94 cached_system_name = Vsystem_name;
95 }
96
97 void
98 init_editfns (void)
99 {
100 const char *user_name;
101 register char *p;
102 struct passwd *pw; /* password entry for the current user */
103 Lisp_Object tem;
104
105 /* Set up system_name even when dumping. */
106 init_and_cache_system_name ();
107
108 #ifndef CANNOT_DUMP
109 /* When just dumping out, set the time zone to a known unlikely value
110 and skip the rest of this function. */
111 if (!initialized)
112 {
113 # ifdef HAVE_TZSET
114 xputenv (dump_tz_string);
115 tzset ();
116 # endif
117 return;
118 }
119 #endif
120
121 char *tz = getenv ("TZ");
122 initial_tz = tz;
123
124 #if !defined CANNOT_DUMP && defined HAVE_TZSET
125 /* If the execution TZ happens to be the same as the dump TZ,
126 change it to some other value and then change it back,
127 to force the underlying implementation to reload the TZ info.
128 This is needed on implementations that load TZ info from files,
129 since the TZ file contents may differ between dump and execution. */
130 if (tz && strcmp (tz, &dump_tz_string[sizeof "TZ=" - 1]) == 0)
131 {
132 ++*tz;
133 tzset ();
134 --*tz;
135 }
136 #endif
137
138 /* Call set_time_zone_rule now, so that its call to putenv is done
139 before multiple threads are active. */
140 set_time_zone_rule (tz);
141
142 pw = getpwuid (getuid ());
143 #ifdef MSDOS
144 /* We let the real user name default to "root" because that's quite
145 accurate on MS-DOS and because it lets Emacs find the init file.
146 (The DVX libraries override the Djgpp libraries here.) */
147 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
148 #else
149 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
150 #endif
151
152 /* Get the effective user name, by consulting environment variables,
153 or the effective uid if those are unset. */
154 user_name = getenv ("LOGNAME");
155 if (!user_name)
156 #ifdef WINDOWSNT
157 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
158 #else /* WINDOWSNT */
159 user_name = getenv ("USER");
160 #endif /* WINDOWSNT */
161 if (!user_name)
162 {
163 pw = getpwuid (geteuid ());
164 user_name = pw ? pw->pw_name : "unknown";
165 }
166 Vuser_login_name = build_string (user_name);
167
168 /* If the user name claimed in the environment vars differs from
169 the real uid, use the claimed name to find the full name. */
170 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
171 if (! NILP (tem))
172 tem = Vuser_login_name;
173 else
174 {
175 uid_t euid = geteuid ();
176 tem = make_fixnum_or_float (euid);
177 }
178 Vuser_full_name = Fuser_full_name (tem);
179
180 p = getenv ("NAME");
181 if (p)
182 Vuser_full_name = build_string (p);
183 else if (NILP (Vuser_full_name))
184 Vuser_full_name = build_string ("unknown");
185
186 #ifdef HAVE_SYS_UTSNAME_H
187 {
188 struct utsname uts;
189 uname (&uts);
190 Voperating_system_release = build_string (uts.release);
191 }
192 #else
193 Voperating_system_release = Qnil;
194 #endif
195 }
196 \f
197 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
198 doc: /* Convert arg CHAR to a string containing that character.
199 usage: (char-to-string CHAR) */)
200 (Lisp_Object character)
201 {
202 int c, len;
203 unsigned char str[MAX_MULTIBYTE_LENGTH];
204
205 CHECK_CHARACTER (character);
206 c = XFASTINT (character);
207
208 len = CHAR_STRING (c, str);
209 return make_string_from_bytes ((char *) str, 1, len);
210 }
211
212 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
213 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
214 (Lisp_Object byte)
215 {
216 unsigned char b;
217 CHECK_NUMBER (byte);
218 if (XINT (byte) < 0 || XINT (byte) > 255)
219 error ("Invalid byte");
220 b = XINT (byte);
221 return make_string_from_bytes ((char *) &b, 1, 1);
222 }
223
224 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
225 doc: /* Return the first character in STRING. */)
226 (register Lisp_Object string)
227 {
228 register Lisp_Object val;
229 CHECK_STRING (string);
230 if (SCHARS (string))
231 {
232 if (STRING_MULTIBYTE (string))
233 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
234 else
235 XSETFASTINT (val, SREF (string, 0));
236 }
237 else
238 XSETFASTINT (val, 0);
239 return val;
240 }
241
242 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
243 doc: /* Return value of point, as an integer.
244 Beginning of buffer is position (point-min). */)
245 (void)
246 {
247 Lisp_Object temp;
248 XSETFASTINT (temp, PT);
249 return temp;
250 }
251
252 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
253 doc: /* Return value of point, as a marker object. */)
254 (void)
255 {
256 return build_marker (current_buffer, PT, PT_BYTE);
257 }
258
259 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
260 doc: /* Set point to POSITION, a number or marker.
261 Beginning of buffer is position (point-min), end is (point-max).
262
263 The return value is POSITION. */)
264 (register Lisp_Object position)
265 {
266 if (MARKERP (position))
267 set_point_from_marker (position);
268 else if (INTEGERP (position))
269 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
270 else
271 wrong_type_argument (Qinteger_or_marker_p, position);
272 return position;
273 }
274
275
276 /* Return the start or end position of the region.
277 BEGINNINGP means return the start.
278 If there is no region active, signal an error. */
279
280 static Lisp_Object
281 region_limit (bool beginningp)
282 {
283 Lisp_Object m;
284
285 if (!NILP (Vtransient_mark_mode)
286 && NILP (Vmark_even_if_inactive)
287 && NILP (BVAR (current_buffer, mark_active)))
288 xsignal0 (Qmark_inactive);
289
290 m = Fmarker_position (BVAR (current_buffer, mark));
291 if (NILP (m))
292 error ("The mark is not set now, so there is no region");
293
294 /* Clip to the current narrowing (bug#11770). */
295 return make_number ((PT < XFASTINT (m)) == beginningp
296 ? PT
297 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
298 }
299
300 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
301 doc: /* Return the integer value of point or mark, whichever is smaller. */)
302 (void)
303 {
304 return region_limit (1);
305 }
306
307 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
308 doc: /* Return the integer value of point or mark, whichever is larger. */)
309 (void)
310 {
311 return region_limit (0);
312 }
313
314 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
315 doc: /* Return this buffer's mark, as a marker object.
316 Watch out! Moving this marker changes the mark position.
317 If you set the marker not to point anywhere, the buffer will have no mark. */)
318 (void)
319 {
320 return BVAR (current_buffer, mark);
321 }
322
323 \f
324 /* Find all the overlays in the current buffer that touch position POS.
325 Return the number found, and store them in a vector in VEC
326 of length LEN. */
327
328 static ptrdiff_t
329 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
330 {
331 Lisp_Object overlay, start, end;
332 struct Lisp_Overlay *tail;
333 ptrdiff_t startpos, endpos;
334 ptrdiff_t idx = 0;
335
336 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
337 {
338 XSETMISC (overlay, tail);
339
340 end = OVERLAY_END (overlay);
341 endpos = OVERLAY_POSITION (end);
342 if (endpos < pos)
343 break;
344 start = OVERLAY_START (overlay);
345 startpos = OVERLAY_POSITION (start);
346 if (startpos <= pos)
347 {
348 if (idx < len)
349 vec[idx] = overlay;
350 /* Keep counting overlays even if we can't return them all. */
351 idx++;
352 }
353 }
354
355 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
356 {
357 XSETMISC (overlay, tail);
358
359 start = OVERLAY_START (overlay);
360 startpos = OVERLAY_POSITION (start);
361 if (pos < startpos)
362 break;
363 end = OVERLAY_END (overlay);
364 endpos = OVERLAY_POSITION (end);
365 if (pos <= endpos)
366 {
367 if (idx < len)
368 vec[idx] = overlay;
369 idx++;
370 }
371 }
372
373 return idx;
374 }
375
376 DEFUN ("get-pos-property", Fget_pos_property, Sget_pos_property, 2, 3, 0,
377 doc: /* Return the value of POSITION's property PROP, in OBJECT.
378 Almost identical to `get-char-property' except for the following difference:
379 Whereas `get-char-property' returns the property of the char at (i.e. right
380 after) POSITION, this pays attention to properties's stickiness and overlays's
381 advancement settings, in order to find the property of POSITION itself,
382 i.e. the property that a char would inherit if it were inserted
383 at POSITION. */)
384 (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
385 {
386 CHECK_NUMBER_COERCE_MARKER (position);
387
388 if (NILP (object))
389 XSETBUFFER (object, current_buffer);
390 else if (WINDOWP (object))
391 object = XWINDOW (object)->contents;
392
393 if (!BUFFERP (object))
394 /* pos-property only makes sense in buffers right now, since strings
395 have no overlays and no notion of insertion for which stickiness
396 could be obeyed. */
397 return Fget_text_property (position, prop, object);
398 else
399 {
400 EMACS_INT posn = XINT (position);
401 ptrdiff_t noverlays;
402 Lisp_Object *overlay_vec, tem;
403 struct buffer *obuf = current_buffer;
404 USE_SAFE_ALLOCA;
405
406 set_buffer_temp (XBUFFER (object));
407
408 /* First try with room for 40 overlays. */
409 Lisp_Object overlay_vecbuf[40];
410 noverlays = ARRAYELTS (overlay_vecbuf);
411 overlay_vec = overlay_vecbuf;
412 noverlays = overlays_around (posn, overlay_vec, noverlays);
413
414 /* If there are more than 40,
415 make enough space for all, and try again. */
416 if (ARRAYELTS (overlay_vecbuf) < noverlays)
417 {
418 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
419 noverlays = overlays_around (posn, overlay_vec, noverlays);
420 }
421 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
422
423 set_buffer_temp (obuf);
424
425 /* Now check the overlays in order of decreasing priority. */
426 while (--noverlays >= 0)
427 {
428 Lisp_Object ol = overlay_vec[noverlays];
429 tem = Foverlay_get (ol, prop);
430 if (!NILP (tem))
431 {
432 /* Check the overlay is indeed active at point. */
433 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
434 if ((OVERLAY_POSITION (start) == posn
435 && XMARKER (start)->insertion_type == 1)
436 || (OVERLAY_POSITION (finish) == posn
437 && XMARKER (finish)->insertion_type == 0))
438 ; /* The overlay will not cover a char inserted at point. */
439 else
440 {
441 SAFE_FREE ();
442 return tem;
443 }
444 }
445 }
446 SAFE_FREE ();
447
448 { /* Now check the text properties. */
449 int stickiness = text_property_stickiness (prop, position, object);
450 if (stickiness > 0)
451 return Fget_text_property (position, prop, object);
452 else if (stickiness < 0
453 && XINT (position) > BUF_BEGV (XBUFFER (object)))
454 return Fget_text_property (make_number (XINT (position) - 1),
455 prop, object);
456 else
457 return Qnil;
458 }
459 }
460 }
461
462 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
463 the value of point is used instead. If BEG or END is null,
464 means don't store the beginning or end of the field.
465
466 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
467 results; they do not effect boundary behavior.
468
469 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
470 position of a field, then the beginning of the previous field is
471 returned instead of the beginning of POS's field (since the end of a
472 field is actually also the beginning of the next input field, this
473 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
474 non-nil case, if two fields are separated by a field with the special
475 value `boundary', and POS lies within it, then the two separated
476 fields are considered to be adjacent, and POS between them, when
477 finding the beginning and ending of the "merged" field.
478
479 Either BEG or END may be 0, in which case the corresponding value
480 is not stored. */
481
482 static void
483 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
484 Lisp_Object beg_limit,
485 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
486 {
487 /* Fields right before and after the point. */
488 Lisp_Object before_field, after_field;
489 /* True if POS counts as the start of a field. */
490 bool at_field_start = 0;
491 /* True if POS counts as the end of a field. */
492 bool at_field_end = 0;
493
494 if (NILP (pos))
495 XSETFASTINT (pos, PT);
496 else
497 CHECK_NUMBER_COERCE_MARKER (pos);
498
499 after_field
500 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
501 before_field
502 = (XFASTINT (pos) > BEGV
503 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
504 Qfield, Qnil, NULL)
505 /* Using nil here would be a more obvious choice, but it would
506 fail when the buffer starts with a non-sticky field. */
507 : after_field);
508
509 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
510 and POS is at beginning of a field, which can also be interpreted
511 as the end of the previous field. Note that the case where if
512 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
513 more natural one; then we avoid treating the beginning of a field
514 specially. */
515 if (NILP (merge_at_boundary))
516 {
517 Lisp_Object field = Fget_pos_property (pos, Qfield, Qnil);
518 if (!EQ (field, after_field))
519 at_field_end = 1;
520 if (!EQ (field, before_field))
521 at_field_start = 1;
522 if (NILP (field) && at_field_start && at_field_end)
523 /* If an inserted char would have a nil field while the surrounding
524 text is non-nil, we're probably not looking at a
525 zero-length field, but instead at a non-nil field that's
526 not intended for editing (such as comint's prompts). */
527 at_field_end = at_field_start = 0;
528 }
529
530 /* Note about special `boundary' fields:
531
532 Consider the case where the point (`.') is between the fields `x' and `y':
533
534 xxxx.yyyy
535
536 In this situation, if merge_at_boundary is non-nil, consider the
537 `x' and `y' fields as forming one big merged field, and so the end
538 of the field is the end of `y'.
539
540 However, if `x' and `y' are separated by a special `boundary' field
541 (a field with a `field' char-property of 'boundary), then ignore
542 this special field when merging adjacent fields. Here's the same
543 situation, but with a `boundary' field between the `x' and `y' fields:
544
545 xxx.BBBByyyy
546
547 Here, if point is at the end of `x', the beginning of `y', or
548 anywhere in-between (within the `boundary' field), merge all
549 three fields and consider the beginning as being the beginning of
550 the `x' field, and the end as being the end of the `y' field. */
551
552 if (beg)
553 {
554 if (at_field_start)
555 /* POS is at the edge of a field, and we should consider it as
556 the beginning of the following field. */
557 *beg = XFASTINT (pos);
558 else
559 /* Find the previous field boundary. */
560 {
561 Lisp_Object p = pos;
562 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
563 /* Skip a `boundary' field. */
564 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
565 beg_limit);
566
567 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
568 beg_limit);
569 *beg = NILP (p) ? BEGV : XFASTINT (p);
570 }
571 }
572
573 if (end)
574 {
575 if (at_field_end)
576 /* POS is at the edge of a field, and we should consider it as
577 the end of the previous field. */
578 *end = XFASTINT (pos);
579 else
580 /* Find the next field boundary. */
581 {
582 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
583 /* Skip a `boundary' field. */
584 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
585 end_limit);
586
587 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
588 end_limit);
589 *end = NILP (pos) ? ZV : XFASTINT (pos);
590 }
591 }
592 }
593
594 \f
595 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
596 doc: /* Delete the field surrounding POS.
597 A field is a region of text with the same `field' property.
598 If POS is nil, the value of point is used for POS. */)
599 (Lisp_Object pos)
600 {
601 ptrdiff_t beg, end;
602 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
603 if (beg != end)
604 del_range (beg, end);
605 return Qnil;
606 }
607
608 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
609 doc: /* Return the contents of the field surrounding POS as a string.
610 A field is a region of text with the same `field' property.
611 If POS is nil, the value of point is used for POS. */)
612 (Lisp_Object pos)
613 {
614 ptrdiff_t beg, end;
615 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
616 return make_buffer_string (beg, end, 1);
617 }
618
619 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
620 doc: /* Return the contents of the field around POS, without text properties.
621 A field is a region of text with the same `field' property.
622 If POS is nil, the value of point is used for POS. */)
623 (Lisp_Object pos)
624 {
625 ptrdiff_t beg, end;
626 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
627 return make_buffer_string (beg, end, 0);
628 }
629
630 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
631 doc: /* Return the beginning of the field surrounding POS.
632 A field is a region of text with the same `field' property.
633 If POS is nil, the value of point is used for POS.
634 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
635 field, then the beginning of the *previous* field is returned.
636 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
637 is before LIMIT, then LIMIT will be returned instead. */)
638 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
639 {
640 ptrdiff_t beg;
641 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
642 return make_number (beg);
643 }
644
645 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
646 doc: /* Return the end of the field surrounding POS.
647 A field is a region of text with the same `field' property.
648 If POS is nil, the value of point is used for POS.
649 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
650 then the end of the *following* field is returned.
651 If LIMIT is non-nil, it is a buffer position; if the end of the field
652 is after LIMIT, then LIMIT will be returned instead. */)
653 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
654 {
655 ptrdiff_t end;
656 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
657 return make_number (end);
658 }
659
660 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
661 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
662 A field is a region of text with the same `field' property.
663
664 If NEW-POS is nil, then use the current point instead, and move point
665 to the resulting constrained position, in addition to returning that
666 position.
667
668 If OLD-POS is at the boundary of two fields, then the allowable
669 positions for NEW-POS depends on the value of the optional argument
670 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
671 constrained to the field that has the same `field' char-property
672 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
673 is non-nil, NEW-POS is constrained to the union of the two adjacent
674 fields. Additionally, if two fields are separated by another field with
675 the special value `boundary', then any point within this special field is
676 also considered to be `on the boundary'.
677
678 If the optional argument ONLY-IN-LINE is non-nil and constraining
679 NEW-POS would move it to a different line, NEW-POS is returned
680 unconstrained. This is useful for commands that move by line, like
681 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
682 only in the case where they can still move to the right line.
683
684 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
685 a non-nil property of that name, then any field boundaries are ignored.
686
687 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
688 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
689 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
690 {
691 /* If non-zero, then the original point, before re-positioning. */
692 ptrdiff_t orig_point = 0;
693 bool fwd;
694 Lisp_Object prev_old, prev_new;
695
696 if (NILP (new_pos))
697 /* Use the current point, and afterwards, set it. */
698 {
699 orig_point = PT;
700 XSETFASTINT (new_pos, PT);
701 }
702
703 CHECK_NUMBER_COERCE_MARKER (new_pos);
704 CHECK_NUMBER_COERCE_MARKER (old_pos);
705
706 fwd = (XINT (new_pos) > XINT (old_pos));
707
708 prev_old = make_number (XINT (old_pos) - 1);
709 prev_new = make_number (XINT (new_pos) - 1);
710
711 if (NILP (Vinhibit_field_text_motion)
712 && !EQ (new_pos, old_pos)
713 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
714 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
715 /* To recognize field boundaries, we must also look at the
716 previous positions; we could use `Fget_pos_property'
717 instead, but in itself that would fail inside non-sticky
718 fields (like comint prompts). */
719 || (XFASTINT (new_pos) > BEGV
720 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
721 || (XFASTINT (old_pos) > BEGV
722 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
723 && (NILP (inhibit_capture_property)
724 /* Field boundaries are again a problem; but now we must
725 decide the case exactly, so we need to call
726 `get_pos_property' as well. */
727 || (NILP (Fget_pos_property (old_pos, inhibit_capture_property, Qnil))
728 && (XFASTINT (old_pos) <= BEGV
729 || NILP (Fget_char_property
730 (old_pos, inhibit_capture_property, Qnil))
731 || NILP (Fget_char_property
732 (prev_old, inhibit_capture_property, Qnil))))))
733 /* It is possible that NEW_POS is not within the same field as
734 OLD_POS; try to move NEW_POS so that it is. */
735 {
736 ptrdiff_t shortage;
737 Lisp_Object field_bound;
738
739 if (fwd)
740 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
741 else
742 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
743
744 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
745 other side of NEW_POS, which would mean that NEW_POS is
746 already acceptable, and it's not necessary to constrain it
747 to FIELD_BOUND. */
748 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
749 /* NEW_POS should be constrained, but only if either
750 ONLY_IN_LINE is nil (in which case any constraint is OK),
751 or NEW_POS and FIELD_BOUND are on the same line (in which
752 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
753 && (NILP (only_in_line)
754 /* This is the ONLY_IN_LINE case, check that NEW_POS and
755 FIELD_BOUND are on the same line by seeing whether
756 there's an intervening newline or not. */
757 || (find_newline (XFASTINT (new_pos), -1,
758 XFASTINT (field_bound), -1,
759 fwd ? -1 : 1, &shortage, NULL, 1),
760 shortage != 0)))
761 /* Constrain NEW_POS to FIELD_BOUND. */
762 new_pos = field_bound;
763
764 if (orig_point && XFASTINT (new_pos) != orig_point)
765 /* The NEW_POS argument was originally nil, so automatically set PT. */
766 SET_PT (XFASTINT (new_pos));
767 }
768
769 return new_pos;
770 }
771
772 \f
773 DEFUN ("line-beginning-position",
774 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
775 doc: /* Return the character position of the first character on the current line.
776 With optional argument N, scan forward N - 1 lines first.
777 If the scan reaches the end of the buffer, return that position.
778
779 This function ignores text display directionality; it returns the
780 position of the first character in logical order, i.e. the smallest
781 character position on the line.
782
783 This function constrains the returned position to the current field
784 unless that position would be on a different line than the original,
785 unconstrained result. If N is nil or 1, and a front-sticky field
786 starts at point, the scan stops as soon as it starts. To ignore field
787 boundaries, bind `inhibit-field-text-motion' to t.
788
789 This function does not move point. */)
790 (Lisp_Object n)
791 {
792 ptrdiff_t charpos, bytepos;
793
794 if (NILP (n))
795 XSETFASTINT (n, 1);
796 else
797 CHECK_NUMBER (n);
798
799 scan_newline_from_point (XINT (n) - 1, &charpos, &bytepos);
800
801 /* Return END constrained to the current input field. */
802 return Fconstrain_to_field (make_number (charpos), make_number (PT),
803 XINT (n) != 1 ? Qt : Qnil,
804 Qt, Qnil);
805 }
806
807 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
808 doc: /* Return the character position of the last character on the current line.
809 With argument N not nil or 1, move forward N - 1 lines first.
810 If scan reaches end of buffer, return that position.
811
812 This function ignores text display directionality; it returns the
813 position of the last character in logical order, i.e. the largest
814 character position on the line.
815
816 This function constrains the returned position to the current field
817 unless that would be on a different line than the original,
818 unconstrained result. If N is nil or 1, and a rear-sticky field ends
819 at point, the scan stops as soon as it starts. To ignore field
820 boundaries bind `inhibit-field-text-motion' to t.
821
822 This function does not move point. */)
823 (Lisp_Object n)
824 {
825 ptrdiff_t clipped_n;
826 ptrdiff_t end_pos;
827 ptrdiff_t orig = PT;
828
829 if (NILP (n))
830 XSETFASTINT (n, 1);
831 else
832 CHECK_NUMBER (n);
833
834 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
835 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
836 NULL);
837
838 /* Return END_POS constrained to the current input field. */
839 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
840 Qnil, Qt, Qnil);
841 }
842
843 /* Save current buffer state for `save-excursion' special form.
844 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
845 offload some work from GC. */
846
847 Lisp_Object
848 save_excursion_save (void)
849 {
850 return make_save_obj_obj_obj_obj
851 (Fpoint_marker (),
852 Qnil,
853 /* Selected window if current buffer is shown in it, nil otherwise. */
854 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
855 ? selected_window : Qnil),
856 Qnil);
857 }
858
859 /* Restore saved buffer before leaving `save-excursion' special form. */
860
861 void
862 save_excursion_restore (Lisp_Object info)
863 {
864 Lisp_Object tem, tem1;
865 struct gcpro gcpro1;
866
867 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
868 /* If we're unwinding to top level, saved buffer may be deleted. This
869 means that all of its markers are unchained and so tem is nil. */
870 if (NILP (tem))
871 goto out;
872
873 GCPRO1 (info);
874
875 Fset_buffer (tem);
876
877 /* Point marker. */
878 tem = XSAVE_OBJECT (info, 0);
879 Fgoto_char (tem);
880 unchain_marker (XMARKER (tem));
881
882 /* If buffer was visible in a window, and a different window was
883 selected, and the old selected window is still showing this
884 buffer, restore point in that window. */
885 tem = XSAVE_OBJECT (info, 2);
886 if (WINDOWP (tem)
887 && !EQ (tem, selected_window)
888 && (tem1 = XWINDOW (tem)->contents,
889 (/* Window is live... */
890 BUFFERP (tem1)
891 /* ...and it shows the current buffer. */
892 && XBUFFER (tem1) == current_buffer)))
893 Fset_window_point (tem, make_number (PT));
894
895 UNGCPRO;
896
897 out:
898
899 free_misc (info);
900 }
901
902 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
903 doc: /* Save point, and current buffer; execute BODY; restore those things.
904 Executes BODY just like `progn'.
905 The values of point and the current buffer are restored
906 even in case of abnormal exit (throw or error).
907
908 If you only want to save the current buffer but not point,
909 then just use `save-current-buffer', or even `with-current-buffer'.
910
911 Before Emacs 25.1, `save-excursion' used to save the mark state.
912 To save the marker state as well as the point and buffer, use
913 `save-mark-and-excursion'.
914
915 usage: (save-excursion &rest BODY) */)
916 (Lisp_Object args)
917 {
918 register Lisp_Object val;
919 ptrdiff_t count = SPECPDL_INDEX ();
920
921 record_unwind_protect (save_excursion_restore, save_excursion_save ());
922
923 val = Fprogn (args);
924 return unbind_to (count, val);
925 }
926
927 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
928 doc: /* Record which buffer is current; execute BODY; make that buffer current.
929 BODY is executed just like `progn'.
930 usage: (save-current-buffer &rest BODY) */)
931 (Lisp_Object args)
932 {
933 ptrdiff_t count = SPECPDL_INDEX ();
934
935 record_unwind_current_buffer ();
936 return unbind_to (count, Fprogn (args));
937 }
938 \f
939 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
940 doc: /* Return the number of characters in the current buffer.
941 If BUFFER, return the number of characters in that buffer instead. */)
942 (Lisp_Object buffer)
943 {
944 if (NILP (buffer))
945 return make_number (Z - BEG);
946 else
947 {
948 CHECK_BUFFER (buffer);
949 return make_number (BUF_Z (XBUFFER (buffer))
950 - BUF_BEG (XBUFFER (buffer)));
951 }
952 }
953
954 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
955 doc: /* Return the minimum permissible value of point in the current buffer.
956 This is 1, unless narrowing (a buffer restriction) is in effect. */)
957 (void)
958 {
959 Lisp_Object temp;
960 XSETFASTINT (temp, BEGV);
961 return temp;
962 }
963
964 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
965 doc: /* Return a marker to the minimum permissible value of point in this buffer.
966 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
967 (void)
968 {
969 return build_marker (current_buffer, BEGV, BEGV_BYTE);
970 }
971
972 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
973 doc: /* Return the maximum permissible value of point in the current buffer.
974 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
975 is in effect, in which case it is less. */)
976 (void)
977 {
978 Lisp_Object temp;
979 XSETFASTINT (temp, ZV);
980 return temp;
981 }
982
983 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
984 doc: /* Return a marker to the maximum permissible value of point in this buffer.
985 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
986 is in effect, in which case it is less. */)
987 (void)
988 {
989 return build_marker (current_buffer, ZV, ZV_BYTE);
990 }
991
992 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
993 doc: /* Return the position of the gap, in the current buffer.
994 See also `gap-size'. */)
995 (void)
996 {
997 Lisp_Object temp;
998 XSETFASTINT (temp, GPT);
999 return temp;
1000 }
1001
1002 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1003 doc: /* Return the size of the current buffer's gap.
1004 See also `gap-position'. */)
1005 (void)
1006 {
1007 Lisp_Object temp;
1008 XSETFASTINT (temp, GAP_SIZE);
1009 return temp;
1010 }
1011
1012 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1013 doc: /* Return the byte position for character position POSITION.
1014 If POSITION is out of range, the value is nil. */)
1015 (Lisp_Object position)
1016 {
1017 CHECK_NUMBER_COERCE_MARKER (position);
1018 if (XINT (position) < BEG || XINT (position) > Z)
1019 return Qnil;
1020 return make_number (CHAR_TO_BYTE (XINT (position)));
1021 }
1022
1023 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1024 doc: /* Return the character position for byte position BYTEPOS.
1025 If BYTEPOS is out of range, the value is nil. */)
1026 (Lisp_Object bytepos)
1027 {
1028 CHECK_NUMBER (bytepos);
1029 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1030 return Qnil;
1031 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1032 }
1033 \f
1034 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1035 doc: /* Return the character following point, as a number.
1036 At the end of the buffer or accessible region, return 0. */)
1037 (void)
1038 {
1039 Lisp_Object temp;
1040 if (PT >= ZV)
1041 XSETFASTINT (temp, 0);
1042 else
1043 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1044 return temp;
1045 }
1046
1047 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1048 doc: /* Return the character preceding point, as a number.
1049 At the beginning of the buffer or accessible region, return 0. */)
1050 (void)
1051 {
1052 Lisp_Object temp;
1053 if (PT <= BEGV)
1054 XSETFASTINT (temp, 0);
1055 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1056 {
1057 ptrdiff_t pos = PT_BYTE;
1058 DEC_POS (pos);
1059 XSETFASTINT (temp, FETCH_CHAR (pos));
1060 }
1061 else
1062 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1063 return temp;
1064 }
1065
1066 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1067 doc: /* Return t if point is at the beginning of the buffer.
1068 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1069 (void)
1070 {
1071 if (PT == BEGV)
1072 return Qt;
1073 return Qnil;
1074 }
1075
1076 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1077 doc: /* Return t if point is at the end of the buffer.
1078 If the buffer is narrowed, this means the end of the narrowed part. */)
1079 (void)
1080 {
1081 if (PT == ZV)
1082 return Qt;
1083 return Qnil;
1084 }
1085
1086 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1087 doc: /* Return t if point is at the beginning of a line. */)
1088 (void)
1089 {
1090 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1091 return Qt;
1092 return Qnil;
1093 }
1094
1095 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1096 doc: /* Return t if point is at the end of a line.
1097 `End of a line' includes point being at the end of the buffer. */)
1098 (void)
1099 {
1100 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1101 return Qt;
1102 return Qnil;
1103 }
1104
1105 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1106 doc: /* Return character in current buffer at position POS.
1107 POS is an integer or a marker and defaults to point.
1108 If POS is out of range, the value is nil. */)
1109 (Lisp_Object pos)
1110 {
1111 register ptrdiff_t pos_byte;
1112
1113 if (NILP (pos))
1114 {
1115 pos_byte = PT_BYTE;
1116 XSETFASTINT (pos, PT);
1117 }
1118
1119 if (MARKERP (pos))
1120 {
1121 pos_byte = marker_byte_position (pos);
1122 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1123 return Qnil;
1124 }
1125 else
1126 {
1127 CHECK_NUMBER_COERCE_MARKER (pos);
1128 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1129 return Qnil;
1130
1131 pos_byte = CHAR_TO_BYTE (XINT (pos));
1132 }
1133
1134 return make_number (FETCH_CHAR (pos_byte));
1135 }
1136
1137 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1138 doc: /* Return character in current buffer preceding position POS.
1139 POS is an integer or a marker and defaults to point.
1140 If POS is out of range, the value is nil. */)
1141 (Lisp_Object pos)
1142 {
1143 register Lisp_Object val;
1144 register ptrdiff_t pos_byte;
1145
1146 if (NILP (pos))
1147 {
1148 pos_byte = PT_BYTE;
1149 XSETFASTINT (pos, PT);
1150 }
1151
1152 if (MARKERP (pos))
1153 {
1154 pos_byte = marker_byte_position (pos);
1155
1156 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1157 return Qnil;
1158 }
1159 else
1160 {
1161 CHECK_NUMBER_COERCE_MARKER (pos);
1162
1163 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1164 return Qnil;
1165
1166 pos_byte = CHAR_TO_BYTE (XINT (pos));
1167 }
1168
1169 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1170 {
1171 DEC_POS (pos_byte);
1172 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1173 }
1174 else
1175 {
1176 pos_byte--;
1177 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1178 }
1179 return val;
1180 }
1181 \f
1182 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1183 doc: /* Return the name under which the user logged in, as a string.
1184 This is based on the effective uid, not the real uid.
1185 Also, if the environment variables LOGNAME or USER are set,
1186 that determines the value of this function.
1187
1188 If optional argument UID is an integer or a float, return the login name
1189 of the user with that uid, or nil if there is no such user. */)
1190 (Lisp_Object uid)
1191 {
1192 struct passwd *pw;
1193 uid_t id;
1194
1195 /* Set up the user name info if we didn't do it before.
1196 (That can happen if Emacs is dumpable
1197 but you decide to run `temacs -l loadup' and not dump. */
1198 if (NILP (Vuser_login_name))
1199 init_editfns ();
1200
1201 if (NILP (uid))
1202 return Vuser_login_name;
1203
1204 CONS_TO_INTEGER (uid, uid_t, id);
1205 block_input ();
1206 pw = getpwuid (id);
1207 unblock_input ();
1208 return (pw ? build_string (pw->pw_name) : Qnil);
1209 }
1210
1211 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1212 0, 0, 0,
1213 doc: /* Return the name of the user's real uid, as a string.
1214 This ignores the environment variables LOGNAME and USER, so it differs from
1215 `user-login-name' when running under `su'. */)
1216 (void)
1217 {
1218 /* Set up the user name info if we didn't do it before.
1219 (That can happen if Emacs is dumpable
1220 but you decide to run `temacs -l loadup' and not dump. */
1221 if (NILP (Vuser_login_name))
1222 init_editfns ();
1223 return Vuser_real_login_name;
1224 }
1225
1226 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1227 doc: /* Return the effective uid of Emacs.
1228 Value is an integer or a float, depending on the value. */)
1229 (void)
1230 {
1231 uid_t euid = geteuid ();
1232 return make_fixnum_or_float (euid);
1233 }
1234
1235 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1236 doc: /* Return the real uid of Emacs.
1237 Value is an integer or a float, depending on the value. */)
1238 (void)
1239 {
1240 uid_t uid = getuid ();
1241 return make_fixnum_or_float (uid);
1242 }
1243
1244 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1245 doc: /* Return the effective gid of Emacs.
1246 Value is an integer or a float, depending on the value. */)
1247 (void)
1248 {
1249 gid_t egid = getegid ();
1250 return make_fixnum_or_float (egid);
1251 }
1252
1253 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1254 doc: /* Return the real gid of Emacs.
1255 Value is an integer or a float, depending on the value. */)
1256 (void)
1257 {
1258 gid_t gid = getgid ();
1259 return make_fixnum_or_float (gid);
1260 }
1261
1262 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1263 doc: /* Return the full name of the user logged in, as a string.
1264 If the full name corresponding to Emacs's userid is not known,
1265 return "unknown".
1266
1267 If optional argument UID is an integer or float, return the full name
1268 of the user with that uid, or nil if there is no such user.
1269 If UID is a string, return the full name of the user with that login
1270 name, or nil if there is no such user. */)
1271 (Lisp_Object uid)
1272 {
1273 struct passwd *pw;
1274 register char *p, *q;
1275 Lisp_Object full;
1276
1277 if (NILP (uid))
1278 return Vuser_full_name;
1279 else if (NUMBERP (uid))
1280 {
1281 uid_t u;
1282 CONS_TO_INTEGER (uid, uid_t, u);
1283 block_input ();
1284 pw = getpwuid (u);
1285 unblock_input ();
1286 }
1287 else if (STRINGP (uid))
1288 {
1289 block_input ();
1290 pw = getpwnam (SSDATA (uid));
1291 unblock_input ();
1292 }
1293 else
1294 error ("Invalid UID specification");
1295
1296 if (!pw)
1297 return Qnil;
1298
1299 p = USER_FULL_NAME;
1300 /* Chop off everything after the first comma. */
1301 q = strchr (p, ',');
1302 full = make_string (p, q ? q - p : strlen (p));
1303
1304 #ifdef AMPERSAND_FULL_NAME
1305 p = SSDATA (full);
1306 q = strchr (p, '&');
1307 /* Substitute the login name for the &, upcasing the first character. */
1308 if (q)
1309 {
1310 Lisp_Object login = Fuser_login_name (make_number (pw->pw_uid));
1311 USE_SAFE_ALLOCA;
1312 char *r = SAFE_ALLOCA (strlen (p) + SBYTES (login) + 1);
1313 memcpy (r, p, q - p);
1314 char *s = lispstpcpy (&r[q - p], login);
1315 r[q - p] = upcase ((unsigned char) r[q - p]);
1316 strcpy (s, q + 1);
1317 full = build_string (r);
1318 SAFE_FREE ();
1319 }
1320 #endif /* AMPERSAND_FULL_NAME */
1321
1322 return full;
1323 }
1324
1325 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1326 doc: /* Return the host name of the machine you are running on, as a string. */)
1327 (void)
1328 {
1329 if (EQ (Vsystem_name, cached_system_name))
1330 init_and_cache_system_name ();
1331 return Vsystem_name;
1332 }
1333
1334 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1335 doc: /* Return the process ID of Emacs, as a number. */)
1336 (void)
1337 {
1338 pid_t pid = getpid ();
1339 return make_fixnum_or_float (pid);
1340 }
1341
1342 \f
1343
1344 #ifndef TIME_T_MIN
1345 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1346 #endif
1347 #ifndef TIME_T_MAX
1348 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1349 #endif
1350
1351 /* Report that a time value is out of range for Emacs. */
1352 void
1353 time_overflow (void)
1354 {
1355 error ("Specified time is not representable");
1356 }
1357
1358 static void
1359 invalid_time (void)
1360 {
1361 error ("Invalid time specification");
1362 }
1363
1364 /* Check a return value compatible with that of decode_time_components. */
1365 static void
1366 check_time_validity (int validity)
1367 {
1368 if (validity <= 0)
1369 {
1370 if (validity < 0)
1371 time_overflow ();
1372 else
1373 invalid_time ();
1374 }
1375 }
1376
1377 /* A substitute for mktime_z on platforms that lack it. It's not
1378 thread-safe, but should be good enough for Emacs in typical use. */
1379 #ifndef HAVE_TZALLOC
1380 static time_t
1381 mktime_z (timezone_t tz, struct tm *tm)
1382 {
1383 char *oldtz = getenv ("TZ");
1384 USE_SAFE_ALLOCA;
1385 if (oldtz)
1386 {
1387 size_t oldtzsize = strlen (oldtz) + 1;
1388 char *oldtzcopy = SAFE_ALLOCA (oldtzsize);
1389 oldtz = strcpy (oldtzcopy, oldtz);
1390 }
1391 block_input ();
1392 set_time_zone_rule (tz);
1393 time_t t = mktime (tm);
1394 set_time_zone_rule (oldtz);
1395 unblock_input ();
1396 SAFE_FREE ();
1397 return t;
1398 }
1399 #endif
1400
1401 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1402 static EMACS_INT
1403 hi_time (time_t t)
1404 {
1405 time_t hi = t >> LO_TIME_BITS;
1406
1407 /* Check for overflow, helping the compiler for common cases where
1408 no runtime check is needed, and taking care not to convert
1409 negative numbers to unsigned before comparing them. */
1410 if (! ((! TYPE_SIGNED (time_t)
1411 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> LO_TIME_BITS
1412 || MOST_NEGATIVE_FIXNUM <= hi)
1413 && (TIME_T_MAX >> LO_TIME_BITS <= MOST_POSITIVE_FIXNUM
1414 || hi <= MOST_POSITIVE_FIXNUM)))
1415 time_overflow ();
1416
1417 return hi;
1418 }
1419
1420 /* Return the bottom bits of the time T. */
1421 static int
1422 lo_time (time_t t)
1423 {
1424 return t & ((1 << LO_TIME_BITS) - 1);
1425 }
1426
1427 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1428 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1429 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1430 HIGH has the most significant bits of the seconds, while LOW has the
1431 least significant 16 bits. USEC and PSEC are the microsecond and
1432 picosecond counts. */)
1433 (void)
1434 {
1435 return make_lisp_time (current_timespec ());
1436 }
1437
1438 static struct lisp_time
1439 time_add (struct lisp_time ta, struct lisp_time tb)
1440 {
1441 EMACS_INT hi = ta.hi + tb.hi;
1442 int lo = ta.lo + tb.lo;
1443 int us = ta.us + tb.us;
1444 int ps = ta.ps + tb.ps;
1445 us += (1000000 <= ps);
1446 ps -= (1000000 <= ps) * 1000000;
1447 lo += (1000000 <= us);
1448 us -= (1000000 <= us) * 1000000;
1449 hi += (1 << LO_TIME_BITS <= lo);
1450 lo -= (1 << LO_TIME_BITS <= lo) << LO_TIME_BITS;
1451 return (struct lisp_time) { hi, lo, us, ps };
1452 }
1453
1454 static struct lisp_time
1455 time_subtract (struct lisp_time ta, struct lisp_time tb)
1456 {
1457 EMACS_INT hi = ta.hi - tb.hi;
1458 int lo = ta.lo - tb.lo;
1459 int us = ta.us - tb.us;
1460 int ps = ta.ps - tb.ps;
1461 us -= (ps < 0);
1462 ps += (ps < 0) * 1000000;
1463 lo -= (us < 0);
1464 us += (us < 0) * 1000000;
1465 hi -= (lo < 0);
1466 lo += (lo < 0) << LO_TIME_BITS;
1467 return (struct lisp_time) { hi, lo, us, ps };
1468 }
1469
1470 static Lisp_Object
1471 time_arith (Lisp_Object a, Lisp_Object b,
1472 struct lisp_time (*op) (struct lisp_time, struct lisp_time))
1473 {
1474 int alen, blen;
1475 struct lisp_time ta = lisp_time_struct (a, &alen);
1476 struct lisp_time tb = lisp_time_struct (b, &blen);
1477 struct lisp_time t = op (ta, tb);
1478 if (! (MOST_NEGATIVE_FIXNUM <= t.hi && t.hi <= MOST_POSITIVE_FIXNUM))
1479 time_overflow ();
1480 Lisp_Object val = Qnil;
1481
1482 switch (max (alen, blen))
1483 {
1484 default:
1485 val = Fcons (make_number (t.ps), val);
1486 /* Fall through. */
1487 case 3:
1488 val = Fcons (make_number (t.us), val);
1489 /* Fall through. */
1490 case 2:
1491 val = Fcons (make_number (t.lo), val);
1492 val = Fcons (make_number (t.hi), val);
1493 break;
1494 }
1495
1496 return val;
1497 }
1498
1499 DEFUN ("time-add", Ftime_add, Stime_add, 2, 2, 0,
1500 doc: /* Return the sum of two time values A and B, as a time value. */)
1501 (Lisp_Object a, Lisp_Object b)
1502 {
1503 return time_arith (a, b, time_add);
1504 }
1505
1506 DEFUN ("time-subtract", Ftime_subtract, Stime_subtract, 2, 2, 0,
1507 doc: /* Return the difference between two time values A and B, as a time value. */)
1508 (Lisp_Object a, Lisp_Object b)
1509 {
1510 return time_arith (a, b, time_subtract);
1511 }
1512
1513 DEFUN ("time-less-p", Ftime_less_p, Stime_less_p, 2, 2, 0,
1514 doc: /* Return non-nil if time value T1 is earlier than time value T2. */)
1515 (Lisp_Object t1, Lisp_Object t2)
1516 {
1517 int t1len, t2len;
1518 struct lisp_time a = lisp_time_struct (t1, &t1len);
1519 struct lisp_time b = lisp_time_struct (t2, &t2len);
1520 return ((a.hi != b.hi ? a.hi < b.hi
1521 : a.lo != b.lo ? a.lo < b.lo
1522 : a.us != b.us ? a.us < b.us
1523 : a.ps < b.ps)
1524 ? Qt : Qnil);
1525 }
1526
1527
1528 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1529 0, 0, 0,
1530 doc: /* Return the current run time used by Emacs.
1531 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1532 style as (current-time).
1533
1534 On systems that can't determine the run time, `get-internal-run-time'
1535 does the same thing as `current-time'. */)
1536 (void)
1537 {
1538 #ifdef HAVE_GETRUSAGE
1539 struct rusage usage;
1540 time_t secs;
1541 int usecs;
1542
1543 if (getrusage (RUSAGE_SELF, &usage) < 0)
1544 /* This shouldn't happen. What action is appropriate? */
1545 xsignal0 (Qerror);
1546
1547 /* Sum up user time and system time. */
1548 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1549 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1550 if (usecs >= 1000000)
1551 {
1552 usecs -= 1000000;
1553 secs++;
1554 }
1555 return make_lisp_time (make_timespec (secs, usecs * 1000));
1556 #else /* ! HAVE_GETRUSAGE */
1557 #ifdef WINDOWSNT
1558 return w32_get_internal_run_time ();
1559 #else /* ! WINDOWSNT */
1560 return Fcurrent_time ();
1561 #endif /* WINDOWSNT */
1562 #endif /* HAVE_GETRUSAGE */
1563 }
1564 \f
1565
1566 /* Make a Lisp list that represents the Emacs time T. T may be an
1567 invalid time, with a slightly negative tv_nsec value such as
1568 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1569 correspondingly negative picosecond count. */
1570 Lisp_Object
1571 make_lisp_time (struct timespec t)
1572 {
1573 time_t s = t.tv_sec;
1574 int ns = t.tv_nsec;
1575 return list4i (hi_time (s), lo_time (s), ns / 1000, ns % 1000 * 1000);
1576 }
1577
1578 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1579 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1580 Return 2, 3, or 4 to indicate the effective length of SPECIFIED_TIME
1581 if successful, 0 if unsuccessful. */
1582 static int
1583 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1584 Lisp_Object *plow, Lisp_Object *pusec,
1585 Lisp_Object *ppsec)
1586 {
1587 Lisp_Object high = make_number (0);
1588 Lisp_Object low = specified_time;
1589 Lisp_Object usec = make_number (0);
1590 Lisp_Object psec = make_number (0);
1591 int len = 4;
1592
1593 if (CONSP (specified_time))
1594 {
1595 high = XCAR (specified_time);
1596 low = XCDR (specified_time);
1597 if (CONSP (low))
1598 {
1599 Lisp_Object low_tail = XCDR (low);
1600 low = XCAR (low);
1601 if (CONSP (low_tail))
1602 {
1603 usec = XCAR (low_tail);
1604 low_tail = XCDR (low_tail);
1605 if (CONSP (low_tail))
1606 psec = XCAR (low_tail);
1607 else
1608 len = 3;
1609 }
1610 else if (!NILP (low_tail))
1611 {
1612 usec = low_tail;
1613 len = 3;
1614 }
1615 else
1616 len = 2;
1617 }
1618 else
1619 len = 2;
1620
1621 /* When combining components, require LOW to be an integer,
1622 as otherwise it would be a pain to add up times. */
1623 if (! INTEGERP (low))
1624 return 0;
1625 }
1626 else if (INTEGERP (specified_time))
1627 len = 2;
1628
1629 *phigh = high;
1630 *plow = low;
1631 *pusec = usec;
1632 *ppsec = psec;
1633 return len;
1634 }
1635
1636 /* Convert T into an Emacs time *RESULT, truncating toward minus infinity.
1637 Return true if T is in range, false otherwise. */
1638 static bool
1639 decode_float_time (double t, struct lisp_time *result)
1640 {
1641 double lo_multiplier = 1 << LO_TIME_BITS;
1642 double emacs_time_min = MOST_NEGATIVE_FIXNUM * lo_multiplier;
1643 if (! (emacs_time_min <= t && t < -emacs_time_min))
1644 return false;
1645
1646 double small_t = t / lo_multiplier;
1647 EMACS_INT hi = small_t;
1648 double t_sans_hi = t - hi * lo_multiplier;
1649 int lo = t_sans_hi;
1650 long double fracps = (t_sans_hi - lo) * 1e12L;
1651 #ifdef INT_FAST64_MAX
1652 int_fast64_t ifracps = fracps;
1653 int us = ifracps / 1000000;
1654 int ps = ifracps % 1000000;
1655 #else
1656 int us = fracps / 1e6L;
1657 int ps = fracps - us * 1e6L;
1658 #endif
1659 us -= (ps < 0);
1660 ps += (ps < 0) * 1000000;
1661 lo -= (us < 0);
1662 us += (us < 0) * 1000000;
1663 hi -= (lo < 0);
1664 lo += (lo < 0) << LO_TIME_BITS;
1665 result->hi = hi;
1666 result->lo = lo;
1667 result->us = us;
1668 result->ps = ps;
1669 return true;
1670 }
1671
1672 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1673 list, generate the corresponding time value.
1674 If LOW is floating point, the other components should be zero.
1675
1676 If RESULT is not null, store into *RESULT the converted time.
1677 If *DRESULT is not null, store into *DRESULT the number of
1678 seconds since the start of the POSIX Epoch.
1679
1680 Return 1 if successful, 0 if the components are of the
1681 wrong type, and -1 if the time is out of range. */
1682 int
1683 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1684 Lisp_Object psec,
1685 struct lisp_time *result, double *dresult)
1686 {
1687 EMACS_INT hi, lo, us, ps;
1688 if (! (INTEGERP (high)
1689 && INTEGERP (usec) && INTEGERP (psec)))
1690 return 0;
1691 if (! INTEGERP (low))
1692 {
1693 if (FLOATP (low))
1694 {
1695 double t = XFLOAT_DATA (low);
1696 if (result && ! decode_float_time (t, result))
1697 return -1;
1698 if (dresult)
1699 *dresult = t;
1700 return 1;
1701 }
1702 else if (NILP (low))
1703 {
1704 struct timespec now = current_timespec ();
1705 if (result)
1706 {
1707 result->hi = hi_time (now.tv_sec);
1708 result->lo = lo_time (now.tv_sec);
1709 result->us = now.tv_nsec / 1000;
1710 result->ps = now.tv_nsec % 1000 * 1000;
1711 }
1712 if (dresult)
1713 *dresult = now.tv_sec + now.tv_nsec / 1e9;
1714 return 1;
1715 }
1716 else
1717 return 0;
1718 }
1719
1720 hi = XINT (high);
1721 lo = XINT (low);
1722 us = XINT (usec);
1723 ps = XINT (psec);
1724
1725 /* Normalize out-of-range lower-order components by carrying
1726 each overflow into the next higher-order component. */
1727 us += ps / 1000000 - (ps % 1000000 < 0);
1728 lo += us / 1000000 - (us % 1000000 < 0);
1729 hi += lo >> LO_TIME_BITS;
1730 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1731 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1732 lo &= (1 << LO_TIME_BITS) - 1;
1733
1734 if (result)
1735 {
1736 if (! (MOST_NEGATIVE_FIXNUM <= hi && hi <= MOST_POSITIVE_FIXNUM))
1737 return -1;
1738 result->hi = hi;
1739 result->lo = lo;
1740 result->us = us;
1741 result->ps = ps;
1742 }
1743
1744 if (dresult)
1745 {
1746 double dhi = hi;
1747 *dresult = (us * 1e6 + ps) / 1e12 + lo + dhi * (1 << LO_TIME_BITS);
1748 }
1749
1750 return 1;
1751 }
1752
1753 struct timespec
1754 lisp_to_timespec (struct lisp_time t)
1755 {
1756 if (! ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> LO_TIME_BITS <= t.hi : 0 <= t.hi)
1757 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1758 return invalid_timespec ();
1759 time_t s = (t.hi << LO_TIME_BITS) + t.lo;
1760 int ns = t.us * 1000 + t.ps / 1000;
1761 return make_timespec (s, ns);
1762 }
1763
1764 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1765 Store its effective length into *PLEN.
1766 If SPECIFIED_TIME is nil, use the current time.
1767 Signal an error if SPECIFIED_TIME does not represent a time. */
1768 static struct lisp_time
1769 lisp_time_struct (Lisp_Object specified_time, int *plen)
1770 {
1771 Lisp_Object high, low, usec, psec;
1772 struct lisp_time t;
1773 int len = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1774 int val = len ? decode_time_components (high, low, usec, psec, &t, 0) : 0;
1775 check_time_validity (val);
1776 *plen = len;
1777 return t;
1778 }
1779
1780 /* Like lisp_time_struct, except return a struct timespec.
1781 Discard any low-order digits. */
1782 struct timespec
1783 lisp_time_argument (Lisp_Object specified_time)
1784 {
1785 int len;
1786 struct lisp_time lt = lisp_time_struct (specified_time, &len);
1787 struct timespec t = lisp_to_timespec (lt);
1788 if (! timespec_valid_p (t))
1789 time_overflow ();
1790 return t;
1791 }
1792
1793 /* Like lisp_time_argument, except decode only the seconds part,
1794 and do not check the subseconds part. */
1795 static time_t
1796 lisp_seconds_argument (Lisp_Object specified_time)
1797 {
1798 Lisp_Object high, low, usec, psec;
1799 struct lisp_time t;
1800
1801 int val = disassemble_lisp_time (specified_time, &high, &low, &usec, &psec);
1802 if (val != 0)
1803 {
1804 val = decode_time_components (high, low, make_number (0),
1805 make_number (0), &t, 0);
1806 if (0 < val
1807 && ! ((TYPE_SIGNED (time_t)
1808 ? TIME_T_MIN >> LO_TIME_BITS <= t.hi
1809 : 0 <= t.hi)
1810 && t.hi <= TIME_T_MAX >> LO_TIME_BITS))
1811 val = -1;
1812 }
1813 check_time_validity (val);
1814 return (t.hi << LO_TIME_BITS) + t.lo;
1815 }
1816
1817 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1818 doc: /* Return the current time, as a float number of seconds since the epoch.
1819 If SPECIFIED-TIME is given, it is the time to convert to float
1820 instead of the current time. The argument should have the form
1821 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1822 you can use times from `current-time' and from `file-attributes'.
1823 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1824 considered obsolete.
1825
1826 WARNING: Since the result is floating point, it may not be exact.
1827 If precise time stamps are required, use either `current-time',
1828 or (if you need time as a string) `format-time-string'. */)
1829 (Lisp_Object specified_time)
1830 {
1831 double t;
1832 Lisp_Object high, low, usec, psec;
1833 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1834 && decode_time_components (high, low, usec, psec, 0, &t)))
1835 invalid_time ();
1836 return make_float (t);
1837 }
1838
1839 /* Write information into buffer S of size MAXSIZE, according to the
1840 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1841 Default to Universal Time if UT, local time otherwise.
1842 Use NS as the number of nanoseconds in the %N directive.
1843 Return the number of bytes written, not including the terminating
1844 '\0'. If S is NULL, nothing will be written anywhere; so to
1845 determine how many bytes would be written, use NULL for S and
1846 ((size_t) -1) for MAXSIZE.
1847
1848 This function behaves like nstrftime, except it allows null
1849 bytes in FORMAT and it does not support nanoseconds. */
1850 static size_t
1851 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1852 size_t format_len, const struct tm *tp, bool ut, int ns)
1853 {
1854 size_t total = 0;
1855
1856 /* Loop through all the null-terminated strings in the format
1857 argument. Normally there's just one null-terminated string, but
1858 there can be arbitrarily many, concatenated together, if the
1859 format contains '\0' bytes. nstrftime stops at the first
1860 '\0' byte so we must invoke it separately for each such string. */
1861 for (;;)
1862 {
1863 size_t len;
1864 size_t result;
1865
1866 if (s)
1867 s[0] = '\1';
1868
1869 result = nstrftime (s, maxsize, format, tp, ut, ns);
1870
1871 if (s)
1872 {
1873 if (result == 0 && s[0] != '\0')
1874 return 0;
1875 s += result + 1;
1876 }
1877
1878 maxsize -= result + 1;
1879 total += result;
1880 len = strlen (format);
1881 if (len == format_len)
1882 return total;
1883 total++;
1884 format += len + 1;
1885 format_len -= len + 1;
1886 }
1887 }
1888
1889 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1890 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1891 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1892 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1893 is also still accepted.
1894 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1895 as Universal Time; nil means describe TIME in the local time zone.
1896 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1897 by text that describes the specified date and time in TIME:
1898
1899 %Y is the year, %y within the century, %C the century.
1900 %G is the year corresponding to the ISO week, %g within the century.
1901 %m is the numeric month.
1902 %b and %h are the locale's abbreviated month name, %B the full name.
1903 (%h is not supported on MS-Windows.)
1904 %d is the day of the month, zero-padded, %e is blank-padded.
1905 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1906 %a is the locale's abbreviated name of the day of week, %A the full name.
1907 %U is the week number starting on Sunday, %W starting on Monday,
1908 %V according to ISO 8601.
1909 %j is the day of the year.
1910
1911 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1912 only blank-padded, %l is like %I blank-padded.
1913 %p is the locale's equivalent of either AM or PM.
1914 %M is the minute.
1915 %S is the second.
1916 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1917 %Z is the time zone name, %z is the numeric form.
1918 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1919
1920 %c is the locale's date and time format.
1921 %x is the locale's "preferred" date format.
1922 %D is like "%m/%d/%y".
1923 %F is the ISO 8601 date format (like "%Y-%m-%d").
1924
1925 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1926 %X is the locale's "preferred" time format.
1927
1928 Finally, %n is a newline, %t is a tab, %% is a literal %.
1929
1930 Certain flags and modifiers are available with some format controls.
1931 The flags are `_', `-', `^' and `#'. For certain characters X,
1932 %_X is like %X, but padded with blanks; %-X is like %X,
1933 but without padding. %^X is like %X, but with all textual
1934 characters up-cased; %#X is like %X, but with letter-case of
1935 all textual characters reversed.
1936 %NX (where N stands for an integer) is like %X,
1937 but takes up at least N (a number) positions.
1938 The modifiers are `E' and `O'. For certain characters X,
1939 %EX is a locale's alternative version of %X;
1940 %OX is like %X, but uses the locale's number symbols.
1941
1942 For example, to produce full ISO 8601 format, use "%FT%T%z".
1943
1944 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1945 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1946 {
1947 struct timespec t = lisp_time_argument (timeval);
1948 struct tm tm;
1949
1950 CHECK_STRING (format_string);
1951 format_string = code_convert_string_norecord (format_string,
1952 Vlocale_coding_system, 1);
1953 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1954 t, ! NILP (universal), &tm);
1955 }
1956
1957 static Lisp_Object
1958 format_time_string (char const *format, ptrdiff_t formatlen,
1959 struct timespec t, bool ut, struct tm *tmp)
1960 {
1961 char buffer[4000];
1962 char *buf = buffer;
1963 ptrdiff_t size = sizeof buffer;
1964 size_t len;
1965 Lisp_Object bufstring;
1966 int ns = t.tv_nsec;
1967 USE_SAFE_ALLOCA;
1968
1969 tmp = ut ? gmtime_r (&t.tv_sec, tmp) : localtime_r (&t.tv_sec, tmp);
1970 if (! tmp)
1971 time_overflow ();
1972 synchronize_system_time_locale ();
1973
1974 while (true)
1975 {
1976 buf[0] = '\1';
1977 len = emacs_nmemftime (buf, size, format, formatlen, tmp, ut, ns);
1978 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1979 break;
1980
1981 /* Buffer was too small, so make it bigger and try again. */
1982 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tmp, ut, ns);
1983 if (STRING_BYTES_BOUND <= len)
1984 string_overflow ();
1985 size = len + 1;
1986 buf = SAFE_ALLOCA (size);
1987 }
1988
1989 bufstring = make_unibyte_string (buf, len);
1990 SAFE_FREE ();
1991 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1992 }
1993
1994 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1995 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1996 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1997 as from `current-time' and `file-attributes', or nil to use the
1998 current time. The obsolete form (HIGH . LOW) is also still accepted.
1999 The list has the following nine members: SEC is an integer between 0
2000 and 60; SEC is 60 for a leap second, which only some operating systems
2001 support. MINUTE is an integer between 0 and 59. HOUR is an integer
2002 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
2003 integer between 1 and 12. YEAR is an integer indicating the
2004 four-digit year. DOW is the day of week, an integer between 0 and 6,
2005 where 0 is Sunday. DST is t if daylight saving time is in effect,
2006 otherwise nil. ZONE is an integer indicating the number of seconds
2007 east of Greenwich. (Note that Common Lisp has different meanings for
2008 DOW and ZONE.) */)
2009 (Lisp_Object specified_time)
2010 {
2011 time_t time_spec = lisp_seconds_argument (specified_time);
2012 struct tm local_tm, gmt_tm;
2013
2014 if (! (localtime_r (&time_spec, &local_tm)
2015 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= local_tm.tm_year
2016 && local_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
2017 time_overflow ();
2018
2019 /* Avoid overflow when INT_MAX < EMACS_INT_MAX. */
2020 EMACS_INT tm_year_base = TM_YEAR_BASE;
2021
2022 return CALLN (Flist,
2023 make_number (local_tm.tm_sec),
2024 make_number (local_tm.tm_min),
2025 make_number (local_tm.tm_hour),
2026 make_number (local_tm.tm_mday),
2027 make_number (local_tm.tm_mon + 1),
2028 make_number (local_tm.tm_year + tm_year_base),
2029 make_number (local_tm.tm_wday),
2030 local_tm.tm_isdst ? Qt : Qnil,
2031 (HAVE_TM_GMTOFF
2032 ? make_number (tm_gmtoff (&local_tm))
2033 : gmtime_r (&time_spec, &gmt_tm)
2034 ? make_number (tm_diff (&local_tm, &gmt_tm))
2035 : Qnil));
2036 }
2037
2038 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
2039 the result is representable as an int. Assume OFFSET is small and
2040 nonnegative. */
2041 static int
2042 check_tm_member (Lisp_Object obj, int offset)
2043 {
2044 EMACS_INT n;
2045 CHECK_NUMBER (obj);
2046 n = XINT (obj);
2047 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
2048 time_overflow ();
2049 return n - offset;
2050 }
2051
2052 /* Decode ZONE as a time zone specification. */
2053
2054 static Lisp_Object
2055 decode_time_zone (Lisp_Object zone)
2056 {
2057 if (EQ (zone, Qt))
2058 return build_string ("UTC0");
2059 else if (STRINGP (zone))
2060 return zone;
2061 else if (INTEGERP (zone))
2062 {
2063 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
2064 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
2065 EMACS_INT abszone = eabs (XINT (zone)), zone_hr = abszone / (60 * 60);
2066 int zone_min = (abszone / 60) % 60, zone_sec = abszone % 60;
2067
2068 return make_formatted_string (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0],
2069 zone_hr, zone_min, zone_sec);
2070 }
2071 else
2072 xsignal2 (Qerror, build_string ("Invalid time zone specification"), zone);
2073 }
2074
2075 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
2076 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
2077 This is the reverse operation of `decode-time', which see.
2078 ZONE defaults to the current time zone rule. This can
2079 be a string or t (as from `set-time-zone-rule'), or it can be a list
2080 \(as from `current-time-zone') or an integer (as from `decode-time')
2081 applied without consideration for daylight saving time.
2082
2083 You can pass more than 7 arguments; then the first six arguments
2084 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
2085 The intervening arguments are ignored.
2086 This feature lets (apply 'encode-time (decode-time ...)) work.
2087
2088 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
2089 for example, a DAY of 0 means the day preceding the given month.
2090 Year numbers less than 100 are treated just like other year numbers.
2091 If you want them to stand for years in this century, you must do that yourself.
2092
2093 Years before 1970 are not guaranteed to work. On some systems,
2094 year values as low as 1901 do work.
2095
2096 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
2097 (ptrdiff_t nargs, Lisp_Object *args)
2098 {
2099 time_t value;
2100 struct tm tm;
2101 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
2102
2103 tm.tm_sec = check_tm_member (args[0], 0);
2104 tm.tm_min = check_tm_member (args[1], 0);
2105 tm.tm_hour = check_tm_member (args[2], 0);
2106 tm.tm_mday = check_tm_member (args[3], 0);
2107 tm.tm_mon = check_tm_member (args[4], 1);
2108 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
2109 tm.tm_isdst = -1;
2110
2111 if (CONSP (zone))
2112 zone = XCAR (zone);
2113 if (NILP (zone))
2114 value = mktime (&tm);
2115 else
2116 {
2117 timezone_t tz = tzalloc (SSDATA (decode_time_zone (zone)));
2118 value = mktime_z (tz, &tm);
2119 tzfree (tz);
2120 }
2121
2122 if (value == (time_t) -1)
2123 time_overflow ();
2124
2125 return list2i (hi_time (value), lo_time (value));
2126 }
2127
2128 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
2129 doc: /* Return the current local time, as a human-readable string.
2130 Programs can use this function to decode a time,
2131 since the number of columns in each field is fixed
2132 if the year is in the range 1000-9999.
2133 The format is `Sun Sep 16 01:03:52 1973'.
2134 However, see also the functions `decode-time' and `format-time-string'
2135 which provide a much more powerful and general facility.
2136
2137 If SPECIFIED-TIME is given, it is a time to format instead of the
2138 current time. The argument should have the form (HIGH LOW . IGNORED).
2139 Thus, you can use times obtained from `current-time' and from
2140 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
2141 but this is considered obsolete. */)
2142 (Lisp_Object specified_time)
2143 {
2144 time_t value = lisp_seconds_argument (specified_time);
2145
2146 /* Convert to a string in ctime format, except without the trailing
2147 newline, and without the 4-digit year limit. Don't use asctime
2148 or ctime, as they might dump core if the year is outside the
2149 range -999 .. 9999. */
2150 struct tm tm;
2151 if (! localtime_r (&value, &tm))
2152 time_overflow ();
2153
2154 static char const wday_name[][4] =
2155 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2156 static char const mon_name[][4] =
2157 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2158 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2159 printmax_t year_base = TM_YEAR_BASE;
2160 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
2161 int len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2162 wday_name[tm.tm_wday], mon_name[tm.tm_mon], tm.tm_mday,
2163 tm.tm_hour, tm.tm_min, tm.tm_sec,
2164 tm.tm_year + year_base);
2165
2166 return make_unibyte_string (buf, len);
2167 }
2168
2169 /* Yield A - B, measured in seconds.
2170 This function is copied from the GNU C Library. */
2171 static int
2172 tm_diff (struct tm *a, struct tm *b)
2173 {
2174 /* Compute intervening leap days correctly even if year is negative.
2175 Take care to avoid int overflow in leap day calculations,
2176 but it's OK to assume that A and B are close to each other. */
2177 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2178 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2179 int a100 = a4 / 25 - (a4 % 25 < 0);
2180 int b100 = b4 / 25 - (b4 % 25 < 0);
2181 int a400 = a100 >> 2;
2182 int b400 = b100 >> 2;
2183 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2184 int years = a->tm_year - b->tm_year;
2185 int days = (365 * years + intervening_leap_days
2186 + (a->tm_yday - b->tm_yday));
2187 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2188 + (a->tm_min - b->tm_min))
2189 + (a->tm_sec - b->tm_sec));
2190 }
2191
2192 /* Yield A's UTC offset, or an unspecified value if unknown. */
2193 static long int
2194 tm_gmtoff (struct tm *a)
2195 {
2196 #if HAVE_TM_GMTOFF
2197 return a->tm_gmtoff;
2198 #else
2199 return 0;
2200 #endif
2201 }
2202
2203 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2204 doc: /* Return the offset and name for the local time zone.
2205 This returns a list of the form (OFFSET NAME).
2206 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2207 A negative value means west of Greenwich.
2208 NAME is a string giving the name of the time zone.
2209 If SPECIFIED-TIME is given, the time zone offset is determined from it
2210 instead of using the current time. The argument should have the form
2211 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2212 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2213 have the form (HIGH . LOW), but this is considered obsolete.
2214
2215 Some operating systems cannot provide all this information to Emacs;
2216 in this case, `current-time-zone' returns a list containing nil for
2217 the data it can't find. */)
2218 (Lisp_Object specified_time)
2219 {
2220 struct timespec value;
2221 struct tm local_tm, gmt_tm;
2222 Lisp_Object zone_offset, zone_name;
2223
2224 zone_offset = Qnil;
2225 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2226 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &local_tm);
2227
2228 if (HAVE_TM_GMTOFF || gmtime_r (&value.tv_sec, &gmt_tm))
2229 {
2230 long int offset = (HAVE_TM_GMTOFF
2231 ? tm_gmtoff (&local_tm)
2232 : tm_diff (&local_tm, &gmt_tm));
2233 zone_offset = make_number (offset);
2234 if (SCHARS (zone_name) == 0)
2235 {
2236 /* No local time zone name is available; use "+-NNNN" instead. */
2237 long int m = offset / 60;
2238 long int am = offset < 0 ? - m : m;
2239 long int hour = am / 60;
2240 int min = am % 60;
2241 char buf[sizeof "+00" + INT_STRLEN_BOUND (long int)];
2242 zone_name = make_formatted_string (buf, "%c%02ld%02d",
2243 (offset < 0 ? '-' : '+'),
2244 hour, min);
2245 }
2246 }
2247
2248 return list2 (zone_offset, zone_name);
2249 }
2250
2251 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2252 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2253 If TZ is nil, use implementation-defined default time zone information.
2254 If TZ is t, use Universal Time. If TZ is an integer, it is treated as in
2255 `encode-time'.
2256
2257 Instead of calling this function, you typically want (setenv "TZ" TZ).
2258 That changes both the environment of the Emacs process and the
2259 variable `process-environment', whereas `set-time-zone-rule' affects
2260 only the former. */)
2261 (Lisp_Object tz)
2262 {
2263 const char *tzstring = NILP (tz) ? initial_tz : SSDATA (decode_time_zone (tz));
2264
2265 block_input ();
2266 set_time_zone_rule (tzstring);
2267 unblock_input ();
2268
2269 return Qnil;
2270 }
2271
2272 /* Set the local time zone rule to TZSTRING.
2273
2274 This function is not thread-safe, in theory because putenv is not,
2275 but mostly because of the static storage it updates. Other threads
2276 that invoke localtime etc. may be adversely affected while this
2277 function is executing. */
2278
2279 static void
2280 set_time_zone_rule (const char *tzstring)
2281 {
2282 /* A buffer holding a string of the form "TZ=value", intended
2283 to be part of the environment. */
2284 static char *tzvalbuf;
2285 static ptrdiff_t tzvalbufsize;
2286
2287 int tzeqlen = sizeof "TZ=" - 1;
2288 ptrdiff_t tzstringlen = tzstring ? strlen (tzstring) : 0;
2289 char *tzval = tzvalbuf;
2290 bool new_tzvalbuf = tzvalbufsize <= tzeqlen + tzstringlen;
2291
2292 if (new_tzvalbuf)
2293 {
2294 /* Do not attempt to free the old tzvalbuf, since another thread
2295 may be using it. In practice, the first allocation is large
2296 enough and memory does not leak. */
2297 tzval = xpalloc (NULL, &tzvalbufsize,
2298 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2299 tzvalbuf = tzval;
2300 tzval[1] = 'Z';
2301 tzval[2] = '=';
2302 }
2303
2304 if (tzstring)
2305 {
2306 /* Modify TZVAL in place. Although this is dicey in a
2307 multithreaded environment, we know of no portable alternative.
2308 Calling putenv or setenv could crash some other thread. */
2309 tzval[0] = 'T';
2310 strcpy (tzval + tzeqlen, tzstring);
2311 }
2312 else
2313 {
2314 /* Turn 'TZ=whatever' into an empty environment variable 'tZ='.
2315 Although this is also dicey, calling unsetenv here can crash Emacs.
2316 See Bug#8705. */
2317 tzval[0] = 't';
2318 tzval[tzeqlen] = 0;
2319 }
2320
2321 if (new_tzvalbuf
2322 #ifdef WINDOWSNT
2323 /* MS-Windows implementation of 'putenv' copies the argument
2324 string into a block it allocates, so modifying tzval string
2325 does not change the environment. OTOH, the other threads run
2326 by Emacs on MS-Windows never call 'xputenv' or 'putenv' or
2327 'unsetenv', so the original cause for the dicey in-place
2328 modification technique doesn't exist there in the first
2329 place. */
2330 || 1
2331 #endif
2332 )
2333 {
2334 /* Although this is not thread-safe, in practice this runs only
2335 on startup when there is only one thread. */
2336 xputenv (tzval);
2337 }
2338
2339 #ifdef HAVE_TZSET
2340 tzset ();
2341 #endif
2342 }
2343 \f
2344 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2345 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2346 type of object is Lisp_String). INHERIT is passed to
2347 INSERT_FROM_STRING_FUNC as the last argument. */
2348
2349 static void
2350 general_insert_function (void (*insert_func)
2351 (const char *, ptrdiff_t),
2352 void (*insert_from_string_func)
2353 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2354 ptrdiff_t, ptrdiff_t, bool),
2355 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2356 {
2357 ptrdiff_t argnum;
2358 Lisp_Object val;
2359
2360 for (argnum = 0; argnum < nargs; argnum++)
2361 {
2362 val = args[argnum];
2363 if (CHARACTERP (val))
2364 {
2365 int c = XFASTINT (val);
2366 unsigned char str[MAX_MULTIBYTE_LENGTH];
2367 int len;
2368
2369 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2370 len = CHAR_STRING (c, str);
2371 else
2372 {
2373 str[0] = CHAR_TO_BYTE8 (c);
2374 len = 1;
2375 }
2376 (*insert_func) ((char *) str, len);
2377 }
2378 else if (STRINGP (val))
2379 {
2380 (*insert_from_string_func) (val, 0, 0,
2381 SCHARS (val),
2382 SBYTES (val),
2383 inherit);
2384 }
2385 else
2386 wrong_type_argument (Qchar_or_string_p, val);
2387 }
2388 }
2389
2390 void
2391 insert1 (Lisp_Object arg)
2392 {
2393 Finsert (1, &arg);
2394 }
2395
2396
2397 /* Callers passing one argument to Finsert need not gcpro the
2398 argument "array", since the only element of the array will
2399 not be used after calling insert or insert_from_string, so
2400 we don't care if it gets trashed. */
2401
2402 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2403 doc: /* Insert the arguments, either strings or characters, at point.
2404 Point and before-insertion markers move forward to end up
2405 after the inserted text.
2406 Any other markers at the point of insertion remain before the text.
2407
2408 If the current buffer is multibyte, unibyte strings are converted
2409 to multibyte for insertion (see `string-make-multibyte').
2410 If the current buffer is unibyte, multibyte strings are converted
2411 to unibyte for insertion (see `string-make-unibyte').
2412
2413 When operating on binary data, it may be necessary to preserve the
2414 original bytes of a unibyte string when inserting it into a multibyte
2415 buffer; to accomplish this, apply `string-as-multibyte' to the string
2416 and insert the result.
2417
2418 usage: (insert &rest ARGS) */)
2419 (ptrdiff_t nargs, Lisp_Object *args)
2420 {
2421 general_insert_function (insert, insert_from_string, 0, nargs, args);
2422 return Qnil;
2423 }
2424
2425 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2426 0, MANY, 0,
2427 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2428 Point and before-insertion markers move forward to end up
2429 after the inserted text.
2430 Any other markers at the point of insertion remain before the text.
2431
2432 If the current buffer is multibyte, unibyte strings are converted
2433 to multibyte for insertion (see `unibyte-char-to-multibyte').
2434 If the current buffer is unibyte, multibyte strings are converted
2435 to unibyte for insertion.
2436
2437 usage: (insert-and-inherit &rest ARGS) */)
2438 (ptrdiff_t nargs, Lisp_Object *args)
2439 {
2440 general_insert_function (insert_and_inherit, insert_from_string, 1,
2441 nargs, args);
2442 return Qnil;
2443 }
2444
2445 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2446 doc: /* Insert strings or characters at point, relocating markers after the text.
2447 Point and markers move forward to end up after the inserted text.
2448
2449 If the current buffer is multibyte, unibyte strings are converted
2450 to multibyte for insertion (see `unibyte-char-to-multibyte').
2451 If the current buffer is unibyte, multibyte strings are converted
2452 to unibyte for insertion.
2453
2454 If an overlay begins at the insertion point, the inserted text falls
2455 outside the overlay; if a nonempty overlay ends at the insertion
2456 point, the inserted text falls inside that overlay.
2457
2458 usage: (insert-before-markers &rest ARGS) */)
2459 (ptrdiff_t nargs, Lisp_Object *args)
2460 {
2461 general_insert_function (insert_before_markers,
2462 insert_from_string_before_markers, 0,
2463 nargs, args);
2464 return Qnil;
2465 }
2466
2467 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2468 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2469 doc: /* Insert text at point, relocating markers and inheriting properties.
2470 Point and markers move forward to end up after the inserted text.
2471
2472 If the current buffer is multibyte, unibyte strings are converted
2473 to multibyte for insertion (see `unibyte-char-to-multibyte').
2474 If the current buffer is unibyte, multibyte strings are converted
2475 to unibyte for insertion.
2476
2477 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2478 (ptrdiff_t nargs, Lisp_Object *args)
2479 {
2480 general_insert_function (insert_before_markers_and_inherit,
2481 insert_from_string_before_markers, 1,
2482 nargs, args);
2483 return Qnil;
2484 }
2485 \f
2486 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2487 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2488 (prefix-numeric-value current-prefix-arg)\
2489 t))",
2490 doc: /* Insert COUNT copies of CHARACTER.
2491 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2492 of these ways:
2493
2494 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2495 Completion is available; if you type a substring of the name
2496 preceded by an asterisk `*', Emacs shows all names which include
2497 that substring, not necessarily at the beginning of the name.
2498
2499 - As a hexadecimal code point, e.g. 263A. Note that code points in
2500 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2501 the Unicode code space).
2502
2503 - As a code point with a radix specified with #, e.g. #o21430
2504 (octal), #x2318 (hex), or #10r8984 (decimal).
2505
2506 If called interactively, COUNT is given by the prefix argument. If
2507 omitted or nil, it defaults to 1.
2508
2509 Inserting the character(s) relocates point and before-insertion
2510 markers in the same ways as the function `insert'.
2511
2512 The optional third argument INHERIT, if non-nil, says to inherit text
2513 properties from adjoining text, if those properties are sticky. If
2514 called interactively, INHERIT is t. */)
2515 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2516 {
2517 int i, stringlen;
2518 register ptrdiff_t n;
2519 int c, len;
2520 unsigned char str[MAX_MULTIBYTE_LENGTH];
2521 char string[4000];
2522
2523 CHECK_CHARACTER (character);
2524 if (NILP (count))
2525 XSETFASTINT (count, 1);
2526 CHECK_NUMBER (count);
2527 c = XFASTINT (character);
2528
2529 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2530 len = CHAR_STRING (c, str);
2531 else
2532 str[0] = c, len = 1;
2533 if (XINT (count) <= 0)
2534 return Qnil;
2535 if (BUF_BYTES_MAX / len < XINT (count))
2536 buffer_overflow ();
2537 n = XINT (count) * len;
2538 stringlen = min (n, sizeof string - sizeof string % len);
2539 for (i = 0; i < stringlen; i++)
2540 string[i] = str[i % len];
2541 while (n > stringlen)
2542 {
2543 QUIT;
2544 if (!NILP (inherit))
2545 insert_and_inherit (string, stringlen);
2546 else
2547 insert (string, stringlen);
2548 n -= stringlen;
2549 }
2550 if (!NILP (inherit))
2551 insert_and_inherit (string, n);
2552 else
2553 insert (string, n);
2554 return Qnil;
2555 }
2556
2557 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2558 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2559 Both arguments are required.
2560 BYTE is a number of the range 0..255.
2561
2562 If BYTE is 128..255 and the current buffer is multibyte, the
2563 corresponding eight-bit character is inserted.
2564
2565 Point, and before-insertion markers, are relocated as in the function `insert'.
2566 The optional third arg INHERIT, if non-nil, says to inherit text properties
2567 from adjoining text, if those properties are sticky. */)
2568 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2569 {
2570 CHECK_NUMBER (byte);
2571 if (XINT (byte) < 0 || XINT (byte) > 255)
2572 args_out_of_range_3 (byte, make_number (0), make_number (255));
2573 if (XINT (byte) >= 128
2574 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2575 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2576 return Finsert_char (byte, count, inherit);
2577 }
2578
2579 \f
2580 /* Making strings from buffer contents. */
2581
2582 /* Return a Lisp_String containing the text of the current buffer from
2583 START to END. If text properties are in use and the current buffer
2584 has properties in the range specified, the resulting string will also
2585 have them, if PROPS is true.
2586
2587 We don't want to use plain old make_string here, because it calls
2588 make_uninit_string, which can cause the buffer arena to be
2589 compacted. make_string has no way of knowing that the data has
2590 been moved, and thus copies the wrong data into the string. This
2591 doesn't effect most of the other users of make_string, so it should
2592 be left as is. But we should use this function when conjuring
2593 buffer substrings. */
2594
2595 Lisp_Object
2596 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2597 {
2598 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2599 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2600
2601 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2602 }
2603
2604 /* Return a Lisp_String containing the text of the current buffer from
2605 START / START_BYTE to END / END_BYTE.
2606
2607 If text properties are in use and the current buffer
2608 has properties in the range specified, the resulting string will also
2609 have them, if PROPS is true.
2610
2611 We don't want to use plain old make_string here, because it calls
2612 make_uninit_string, which can cause the buffer arena to be
2613 compacted. make_string has no way of knowing that the data has
2614 been moved, and thus copies the wrong data into the string. This
2615 doesn't effect most of the other users of make_string, so it should
2616 be left as is. But we should use this function when conjuring
2617 buffer substrings. */
2618
2619 Lisp_Object
2620 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2621 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2622 {
2623 Lisp_Object result, tem, tem1;
2624 ptrdiff_t beg0, end0, beg1, end1, size;
2625
2626 if (start_byte < GPT_BYTE && GPT_BYTE < end_byte)
2627 {
2628 /* Two regions, before and after the gap. */
2629 beg0 = start_byte;
2630 end0 = GPT_BYTE;
2631 beg1 = GPT_BYTE + GAP_SIZE - BEG_BYTE;
2632 end1 = end_byte + GAP_SIZE - BEG_BYTE;
2633 }
2634 else
2635 {
2636 /* The only region. */
2637 beg0 = start_byte;
2638 end0 = end_byte;
2639 beg1 = -1;
2640 end1 = -1;
2641 }
2642
2643 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2644 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2645 else
2646 result = make_uninit_string (end - start);
2647
2648 size = end0 - beg0;
2649 memcpy (SDATA (result), BYTE_POS_ADDR (beg0), size);
2650 if (beg1 != -1)
2651 memcpy (SDATA (result) + size, BEG_ADDR + beg1, end1 - beg1);
2652
2653 /* If desired, update and copy the text properties. */
2654 if (props)
2655 {
2656 update_buffer_properties (start, end);
2657
2658 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2659 tem1 = Ftext_properties_at (make_number (start), Qnil);
2660
2661 if (XINT (tem) != end || !NILP (tem1))
2662 copy_intervals_to_string (result, current_buffer, start,
2663 end - start);
2664 }
2665
2666 return result;
2667 }
2668
2669 /* Call Vbuffer_access_fontify_functions for the range START ... END
2670 in the current buffer, if necessary. */
2671
2672 static void
2673 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2674 {
2675 /* If this buffer has some access functions,
2676 call them, specifying the range of the buffer being accessed. */
2677 if (!NILP (Vbuffer_access_fontify_functions))
2678 {
2679 /* But don't call them if we can tell that the work
2680 has already been done. */
2681 if (!NILP (Vbuffer_access_fontified_property))
2682 {
2683 Lisp_Object tem
2684 = Ftext_property_any (make_number (start), make_number (end),
2685 Vbuffer_access_fontified_property,
2686 Qnil, Qnil);
2687 if (NILP (tem))
2688 return;
2689 }
2690
2691 CALLN (Frun_hook_with_args, Qbuffer_access_fontify_functions,
2692 make_number (start), make_number (end));
2693 }
2694 }
2695
2696 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2697 doc: /* Return the contents of part of the current buffer as a string.
2698 The two arguments START and END are character positions;
2699 they can be in either order.
2700 The string returned is multibyte if the buffer is multibyte.
2701
2702 This function copies the text properties of that part of the buffer
2703 into the result string; if you don't want the text properties,
2704 use `buffer-substring-no-properties' instead. */)
2705 (Lisp_Object start, Lisp_Object end)
2706 {
2707 register ptrdiff_t b, e;
2708
2709 validate_region (&start, &end);
2710 b = XINT (start);
2711 e = XINT (end);
2712
2713 return make_buffer_string (b, e, 1);
2714 }
2715
2716 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2717 Sbuffer_substring_no_properties, 2, 2, 0,
2718 doc: /* Return the characters of part of the buffer, without the text properties.
2719 The two arguments START and END are character positions;
2720 they can be in either order. */)
2721 (Lisp_Object start, Lisp_Object end)
2722 {
2723 register ptrdiff_t b, e;
2724
2725 validate_region (&start, &end);
2726 b = XINT (start);
2727 e = XINT (end);
2728
2729 return make_buffer_string (b, e, 0);
2730 }
2731
2732 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2733 doc: /* Return the contents of the current buffer as a string.
2734 If narrowing is in effect, this function returns only the visible part
2735 of the buffer. */)
2736 (void)
2737 {
2738 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2739 }
2740
2741 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2742 1, 3, 0,
2743 doc: /* Insert before point a substring of the contents of BUFFER.
2744 BUFFER may be a buffer or a buffer name.
2745 Arguments START and END are character positions specifying the substring.
2746 They default to the values of (point-min) and (point-max) in BUFFER.
2747
2748 Point and before-insertion markers move forward to end up after the
2749 inserted text.
2750 Any other markers at the point of insertion remain before the text.
2751
2752 If the current buffer is multibyte and BUFFER is unibyte, or vice
2753 versa, strings are converted from unibyte to multibyte or vice versa
2754 using `string-make-multibyte' or `string-make-unibyte', which see. */)
2755 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2756 {
2757 register EMACS_INT b, e, temp;
2758 register struct buffer *bp, *obuf;
2759 Lisp_Object buf;
2760
2761 buf = Fget_buffer (buffer);
2762 if (NILP (buf))
2763 nsberror (buffer);
2764 bp = XBUFFER (buf);
2765 if (!BUFFER_LIVE_P (bp))
2766 error ("Selecting deleted buffer");
2767
2768 if (NILP (start))
2769 b = BUF_BEGV (bp);
2770 else
2771 {
2772 CHECK_NUMBER_COERCE_MARKER (start);
2773 b = XINT (start);
2774 }
2775 if (NILP (end))
2776 e = BUF_ZV (bp);
2777 else
2778 {
2779 CHECK_NUMBER_COERCE_MARKER (end);
2780 e = XINT (end);
2781 }
2782
2783 if (b > e)
2784 temp = b, b = e, e = temp;
2785
2786 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2787 args_out_of_range (start, end);
2788
2789 obuf = current_buffer;
2790 set_buffer_internal_1 (bp);
2791 update_buffer_properties (b, e);
2792 set_buffer_internal_1 (obuf);
2793
2794 insert_from_buffer (bp, b, e - b, 0);
2795 return Qnil;
2796 }
2797
2798 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2799 6, 6, 0,
2800 doc: /* Compare two substrings of two buffers; return result as number.
2801 Return -N if first string is less after N-1 chars, +N if first string is
2802 greater after N-1 chars, or 0 if strings match. Each substring is
2803 represented as three arguments: BUFFER, START and END. That makes six
2804 args in all, three for each substring.
2805
2806 The value of `case-fold-search' in the current buffer
2807 determines whether case is significant or ignored. */)
2808 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2809 {
2810 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2811 register struct buffer *bp1, *bp2;
2812 register Lisp_Object trt
2813 = (!NILP (BVAR (current_buffer, case_fold_search))
2814 ? BVAR (current_buffer, case_canon_table) : Qnil);
2815 ptrdiff_t chars = 0;
2816 ptrdiff_t i1, i2, i1_byte, i2_byte;
2817
2818 /* Find the first buffer and its substring. */
2819
2820 if (NILP (buffer1))
2821 bp1 = current_buffer;
2822 else
2823 {
2824 Lisp_Object buf1;
2825 buf1 = Fget_buffer (buffer1);
2826 if (NILP (buf1))
2827 nsberror (buffer1);
2828 bp1 = XBUFFER (buf1);
2829 if (!BUFFER_LIVE_P (bp1))
2830 error ("Selecting deleted buffer");
2831 }
2832
2833 if (NILP (start1))
2834 begp1 = BUF_BEGV (bp1);
2835 else
2836 {
2837 CHECK_NUMBER_COERCE_MARKER (start1);
2838 begp1 = XINT (start1);
2839 }
2840 if (NILP (end1))
2841 endp1 = BUF_ZV (bp1);
2842 else
2843 {
2844 CHECK_NUMBER_COERCE_MARKER (end1);
2845 endp1 = XINT (end1);
2846 }
2847
2848 if (begp1 > endp1)
2849 temp = begp1, begp1 = endp1, endp1 = temp;
2850
2851 if (!(BUF_BEGV (bp1) <= begp1
2852 && begp1 <= endp1
2853 && endp1 <= BUF_ZV (bp1)))
2854 args_out_of_range (start1, end1);
2855
2856 /* Likewise for second substring. */
2857
2858 if (NILP (buffer2))
2859 bp2 = current_buffer;
2860 else
2861 {
2862 Lisp_Object buf2;
2863 buf2 = Fget_buffer (buffer2);
2864 if (NILP (buf2))
2865 nsberror (buffer2);
2866 bp2 = XBUFFER (buf2);
2867 if (!BUFFER_LIVE_P (bp2))
2868 error ("Selecting deleted buffer");
2869 }
2870
2871 if (NILP (start2))
2872 begp2 = BUF_BEGV (bp2);
2873 else
2874 {
2875 CHECK_NUMBER_COERCE_MARKER (start2);
2876 begp2 = XINT (start2);
2877 }
2878 if (NILP (end2))
2879 endp2 = BUF_ZV (bp2);
2880 else
2881 {
2882 CHECK_NUMBER_COERCE_MARKER (end2);
2883 endp2 = XINT (end2);
2884 }
2885
2886 if (begp2 > endp2)
2887 temp = begp2, begp2 = endp2, endp2 = temp;
2888
2889 if (!(BUF_BEGV (bp2) <= begp2
2890 && begp2 <= endp2
2891 && endp2 <= BUF_ZV (bp2)))
2892 args_out_of_range (start2, end2);
2893
2894 i1 = begp1;
2895 i2 = begp2;
2896 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2897 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2898
2899 while (i1 < endp1 && i2 < endp2)
2900 {
2901 /* When we find a mismatch, we must compare the
2902 characters, not just the bytes. */
2903 int c1, c2;
2904
2905 QUIT;
2906
2907 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2908 {
2909 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2910 BUF_INC_POS (bp1, i1_byte);
2911 i1++;
2912 }
2913 else
2914 {
2915 c1 = BUF_FETCH_BYTE (bp1, i1);
2916 MAKE_CHAR_MULTIBYTE (c1);
2917 i1++;
2918 }
2919
2920 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2921 {
2922 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2923 BUF_INC_POS (bp2, i2_byte);
2924 i2++;
2925 }
2926 else
2927 {
2928 c2 = BUF_FETCH_BYTE (bp2, i2);
2929 MAKE_CHAR_MULTIBYTE (c2);
2930 i2++;
2931 }
2932
2933 if (!NILP (trt))
2934 {
2935 c1 = char_table_translate (trt, c1);
2936 c2 = char_table_translate (trt, c2);
2937 }
2938 if (c1 < c2)
2939 return make_number (- 1 - chars);
2940 if (c1 > c2)
2941 return make_number (chars + 1);
2942
2943 chars++;
2944 }
2945
2946 /* The strings match as far as they go.
2947 If one is shorter, that one is less. */
2948 if (chars < endp1 - begp1)
2949 return make_number (chars + 1);
2950 else if (chars < endp2 - begp2)
2951 return make_number (- chars - 1);
2952
2953 /* Same length too => they are equal. */
2954 return make_number (0);
2955 }
2956 \f
2957 static void
2958 subst_char_in_region_unwind (Lisp_Object arg)
2959 {
2960 bset_undo_list (current_buffer, arg);
2961 }
2962
2963 static void
2964 subst_char_in_region_unwind_1 (Lisp_Object arg)
2965 {
2966 bset_filename (current_buffer, arg);
2967 }
2968
2969 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2970 Ssubst_char_in_region, 4, 5, 0,
2971 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2972 If optional arg NOUNDO is non-nil, don't record this change for undo
2973 and don't mark the buffer as really changed.
2974 Both characters must have the same length of multi-byte form. */)
2975 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2976 {
2977 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2978 /* Keep track of the first change in the buffer:
2979 if 0 we haven't found it yet.
2980 if < 0 we've found it and we've run the before-change-function.
2981 if > 0 we've actually performed it and the value is its position. */
2982 ptrdiff_t changed = 0;
2983 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2984 unsigned char *p;
2985 ptrdiff_t count = SPECPDL_INDEX ();
2986 #define COMBINING_NO 0
2987 #define COMBINING_BEFORE 1
2988 #define COMBINING_AFTER 2
2989 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2990 int maybe_byte_combining = COMBINING_NO;
2991 ptrdiff_t last_changed = 0;
2992 bool multibyte_p
2993 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2994 int fromc, toc;
2995
2996 restart:
2997
2998 validate_region (&start, &end);
2999 CHECK_CHARACTER (fromchar);
3000 CHECK_CHARACTER (tochar);
3001 fromc = XFASTINT (fromchar);
3002 toc = XFASTINT (tochar);
3003
3004 if (multibyte_p)
3005 {
3006 len = CHAR_STRING (fromc, fromstr);
3007 if (CHAR_STRING (toc, tostr) != len)
3008 error ("Characters in `subst-char-in-region' have different byte-lengths");
3009 if (!ASCII_CHAR_P (*tostr))
3010 {
3011 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
3012 complete multibyte character, it may be combined with the
3013 after bytes. If it is in the range 0xA0..0xFF, it may be
3014 combined with the before and after bytes. */
3015 if (!CHAR_HEAD_P (*tostr))
3016 maybe_byte_combining = COMBINING_BOTH;
3017 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
3018 maybe_byte_combining = COMBINING_AFTER;
3019 }
3020 }
3021 else
3022 {
3023 len = 1;
3024 fromstr[0] = fromc;
3025 tostr[0] = toc;
3026 }
3027
3028 pos = XINT (start);
3029 pos_byte = CHAR_TO_BYTE (pos);
3030 stop = CHAR_TO_BYTE (XINT (end));
3031 end_byte = stop;
3032
3033 /* If we don't want undo, turn off putting stuff on the list.
3034 That's faster than getting rid of things,
3035 and it prevents even the entry for a first change.
3036 Also inhibit locking the file. */
3037 if (!changed && !NILP (noundo))
3038 {
3039 record_unwind_protect (subst_char_in_region_unwind,
3040 BVAR (current_buffer, undo_list));
3041 bset_undo_list (current_buffer, Qt);
3042 /* Don't do file-locking. */
3043 record_unwind_protect (subst_char_in_region_unwind_1,
3044 BVAR (current_buffer, filename));
3045 bset_filename (current_buffer, Qnil);
3046 }
3047
3048 if (pos_byte < GPT_BYTE)
3049 stop = min (stop, GPT_BYTE);
3050 while (1)
3051 {
3052 ptrdiff_t pos_byte_next = pos_byte;
3053
3054 if (pos_byte >= stop)
3055 {
3056 if (pos_byte >= end_byte) break;
3057 stop = end_byte;
3058 }
3059 p = BYTE_POS_ADDR (pos_byte);
3060 if (multibyte_p)
3061 INC_POS (pos_byte_next);
3062 else
3063 ++pos_byte_next;
3064 if (pos_byte_next - pos_byte == len
3065 && p[0] == fromstr[0]
3066 && (len == 1
3067 || (p[1] == fromstr[1]
3068 && (len == 2 || (p[2] == fromstr[2]
3069 && (len == 3 || p[3] == fromstr[3]))))))
3070 {
3071 if (changed < 0)
3072 /* We've already seen this and run the before-change-function;
3073 this time we only need to record the actual position. */
3074 changed = pos;
3075 else if (!changed)
3076 {
3077 changed = -1;
3078 modify_text (pos, XINT (end));
3079
3080 if (! NILP (noundo))
3081 {
3082 if (MODIFF - 1 == SAVE_MODIFF)
3083 SAVE_MODIFF++;
3084 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
3085 BUF_AUTOSAVE_MODIFF (current_buffer)++;
3086 }
3087
3088 /* The before-change-function may have moved the gap
3089 or even modified the buffer so we should start over. */
3090 goto restart;
3091 }
3092
3093 /* Take care of the case where the new character
3094 combines with neighboring bytes. */
3095 if (maybe_byte_combining
3096 && (maybe_byte_combining == COMBINING_AFTER
3097 ? (pos_byte_next < Z_BYTE
3098 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3099 : ((pos_byte_next < Z_BYTE
3100 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
3101 || (pos_byte > BEG_BYTE
3102 && ! ASCII_CHAR_P (FETCH_BYTE (pos_byte - 1))))))
3103 {
3104 Lisp_Object tem, string;
3105
3106 struct gcpro gcpro1;
3107
3108 tem = BVAR (current_buffer, undo_list);
3109 GCPRO1 (tem);
3110
3111 /* Make a multibyte string containing this single character. */
3112 string = make_multibyte_string ((char *) tostr, 1, len);
3113 /* replace_range is less efficient, because it moves the gap,
3114 but it handles combining correctly. */
3115 replace_range (pos, pos + 1, string,
3116 0, 0, 1);
3117 pos_byte_next = CHAR_TO_BYTE (pos);
3118 if (pos_byte_next > pos_byte)
3119 /* Before combining happened. We should not increment
3120 POS. So, to cancel the later increment of POS,
3121 decrease it now. */
3122 pos--;
3123 else
3124 INC_POS (pos_byte_next);
3125
3126 if (! NILP (noundo))
3127 bset_undo_list (current_buffer, tem);
3128
3129 UNGCPRO;
3130 }
3131 else
3132 {
3133 if (NILP (noundo))
3134 record_change (pos, 1);
3135 for (i = 0; i < len; i++) *p++ = tostr[i];
3136 }
3137 last_changed = pos + 1;
3138 }
3139 pos_byte = pos_byte_next;
3140 pos++;
3141 }
3142
3143 if (changed > 0)
3144 {
3145 signal_after_change (changed,
3146 last_changed - changed, last_changed - changed);
3147 update_compositions (changed, last_changed, CHECK_ALL);
3148 }
3149
3150 unbind_to (count, Qnil);
3151 return Qnil;
3152 }
3153
3154
3155 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3156 Lisp_Object);
3157
3158 /* Helper function for Ftranslate_region_internal.
3159
3160 Check if a character sequence at POS (POS_BYTE) matches an element
3161 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3162 element is found, return it. Otherwise return Qnil. */
3163
3164 static Lisp_Object
3165 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3166 Lisp_Object val)
3167 {
3168 int initial_buf[16];
3169 int *buf = initial_buf;
3170 ptrdiff_t buf_size = ARRAYELTS (initial_buf);
3171 int *bufalloc = 0;
3172 ptrdiff_t buf_used = 0;
3173 Lisp_Object result = Qnil;
3174
3175 for (; CONSP (val); val = XCDR (val))
3176 {
3177 Lisp_Object elt;
3178 ptrdiff_t len, i;
3179
3180 elt = XCAR (val);
3181 if (! CONSP (elt))
3182 continue;
3183 elt = XCAR (elt);
3184 if (! VECTORP (elt))
3185 continue;
3186 len = ASIZE (elt);
3187 if (len <= end - pos)
3188 {
3189 for (i = 0; i < len; i++)
3190 {
3191 if (buf_used <= i)
3192 {
3193 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3194 int len1;
3195
3196 if (buf_used == buf_size)
3197 {
3198 bufalloc = xpalloc (bufalloc, &buf_size, 1, -1,
3199 sizeof *bufalloc);
3200 if (buf == initial_buf)
3201 memcpy (bufalloc, buf, sizeof initial_buf);
3202 buf = bufalloc;
3203 }
3204 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3205 pos_byte += len1;
3206 }
3207 if (XINT (AREF (elt, i)) != buf[i])
3208 break;
3209 }
3210 if (i == len)
3211 {
3212 result = XCAR (val);
3213 break;
3214 }
3215 }
3216 }
3217
3218 xfree (bufalloc);
3219 return result;
3220 }
3221
3222
3223 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3224 Stranslate_region_internal, 3, 3, 0,
3225 doc: /* Internal use only.
3226 From START to END, translate characters according to TABLE.
3227 TABLE is a string or a char-table; the Nth character in it is the
3228 mapping for the character with code N.
3229 It returns the number of characters changed. */)
3230 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3231 {
3232 register unsigned char *tt; /* Trans table. */
3233 register int nc; /* New character. */
3234 int cnt; /* Number of changes made. */
3235 ptrdiff_t size; /* Size of translate table. */
3236 ptrdiff_t pos, pos_byte, end_pos;
3237 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3238 bool string_multibyte IF_LINT (= 0);
3239
3240 validate_region (&start, &end);
3241 if (CHAR_TABLE_P (table))
3242 {
3243 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3244 error ("Not a translation table");
3245 size = MAX_CHAR;
3246 tt = NULL;
3247 }
3248 else
3249 {
3250 CHECK_STRING (table);
3251
3252 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3253 table = string_make_unibyte (table);
3254 string_multibyte = SCHARS (table) < SBYTES (table);
3255 size = SBYTES (table);
3256 tt = SDATA (table);
3257 }
3258
3259 pos = XINT (start);
3260 pos_byte = CHAR_TO_BYTE (pos);
3261 end_pos = XINT (end);
3262 modify_text (pos, end_pos);
3263
3264 cnt = 0;
3265 for (; pos < end_pos; )
3266 {
3267 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3268 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3269 int len, str_len;
3270 int oc;
3271 Lisp_Object val;
3272
3273 if (multibyte)
3274 oc = STRING_CHAR_AND_LENGTH (p, len);
3275 else
3276 oc = *p, len = 1;
3277 if (oc < size)
3278 {
3279 if (tt)
3280 {
3281 /* Reload as signal_after_change in last iteration may GC. */
3282 tt = SDATA (table);
3283 if (string_multibyte)
3284 {
3285 str = tt + string_char_to_byte (table, oc);
3286 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3287 }
3288 else
3289 {
3290 nc = tt[oc];
3291 if (! ASCII_CHAR_P (nc) && multibyte)
3292 {
3293 str_len = BYTE8_STRING (nc, buf);
3294 str = buf;
3295 }
3296 else
3297 {
3298 str_len = 1;
3299 str = tt + oc;
3300 }
3301 }
3302 }
3303 else
3304 {
3305 nc = oc;
3306 val = CHAR_TABLE_REF (table, oc);
3307 if (CHARACTERP (val))
3308 {
3309 nc = XFASTINT (val);
3310 str_len = CHAR_STRING (nc, buf);
3311 str = buf;
3312 }
3313 else if (VECTORP (val) || (CONSP (val)))
3314 {
3315 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3316 where TO is TO-CHAR or [TO-CHAR ...]. */
3317 nc = -1;
3318 }
3319 }
3320
3321 if (nc != oc && nc >= 0)
3322 {
3323 /* Simple one char to one char translation. */
3324 if (len != str_len)
3325 {
3326 Lisp_Object string;
3327
3328 /* This is less efficient, because it moves the gap,
3329 but it should handle multibyte characters correctly. */
3330 string = make_multibyte_string ((char *) str, 1, str_len);
3331 replace_range (pos, pos + 1, string, 1, 0, 1);
3332 len = str_len;
3333 }
3334 else
3335 {
3336 record_change (pos, 1);
3337 while (str_len-- > 0)
3338 *p++ = *str++;
3339 signal_after_change (pos, 1, 1);
3340 update_compositions (pos, pos + 1, CHECK_BORDER);
3341 }
3342 ++cnt;
3343 }
3344 else if (nc < 0)
3345 {
3346 Lisp_Object string;
3347
3348 if (CONSP (val))
3349 {
3350 val = check_translation (pos, pos_byte, end_pos, val);
3351 if (NILP (val))
3352 {
3353 pos_byte += len;
3354 pos++;
3355 continue;
3356 }
3357 /* VAL is ([FROM-CHAR ...] . TO). */
3358 len = ASIZE (XCAR (val));
3359 val = XCDR (val);
3360 }
3361 else
3362 len = 1;
3363
3364 if (VECTORP (val))
3365 {
3366 string = Fconcat (1, &val);
3367 }
3368 else
3369 {
3370 string = Fmake_string (make_number (1), val);
3371 }
3372 replace_range (pos, pos + len, string, 1, 0, 1);
3373 pos_byte += SBYTES (string);
3374 pos += SCHARS (string);
3375 cnt += SCHARS (string);
3376 end_pos += SCHARS (string) - len;
3377 continue;
3378 }
3379 }
3380 pos_byte += len;
3381 pos++;
3382 }
3383
3384 return make_number (cnt);
3385 }
3386
3387 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3388 doc: /* Delete the text between START and END.
3389 If called interactively, delete the region between point and mark.
3390 This command deletes buffer text without modifying the kill ring. */)
3391 (Lisp_Object start, Lisp_Object end)
3392 {
3393 validate_region (&start, &end);
3394 del_range (XINT (start), XINT (end));
3395 return Qnil;
3396 }
3397
3398 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3399 Sdelete_and_extract_region, 2, 2, 0,
3400 doc: /* Delete the text between START and END and return it. */)
3401 (Lisp_Object start, Lisp_Object end)
3402 {
3403 validate_region (&start, &end);
3404 if (XINT (start) == XINT (end))
3405 return empty_unibyte_string;
3406 return del_range_1 (XINT (start), XINT (end), 1, 1);
3407 }
3408 \f
3409 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3410 doc: /* Remove restrictions (narrowing) from current buffer.
3411 This allows the buffer's full text to be seen and edited. */)
3412 (void)
3413 {
3414 if (BEG != BEGV || Z != ZV)
3415 current_buffer->clip_changed = 1;
3416 BEGV = BEG;
3417 BEGV_BYTE = BEG_BYTE;
3418 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3419 /* Changing the buffer bounds invalidates any recorded current column. */
3420 invalidate_current_column ();
3421 return Qnil;
3422 }
3423
3424 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3425 doc: /* Restrict editing in this buffer to the current region.
3426 The rest of the text becomes temporarily invisible and untouchable
3427 but is not deleted; if you save the buffer in a file, the invisible
3428 text is included in the file. \\[widen] makes all visible again.
3429 See also `save-restriction'.
3430
3431 When calling from a program, pass two arguments; positions (integers
3432 or markers) bounding the text that should remain visible. */)
3433 (register Lisp_Object start, Lisp_Object end)
3434 {
3435 CHECK_NUMBER_COERCE_MARKER (start);
3436 CHECK_NUMBER_COERCE_MARKER (end);
3437
3438 if (XINT (start) > XINT (end))
3439 {
3440 Lisp_Object tem;
3441 tem = start; start = end; end = tem;
3442 }
3443
3444 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3445 args_out_of_range (start, end);
3446
3447 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3448 current_buffer->clip_changed = 1;
3449
3450 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3451 SET_BUF_ZV (current_buffer, XFASTINT (end));
3452 if (PT < XFASTINT (start))
3453 SET_PT (XFASTINT (start));
3454 if (PT > XFASTINT (end))
3455 SET_PT (XFASTINT (end));
3456 /* Changing the buffer bounds invalidates any recorded current column. */
3457 invalidate_current_column ();
3458 return Qnil;
3459 }
3460
3461 Lisp_Object
3462 save_restriction_save (void)
3463 {
3464 if (BEGV == BEG && ZV == Z)
3465 /* The common case that the buffer isn't narrowed.
3466 We return just the buffer object, which save_restriction_restore
3467 recognizes as meaning `no restriction'. */
3468 return Fcurrent_buffer ();
3469 else
3470 /* We have to save a restriction, so return a pair of markers, one
3471 for the beginning and one for the end. */
3472 {
3473 Lisp_Object beg, end;
3474
3475 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3476 end = build_marker (current_buffer, ZV, ZV_BYTE);
3477
3478 /* END must move forward if text is inserted at its exact location. */
3479 XMARKER (end)->insertion_type = 1;
3480
3481 return Fcons (beg, end);
3482 }
3483 }
3484
3485 void
3486 save_restriction_restore (Lisp_Object data)
3487 {
3488 struct buffer *cur = NULL;
3489 struct buffer *buf = (CONSP (data)
3490 ? XMARKER (XCAR (data))->buffer
3491 : XBUFFER (data));
3492
3493 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3494 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3495 is the case if it is or has an indirect buffer), then make
3496 sure it is current before we update BEGV, so
3497 set_buffer_internal takes care of managing those markers. */
3498 cur = current_buffer;
3499 set_buffer_internal (buf);
3500 }
3501
3502 if (CONSP (data))
3503 /* A pair of marks bounding a saved restriction. */
3504 {
3505 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3506 struct Lisp_Marker *end = XMARKER (XCDR (data));
3507 eassert (buf == end->buffer);
3508
3509 if (buf /* Verify marker still points to a buffer. */
3510 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3511 /* The restriction has changed from the saved one, so restore
3512 the saved restriction. */
3513 {
3514 ptrdiff_t pt = BUF_PT (buf);
3515
3516 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3517 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3518
3519 if (pt < beg->charpos || pt > end->charpos)
3520 /* The point is outside the new visible range, move it inside. */
3521 SET_BUF_PT_BOTH (buf,
3522 clip_to_bounds (beg->charpos, pt, end->charpos),
3523 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3524 end->bytepos));
3525
3526 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3527 }
3528 /* These aren't needed anymore, so don't wait for GC. */
3529 free_marker (XCAR (data));
3530 free_marker (XCDR (data));
3531 free_cons (XCONS (data));
3532 }
3533 else
3534 /* A buffer, which means that there was no old restriction. */
3535 {
3536 if (buf /* Verify marker still points to a buffer. */
3537 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3538 /* The buffer has been narrowed, get rid of the narrowing. */
3539 {
3540 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3541 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3542
3543 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3544 }
3545 }
3546
3547 /* Changing the buffer bounds invalidates any recorded current column. */
3548 invalidate_current_column ();
3549
3550 if (cur)
3551 set_buffer_internal (cur);
3552 }
3553
3554 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3555 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3556 The buffer's restrictions make parts of the beginning and end invisible.
3557 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3558 This special form, `save-restriction', saves the current buffer's restrictions
3559 when it is entered, and restores them when it is exited.
3560 So any `narrow-to-region' within BODY lasts only until the end of the form.
3561 The old restrictions settings are restored
3562 even in case of abnormal exit (throw or error).
3563
3564 The value returned is the value of the last form in BODY.
3565
3566 Note: if you are using both `save-excursion' and `save-restriction',
3567 use `save-excursion' outermost:
3568 (save-excursion (save-restriction ...))
3569
3570 usage: (save-restriction &rest BODY) */)
3571 (Lisp_Object body)
3572 {
3573 register Lisp_Object val;
3574 ptrdiff_t count = SPECPDL_INDEX ();
3575
3576 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3577 val = Fprogn (body);
3578 return unbind_to (count, val);
3579 }
3580 \f
3581 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3582 doc: /* Display a message at the bottom of the screen.
3583 The message also goes into the `*Messages*' buffer, if `message-log-max'
3584 is non-nil. (In keyboard macros, that's all it does.)
3585 Return the message.
3586
3587 In batch mode, the message is printed to the standard error stream,
3588 followed by a newline.
3589
3590 The first argument is a format control string, and the rest are data
3591 to be formatted under control of the string. See `format' for details.
3592
3593 Note: Use (message "%s" VALUE) to print the value of expressions and
3594 variables to avoid accidentally interpreting `%' as format specifiers.
3595
3596 If the first argument is nil or the empty string, the function clears
3597 any existing message; this lets the minibuffer contents show. See
3598 also `current-message'.
3599
3600 usage: (message FORMAT-STRING &rest ARGS) */)
3601 (ptrdiff_t nargs, Lisp_Object *args)
3602 {
3603 if (NILP (args[0])
3604 || (STRINGP (args[0])
3605 && SBYTES (args[0]) == 0))
3606 {
3607 message1 (0);
3608 return args[0];
3609 }
3610 else
3611 {
3612 register Lisp_Object val;
3613 val = Fformat (nargs, args);
3614 message3 (val);
3615 return val;
3616 }
3617 }
3618
3619 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3620 doc: /* Display a message, in a dialog box if possible.
3621 If a dialog box is not available, use the echo area.
3622 The first argument is a format control string, and the rest are data
3623 to be formatted under control of the string. See `format' for details.
3624
3625 If the first argument is nil or the empty string, clear any existing
3626 message; let the minibuffer contents show.
3627
3628 usage: (message-box FORMAT-STRING &rest ARGS) */)
3629 (ptrdiff_t nargs, Lisp_Object *args)
3630 {
3631 if (NILP (args[0]))
3632 {
3633 message1 (0);
3634 return Qnil;
3635 }
3636 else
3637 {
3638 Lisp_Object val = Fformat (nargs, args);
3639 Lisp_Object pane, menu;
3640 struct gcpro gcpro1;
3641
3642 pane = list1 (Fcons (build_string ("OK"), Qt));
3643 GCPRO1 (pane);
3644 menu = Fcons (val, pane);
3645 Fx_popup_dialog (Qt, menu, Qt);
3646 UNGCPRO;
3647 return val;
3648 }
3649 }
3650
3651 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3652 doc: /* Display a message in a dialog box or in the echo area.
3653 If this command was invoked with the mouse, use a dialog box if
3654 `use-dialog-box' is non-nil.
3655 Otherwise, use the echo area.
3656 The first argument is a format control string, and the rest are data
3657 to be formatted under control of the string. See `format' for details.
3658
3659 If the first argument is nil or the empty string, clear any existing
3660 message; let the minibuffer contents show.
3661
3662 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3663 (ptrdiff_t nargs, Lisp_Object *args)
3664 {
3665 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3666 && use_dialog_box)
3667 return Fmessage_box (nargs, args);
3668 return Fmessage (nargs, args);
3669 }
3670
3671 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3672 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3673 (void)
3674 {
3675 return current_message ();
3676 }
3677
3678
3679 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3680 doc: /* Return a copy of STRING with text properties added.
3681 First argument is the string to copy.
3682 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3683 properties to add to the result.
3684 usage: (propertize STRING &rest PROPERTIES) */)
3685 (ptrdiff_t nargs, Lisp_Object *args)
3686 {
3687 Lisp_Object properties, string;
3688 struct gcpro gcpro1, gcpro2;
3689 ptrdiff_t i;
3690
3691 /* Number of args must be odd. */
3692 if ((nargs & 1) == 0)
3693 error ("Wrong number of arguments");
3694
3695 properties = string = Qnil;
3696 GCPRO2 (properties, string);
3697
3698 /* First argument must be a string. */
3699 CHECK_STRING (args[0]);
3700 string = Fcopy_sequence (args[0]);
3701
3702 for (i = 1; i < nargs; i += 2)
3703 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3704
3705 Fadd_text_properties (make_number (0),
3706 make_number (SCHARS (string)),
3707 properties, string);
3708 RETURN_UNGCPRO (string);
3709 }
3710
3711 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3712 doc: /* Format a string out of a format-string and arguments.
3713 The first argument is a format control string.
3714 The other arguments are substituted into it to make the result, a string.
3715
3716 The format control string may contain %-sequences meaning to substitute
3717 the next available argument:
3718
3719 %s means print a string argument. Actually, prints any object, with `princ'.
3720 %d means print as number in decimal (%o octal, %x hex).
3721 %X is like %x, but uses upper case.
3722 %e means print a number in exponential notation.
3723 %f means print a number in decimal-point notation.
3724 %g means print a number in exponential notation
3725 or decimal-point notation, whichever uses fewer characters.
3726 %c means print a number as a single character.
3727 %S means print any object as an s-expression (using `prin1').
3728
3729 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3730 Use %% to put a single % into the output.
3731
3732 A %-sequence may contain optional flag, width, and precision
3733 specifiers, as follows:
3734
3735 %<flags><width><precision>character
3736
3737 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3738
3739 The + flag character inserts a + before any positive number, while a
3740 space inserts a space before any positive number; these flags only
3741 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3742 The - and 0 flags affect the width specifier, as described below.
3743
3744 The # flag means to use an alternate display form for %o, %x, %X, %e,
3745 %f, and %g sequences: for %o, it ensures that the result begins with
3746 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3747 for %e, %f, and %g, it causes a decimal point to be included even if
3748 the precision is zero.
3749
3750 The width specifier supplies a lower limit for the length of the
3751 printed representation. The padding, if any, normally goes on the
3752 left, but it goes on the right if the - flag is present. The padding
3753 character is normally a space, but it is 0 if the 0 flag is present.
3754 The 0 flag is ignored if the - flag is present, or the format sequence
3755 is something other than %d, %e, %f, and %g.
3756
3757 For %e, %f, and %g sequences, the number after the "." in the
3758 precision specifier says how many decimal places to show; if zero, the
3759 decimal point itself is omitted. For %s and %S, the precision
3760 specifier truncates the string to the given width.
3761
3762 usage: (format STRING &rest OBJECTS) */)
3763 (ptrdiff_t nargs, Lisp_Object *args)
3764 {
3765 ptrdiff_t n; /* The number of the next arg to substitute. */
3766 char initial_buffer[4000];
3767 char *buf = initial_buffer;
3768 ptrdiff_t bufsize = sizeof initial_buffer;
3769 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3770 char *p;
3771 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3772 char *format, *end, *format_start;
3773 ptrdiff_t formatlen, nchars;
3774 /* True if the format is multibyte. */
3775 bool multibyte_format = 0;
3776 /* True if the output should be a multibyte string,
3777 which is true if any of the inputs is one. */
3778 bool multibyte = 0;
3779 /* When we make a multibyte string, we must pay attention to the
3780 byte combining problem, i.e., a byte may be combined with a
3781 multibyte character of the previous string. This flag tells if we
3782 must consider such a situation or not. */
3783 bool maybe_combine_byte;
3784 Lisp_Object val;
3785 bool arg_intervals = 0;
3786 USE_SAFE_ALLOCA;
3787
3788 /* discarded[I] is 1 if byte I of the format
3789 string was not copied into the output.
3790 It is 2 if byte I was not the first byte of its character. */
3791 char *discarded;
3792
3793 /* Each element records, for one argument,
3794 the start and end bytepos in the output string,
3795 whether the argument has been converted to string (e.g., due to "%S"),
3796 and whether the argument is a string with intervals.
3797 info[0] is unused. Unused elements have -1 for start. */
3798 struct info
3799 {
3800 ptrdiff_t start, end;
3801 bool_bf converted_to_string : 1;
3802 bool_bf intervals : 1;
3803 } *info = 0;
3804
3805 /* It should not be necessary to GCPRO ARGS, because
3806 the caller in the interpreter should take care of that. */
3807
3808 CHECK_STRING (args[0]);
3809 format_start = SSDATA (args[0]);
3810 formatlen = SBYTES (args[0]);
3811
3812 /* Allocate the info and discarded tables. */
3813 {
3814 ptrdiff_t i;
3815 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3816 memory_full (SIZE_MAX);
3817 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3818 discarded = (char *) &info[nargs + 1];
3819 for (i = 0; i < nargs + 1; i++)
3820 {
3821 info[i].start = -1;
3822 info[i].intervals = info[i].converted_to_string = 0;
3823 }
3824 memset (discarded, 0, formatlen);
3825 }
3826
3827 /* Try to determine whether the result should be multibyte.
3828 This is not always right; sometimes the result needs to be multibyte
3829 because of an object that we will pass through prin1,
3830 and in that case, we won't know it here. */
3831 multibyte_format = STRING_MULTIBYTE (args[0]);
3832 multibyte = multibyte_format;
3833 for (n = 1; !multibyte && n < nargs; n++)
3834 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3835 multibyte = 1;
3836
3837 /* If we start out planning a unibyte result,
3838 then discover it has to be multibyte, we jump back to retry. */
3839 retry:
3840
3841 p = buf;
3842 nchars = 0;
3843 n = 0;
3844
3845 /* Scan the format and store result in BUF. */
3846 format = format_start;
3847 end = format + formatlen;
3848 maybe_combine_byte = 0;
3849
3850 while (format != end)
3851 {
3852 /* The values of N and FORMAT when the loop body is entered. */
3853 ptrdiff_t n0 = n;
3854 char *format0 = format;
3855
3856 /* Bytes needed to represent the output of this conversion. */
3857 ptrdiff_t convbytes;
3858
3859 if (*format == '%')
3860 {
3861 /* General format specifications look like
3862
3863 '%' [flags] [field-width] [precision] format
3864
3865 where
3866
3867 flags ::= [-+0# ]+
3868 field-width ::= [0-9]+
3869 precision ::= '.' [0-9]*
3870
3871 If a field-width is specified, it specifies to which width
3872 the output should be padded with blanks, if the output
3873 string is shorter than field-width.
3874
3875 If precision is specified, it specifies the number of
3876 digits to print after the '.' for floats, or the max.
3877 number of chars to print from a string. */
3878
3879 bool minus_flag = 0;
3880 bool plus_flag = 0;
3881 bool space_flag = 0;
3882 bool sharp_flag = 0;
3883 bool zero_flag = 0;
3884 ptrdiff_t field_width;
3885 bool precision_given;
3886 uintmax_t precision = UINTMAX_MAX;
3887 char *num_end;
3888 char conversion;
3889
3890 while (1)
3891 {
3892 switch (*++format)
3893 {
3894 case '-': minus_flag = 1; continue;
3895 case '+': plus_flag = 1; continue;
3896 case ' ': space_flag = 1; continue;
3897 case '#': sharp_flag = 1; continue;
3898 case '0': zero_flag = 1; continue;
3899 }
3900 break;
3901 }
3902
3903 /* Ignore flags when sprintf ignores them. */
3904 space_flag &= ~ plus_flag;
3905 zero_flag &= ~ minus_flag;
3906
3907 {
3908 uintmax_t w = strtoumax (format, &num_end, 10);
3909 if (max_bufsize <= w)
3910 string_overflow ();
3911 field_width = w;
3912 }
3913 precision_given = *num_end == '.';
3914 if (precision_given)
3915 precision = strtoumax (num_end + 1, &num_end, 10);
3916 format = num_end;
3917
3918 if (format == end)
3919 error ("Format string ends in middle of format specifier");
3920
3921 memset (&discarded[format0 - format_start], 1, format - format0);
3922 conversion = *format;
3923 if (conversion == '%')
3924 goto copy_char;
3925 discarded[format - format_start] = 1;
3926 format++;
3927
3928 ++n;
3929 if (! (n < nargs))
3930 error ("Not enough arguments for format string");
3931
3932 /* For 'S', prin1 the argument, and then treat like 's'.
3933 For 's', princ any argument that is not a string or
3934 symbol. But don't do this conversion twice, which might
3935 happen after retrying. */
3936 if ((conversion == 'S'
3937 || (conversion == 's'
3938 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3939 {
3940 if (! info[n].converted_to_string)
3941 {
3942 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3943 args[n] = Fprin1_to_string (args[n], noescape);
3944 info[n].converted_to_string = 1;
3945 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3946 {
3947 multibyte = 1;
3948 goto retry;
3949 }
3950 }
3951 conversion = 's';
3952 }
3953 else if (conversion == 'c')
3954 {
3955 if (FLOATP (args[n]))
3956 {
3957 double d = XFLOAT_DATA (args[n]);
3958 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3959 }
3960
3961 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3962 {
3963 if (!multibyte)
3964 {
3965 multibyte = 1;
3966 goto retry;
3967 }
3968 args[n] = Fchar_to_string (args[n]);
3969 info[n].converted_to_string = 1;
3970 }
3971
3972 if (info[n].converted_to_string)
3973 conversion = 's';
3974 zero_flag = 0;
3975 }
3976
3977 if (SYMBOLP (args[n]))
3978 {
3979 args[n] = SYMBOL_NAME (args[n]);
3980 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3981 {
3982 multibyte = 1;
3983 goto retry;
3984 }
3985 }
3986
3987 if (conversion == 's')
3988 {
3989 /* handle case (precision[n] >= 0) */
3990
3991 ptrdiff_t width, padding, nbytes;
3992 ptrdiff_t nchars_string;
3993
3994 ptrdiff_t prec = -1;
3995 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3996 prec = precision;
3997
3998 /* lisp_string_width ignores a precision of 0, but GNU
3999 libc functions print 0 characters when the precision
4000 is 0. Imitate libc behavior here. Changing
4001 lisp_string_width is the right thing, and will be
4002 done, but meanwhile we work with it. */
4003
4004 if (prec == 0)
4005 width = nchars_string = nbytes = 0;
4006 else
4007 {
4008 ptrdiff_t nch, nby;
4009 width = lisp_string_width (args[n], prec, &nch, &nby);
4010 if (prec < 0)
4011 {
4012 nchars_string = SCHARS (args[n]);
4013 nbytes = SBYTES (args[n]);
4014 }
4015 else
4016 {
4017 nchars_string = nch;
4018 nbytes = nby;
4019 }
4020 }
4021
4022 convbytes = nbytes;
4023 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
4024 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
4025
4026 padding = width < field_width ? field_width - width : 0;
4027
4028 if (max_bufsize - padding <= convbytes)
4029 string_overflow ();
4030 convbytes += padding;
4031 if (convbytes <= buf + bufsize - p)
4032 {
4033 if (! minus_flag)
4034 {
4035 memset (p, ' ', padding);
4036 p += padding;
4037 nchars += padding;
4038 }
4039
4040 if (p > buf
4041 && multibyte
4042 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4043 && STRING_MULTIBYTE (args[n])
4044 && !CHAR_HEAD_P (SREF (args[n], 0)))
4045 maybe_combine_byte = 1;
4046
4047 p += copy_text (SDATA (args[n]), (unsigned char *) p,
4048 nbytes,
4049 STRING_MULTIBYTE (args[n]), multibyte);
4050
4051 info[n].start = nchars;
4052 nchars += nchars_string;
4053 info[n].end = nchars;
4054
4055 if (minus_flag)
4056 {
4057 memset (p, ' ', padding);
4058 p += padding;
4059 nchars += padding;
4060 }
4061
4062 /* If this argument has text properties, record where
4063 in the result string it appears. */
4064 if (string_intervals (args[n]))
4065 info[n].intervals = arg_intervals = 1;
4066
4067 continue;
4068 }
4069 }
4070 else if (! (conversion == 'c' || conversion == 'd'
4071 || conversion == 'e' || conversion == 'f'
4072 || conversion == 'g' || conversion == 'i'
4073 || conversion == 'o' || conversion == 'x'
4074 || conversion == 'X'))
4075 error ("Invalid format operation %%%c",
4076 STRING_CHAR ((unsigned char *) format - 1));
4077 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
4078 error ("Format specifier doesn't match argument type");
4079 else
4080 {
4081 enum
4082 {
4083 /* Maximum precision for a %f conversion such that the
4084 trailing output digit might be nonzero. Any precision
4085 larger than this will not yield useful information. */
4086 USEFUL_PRECISION_MAX =
4087 ((1 - DBL_MIN_EXP)
4088 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
4089 : FLT_RADIX == 16 ? 4
4090 : -1)),
4091
4092 /* Maximum number of bytes generated by any format, if
4093 precision is no more than USEFUL_PRECISION_MAX.
4094 On all practical hosts, %f is the worst case. */
4095 SPRINTF_BUFSIZE =
4096 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
4097
4098 /* Length of pM (that is, of pMd without the
4099 trailing "d"). */
4100 pMlen = sizeof pMd - 2
4101 };
4102 verify (USEFUL_PRECISION_MAX > 0);
4103
4104 int prec;
4105 ptrdiff_t padding, sprintf_bytes;
4106 uintmax_t excess_precision, numwidth;
4107 uintmax_t leading_zeros = 0, trailing_zeros = 0;
4108
4109 char sprintf_buf[SPRINTF_BUFSIZE];
4110
4111 /* Copy of conversion specification, modified somewhat.
4112 At most three flags F can be specified at once. */
4113 char convspec[sizeof "%FFF.*d" + pMlen];
4114
4115 /* Avoid undefined behavior in underlying sprintf. */
4116 if (conversion == 'd' || conversion == 'i')
4117 sharp_flag = 0;
4118
4119 /* Create the copy of the conversion specification, with
4120 any width and precision removed, with ".*" inserted,
4121 and with pM inserted for integer formats. */
4122 {
4123 char *f = convspec;
4124 *f++ = '%';
4125 *f = '-'; f += minus_flag;
4126 *f = '+'; f += plus_flag;
4127 *f = ' '; f += space_flag;
4128 *f = '#'; f += sharp_flag;
4129 *f = '0'; f += zero_flag;
4130 *f++ = '.';
4131 *f++ = '*';
4132 if (conversion == 'd' || conversion == 'i'
4133 || conversion == 'o' || conversion == 'x'
4134 || conversion == 'X')
4135 {
4136 memcpy (f, pMd, pMlen);
4137 f += pMlen;
4138 zero_flag &= ~ precision_given;
4139 }
4140 *f++ = conversion;
4141 *f = '\0';
4142 }
4143
4144 prec = -1;
4145 if (precision_given)
4146 prec = min (precision, USEFUL_PRECISION_MAX);
4147
4148 /* Use sprintf to format this number into sprintf_buf. Omit
4149 padding and excess precision, though, because sprintf limits
4150 output length to INT_MAX.
4151
4152 There are four types of conversion: double, unsigned
4153 char (passed as int), wide signed int, and wide
4154 unsigned int. Treat them separately because the
4155 sprintf ABI is sensitive to which type is passed. Be
4156 careful about integer overflow, NaNs, infinities, and
4157 conversions; for example, the min and max macros are
4158 not suitable here. */
4159 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
4160 {
4161 double x = (INTEGERP (args[n])
4162 ? XINT (args[n])
4163 : XFLOAT_DATA (args[n]));
4164 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4165 }
4166 else if (conversion == 'c')
4167 {
4168 /* Don't use sprintf here, as it might mishandle prec. */
4169 sprintf_buf[0] = XINT (args[n]);
4170 sprintf_bytes = prec != 0;
4171 }
4172 else if (conversion == 'd')
4173 {
4174 /* For float, maybe we should use "%1.0f"
4175 instead so it also works for values outside
4176 the integer range. */
4177 printmax_t x;
4178 if (INTEGERP (args[n]))
4179 x = XINT (args[n]);
4180 else
4181 {
4182 double d = XFLOAT_DATA (args[n]);
4183 if (d < 0)
4184 {
4185 x = TYPE_MINIMUM (printmax_t);
4186 if (x < d)
4187 x = d;
4188 }
4189 else
4190 {
4191 x = TYPE_MAXIMUM (printmax_t);
4192 if (d < x)
4193 x = d;
4194 }
4195 }
4196 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4197 }
4198 else
4199 {
4200 /* Don't sign-extend for octal or hex printing. */
4201 uprintmax_t x;
4202 if (INTEGERP (args[n]))
4203 x = XUINT (args[n]);
4204 else
4205 {
4206 double d = XFLOAT_DATA (args[n]);
4207 if (d < 0)
4208 x = 0;
4209 else
4210 {
4211 x = TYPE_MAXIMUM (uprintmax_t);
4212 if (d < x)
4213 x = d;
4214 }
4215 }
4216 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4217 }
4218
4219 /* Now the length of the formatted item is known, except it omits
4220 padding and excess precision. Deal with excess precision
4221 first. This happens only when the format specifies
4222 ridiculously large precision. */
4223 excess_precision = precision - prec;
4224 if (excess_precision)
4225 {
4226 if (conversion == 'e' || conversion == 'f'
4227 || conversion == 'g')
4228 {
4229 if ((conversion == 'g' && ! sharp_flag)
4230 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4231 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4232 excess_precision = 0;
4233 else
4234 {
4235 if (conversion == 'g')
4236 {
4237 char *dot = strchr (sprintf_buf, '.');
4238 if (!dot)
4239 excess_precision = 0;
4240 }
4241 }
4242 trailing_zeros = excess_precision;
4243 }
4244 else
4245 leading_zeros = excess_precision;
4246 }
4247
4248 /* Compute the total bytes needed for this item, including
4249 excess precision and padding. */
4250 numwidth = sprintf_bytes + excess_precision;
4251 padding = numwidth < field_width ? field_width - numwidth : 0;
4252 if (max_bufsize - sprintf_bytes <= excess_precision
4253 || max_bufsize - padding <= numwidth)
4254 string_overflow ();
4255 convbytes = numwidth + padding;
4256
4257 if (convbytes <= buf + bufsize - p)
4258 {
4259 /* Copy the formatted item from sprintf_buf into buf,
4260 inserting padding and excess-precision zeros. */
4261
4262 char *src = sprintf_buf;
4263 char src0 = src[0];
4264 int exponent_bytes = 0;
4265 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4266 int significand_bytes;
4267 if (zero_flag
4268 && ((src[signedp] >= '0' && src[signedp] <= '9')
4269 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4270 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4271 {
4272 leading_zeros += padding;
4273 padding = 0;
4274 }
4275
4276 if (excess_precision
4277 && (conversion == 'e' || conversion == 'g'))
4278 {
4279 char *e = strchr (src, 'e');
4280 if (e)
4281 exponent_bytes = src + sprintf_bytes - e;
4282 }
4283
4284 if (! minus_flag)
4285 {
4286 memset (p, ' ', padding);
4287 p += padding;
4288 nchars += padding;
4289 }
4290
4291 *p = src0;
4292 src += signedp;
4293 p += signedp;
4294 memset (p, '0', leading_zeros);
4295 p += leading_zeros;
4296 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4297 memcpy (p, src, significand_bytes);
4298 p += significand_bytes;
4299 src += significand_bytes;
4300 memset (p, '0', trailing_zeros);
4301 p += trailing_zeros;
4302 memcpy (p, src, exponent_bytes);
4303 p += exponent_bytes;
4304
4305 info[n].start = nchars;
4306 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4307 info[n].end = nchars;
4308
4309 if (minus_flag)
4310 {
4311 memset (p, ' ', padding);
4312 p += padding;
4313 nchars += padding;
4314 }
4315
4316 continue;
4317 }
4318 }
4319 }
4320 else
4321 copy_char:
4322 {
4323 /* Copy a single character from format to buf. */
4324
4325 char *src = format;
4326 unsigned char str[MAX_MULTIBYTE_LENGTH];
4327
4328 if (multibyte_format)
4329 {
4330 /* Copy a whole multibyte character. */
4331 if (p > buf
4332 && !ASCII_CHAR_P (*((unsigned char *) p - 1))
4333 && !CHAR_HEAD_P (*format))
4334 maybe_combine_byte = 1;
4335
4336 do
4337 format++;
4338 while (! CHAR_HEAD_P (*format));
4339
4340 convbytes = format - src;
4341 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4342 }
4343 else
4344 {
4345 unsigned char uc = *format++;
4346 if (! multibyte || ASCII_CHAR_P (uc))
4347 convbytes = 1;
4348 else
4349 {
4350 int c = BYTE8_TO_CHAR (uc);
4351 convbytes = CHAR_STRING (c, str);
4352 src = (char *) str;
4353 }
4354 }
4355
4356 if (convbytes <= buf + bufsize - p)
4357 {
4358 memcpy (p, src, convbytes);
4359 p += convbytes;
4360 nchars++;
4361 continue;
4362 }
4363 }
4364
4365 /* There wasn't enough room to store this conversion or single
4366 character. CONVBYTES says how much room is needed. Allocate
4367 enough room (and then some) and do it again. */
4368 {
4369 ptrdiff_t used = p - buf;
4370
4371 if (max_bufsize - used < convbytes)
4372 string_overflow ();
4373 bufsize = used + convbytes;
4374 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4375
4376 if (buf == initial_buffer)
4377 {
4378 buf = xmalloc (bufsize);
4379 sa_must_free = true;
4380 buf_save_value_index = SPECPDL_INDEX ();
4381 record_unwind_protect_ptr (xfree, buf);
4382 memcpy (buf, initial_buffer, used);
4383 }
4384 else
4385 {
4386 buf = xrealloc (buf, bufsize);
4387 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4388 }
4389
4390 p = buf + used;
4391 }
4392
4393 format = format0;
4394 n = n0;
4395 }
4396
4397 if (bufsize < p - buf)
4398 emacs_abort ();
4399
4400 if (maybe_combine_byte)
4401 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4402 val = make_specified_string (buf, nchars, p - buf, multibyte);
4403
4404 /* If the format string has text properties, or any of the string
4405 arguments has text properties, set up text properties of the
4406 result string. */
4407
4408 if (string_intervals (args[0]) || arg_intervals)
4409 {
4410 Lisp_Object len, new_len, props;
4411 struct gcpro gcpro1;
4412
4413 /* Add text properties from the format string. */
4414 len = make_number (SCHARS (args[0]));
4415 props = text_property_list (args[0], make_number (0), len, Qnil);
4416 GCPRO1 (props);
4417
4418 if (CONSP (props))
4419 {
4420 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4421 ptrdiff_t argn = 1;
4422 Lisp_Object list;
4423
4424 /* Adjust the bounds of each text property
4425 to the proper start and end in the output string. */
4426
4427 /* Put the positions in PROPS in increasing order, so that
4428 we can do (effectively) one scan through the position
4429 space of the format string. */
4430 props = Fnreverse (props);
4431
4432 /* BYTEPOS is the byte position in the format string,
4433 POSITION is the untranslated char position in it,
4434 TRANSLATED is the translated char position in BUF,
4435 and ARGN is the number of the next arg we will come to. */
4436 for (list = props; CONSP (list); list = XCDR (list))
4437 {
4438 Lisp_Object item;
4439 ptrdiff_t pos;
4440
4441 item = XCAR (list);
4442
4443 /* First adjust the property start position. */
4444 pos = XINT (XCAR (item));
4445
4446 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4447 up to this position. */
4448 for (; position < pos; bytepos++)
4449 {
4450 if (! discarded[bytepos])
4451 position++, translated++;
4452 else if (discarded[bytepos] == 1)
4453 {
4454 position++;
4455 if (translated == info[argn].start)
4456 {
4457 translated += info[argn].end - info[argn].start;
4458 argn++;
4459 }
4460 }
4461 }
4462
4463 XSETCAR (item, make_number (translated));
4464
4465 /* Likewise adjust the property end position. */
4466 pos = XINT (XCAR (XCDR (item)));
4467
4468 for (; position < pos; bytepos++)
4469 {
4470 if (! discarded[bytepos])
4471 position++, translated++;
4472 else if (discarded[bytepos] == 1)
4473 {
4474 position++;
4475 if (translated == info[argn].start)
4476 {
4477 translated += info[argn].end - info[argn].start;
4478 argn++;
4479 }
4480 }
4481 }
4482
4483 XSETCAR (XCDR (item), make_number (translated));
4484 }
4485
4486 add_text_properties_from_list (val, props, make_number (0));
4487 }
4488
4489 /* Add text properties from arguments. */
4490 if (arg_intervals)
4491 for (n = 1; n < nargs; ++n)
4492 if (info[n].intervals)
4493 {
4494 len = make_number (SCHARS (args[n]));
4495 new_len = make_number (info[n].end - info[n].start);
4496 props = text_property_list (args[n], make_number (0), len, Qnil);
4497 props = extend_property_ranges (props, new_len);
4498 /* If successive arguments have properties, be sure that
4499 the value of `composition' property be the copy. */
4500 if (n > 1 && info[n - 1].end)
4501 make_composition_value_copy (props);
4502 add_text_properties_from_list (val, props,
4503 make_number (info[n].start));
4504 }
4505
4506 UNGCPRO;
4507 }
4508
4509 /* If we allocated BUF or INFO with malloc, free it too. */
4510 SAFE_FREE ();
4511
4512 return val;
4513 }
4514 \f
4515 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4516 doc: /* Return t if two characters match, optionally ignoring case.
4517 Both arguments must be characters (i.e. integers).
4518 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4519 (register Lisp_Object c1, Lisp_Object c2)
4520 {
4521 int i1, i2;
4522 /* Check they're chars, not just integers, otherwise we could get array
4523 bounds violations in downcase. */
4524 CHECK_CHARACTER (c1);
4525 CHECK_CHARACTER (c2);
4526
4527 if (XINT (c1) == XINT (c2))
4528 return Qt;
4529 if (NILP (BVAR (current_buffer, case_fold_search)))
4530 return Qnil;
4531
4532 i1 = XFASTINT (c1);
4533 i2 = XFASTINT (c2);
4534
4535 /* FIXME: It is possible to compare multibyte characters even when
4536 the current buffer is unibyte. Unfortunately this is ambiguous
4537 for characters between 128 and 255, as they could be either
4538 eight-bit raw bytes or Latin-1 characters. Assume the former for
4539 now. See Bug#17011, and also see casefiddle.c's casify_object,
4540 which has a similar problem. */
4541 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4542 {
4543 if (SINGLE_BYTE_CHAR_P (i1))
4544 i1 = UNIBYTE_TO_CHAR (i1);
4545 if (SINGLE_BYTE_CHAR_P (i2))
4546 i2 = UNIBYTE_TO_CHAR (i2);
4547 }
4548
4549 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4550 }
4551 \f
4552 /* Transpose the markers in two regions of the current buffer, and
4553 adjust the ones between them if necessary (i.e.: if the regions
4554 differ in size).
4555
4556 START1, END1 are the character positions of the first region.
4557 START1_BYTE, END1_BYTE are the byte positions.
4558 START2, END2 are the character positions of the second region.
4559 START2_BYTE, END2_BYTE are the byte positions.
4560
4561 Traverses the entire marker list of the buffer to do so, adding an
4562 appropriate amount to some, subtracting from some, and leaving the
4563 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4564
4565 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4566
4567 static void
4568 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4569 ptrdiff_t start2, ptrdiff_t end2,
4570 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4571 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4572 {
4573 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4574 register struct Lisp_Marker *marker;
4575
4576 /* Update point as if it were a marker. */
4577 if (PT < start1)
4578 ;
4579 else if (PT < end1)
4580 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4581 PT_BYTE + (end2_byte - end1_byte));
4582 else if (PT < start2)
4583 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4584 (PT_BYTE + (end2_byte - start2_byte)
4585 - (end1_byte - start1_byte)));
4586 else if (PT < end2)
4587 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4588 PT_BYTE - (start2_byte - start1_byte));
4589
4590 /* We used to adjust the endpoints here to account for the gap, but that
4591 isn't good enough. Even if we assume the caller has tried to move the
4592 gap out of our way, it might still be at start1 exactly, for example;
4593 and that places it `inside' the interval, for our purposes. The amount
4594 of adjustment is nontrivial if there's a `denormalized' marker whose
4595 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4596 the dirty work to Fmarker_position, below. */
4597
4598 /* The difference between the region's lengths */
4599 diff = (end2 - start2) - (end1 - start1);
4600 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4601
4602 /* For shifting each marker in a region by the length of the other
4603 region plus the distance between the regions. */
4604 amt1 = (end2 - start2) + (start2 - end1);
4605 amt2 = (end1 - start1) + (start2 - end1);
4606 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4607 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4608
4609 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4610 {
4611 mpos = marker->bytepos;
4612 if (mpos >= start1_byte && mpos < end2_byte)
4613 {
4614 if (mpos < end1_byte)
4615 mpos += amt1_byte;
4616 else if (mpos < start2_byte)
4617 mpos += diff_byte;
4618 else
4619 mpos -= amt2_byte;
4620 marker->bytepos = mpos;
4621 }
4622 mpos = marker->charpos;
4623 if (mpos >= start1 && mpos < end2)
4624 {
4625 if (mpos < end1)
4626 mpos += amt1;
4627 else if (mpos < start2)
4628 mpos += diff;
4629 else
4630 mpos -= amt2;
4631 }
4632 marker->charpos = mpos;
4633 }
4634 }
4635
4636 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4637 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4638 The regions should not be overlapping, because the size of the buffer is
4639 never changed in a transposition.
4640
4641 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4642 any markers that happen to be located in the regions.
4643
4644 Transposing beyond buffer boundaries is an error. */)
4645 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4646 {
4647 register ptrdiff_t start1, end1, start2, end2;
4648 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4649 ptrdiff_t gap, len1, len_mid, len2;
4650 unsigned char *start1_addr, *start2_addr, *temp;
4651
4652 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4653 Lisp_Object buf;
4654
4655 XSETBUFFER (buf, current_buffer);
4656 cur_intv = buffer_intervals (current_buffer);
4657
4658 validate_region (&startr1, &endr1);
4659 validate_region (&startr2, &endr2);
4660
4661 start1 = XFASTINT (startr1);
4662 end1 = XFASTINT (endr1);
4663 start2 = XFASTINT (startr2);
4664 end2 = XFASTINT (endr2);
4665 gap = GPT;
4666
4667 /* Swap the regions if they're reversed. */
4668 if (start2 < end1)
4669 {
4670 register ptrdiff_t glumph = start1;
4671 start1 = start2;
4672 start2 = glumph;
4673 glumph = end1;
4674 end1 = end2;
4675 end2 = glumph;
4676 }
4677
4678 len1 = end1 - start1;
4679 len2 = end2 - start2;
4680
4681 if (start2 < end1)
4682 error ("Transposed regions overlap");
4683 /* Nothing to change for adjacent regions with one being empty */
4684 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4685 return Qnil;
4686
4687 /* The possibilities are:
4688 1. Adjacent (contiguous) regions, or separate but equal regions
4689 (no, really equal, in this case!), or
4690 2. Separate regions of unequal size.
4691
4692 The worst case is usually No. 2. It means that (aside from
4693 potential need for getting the gap out of the way), there also
4694 needs to be a shifting of the text between the two regions. So
4695 if they are spread far apart, we are that much slower... sigh. */
4696
4697 /* It must be pointed out that the really studly thing to do would
4698 be not to move the gap at all, but to leave it in place and work
4699 around it if necessary. This would be extremely efficient,
4700 especially considering that people are likely to do
4701 transpositions near where they are working interactively, which
4702 is exactly where the gap would be found. However, such code
4703 would be much harder to write and to read. So, if you are
4704 reading this comment and are feeling squirrely, by all means have
4705 a go! I just didn't feel like doing it, so I will simply move
4706 the gap the minimum distance to get it out of the way, and then
4707 deal with an unbroken array. */
4708
4709 start1_byte = CHAR_TO_BYTE (start1);
4710 end2_byte = CHAR_TO_BYTE (end2);
4711
4712 /* Make sure the gap won't interfere, by moving it out of the text
4713 we will operate on. */
4714 if (start1 < gap && gap < end2)
4715 {
4716 if (gap - start1 < end2 - gap)
4717 move_gap_both (start1, start1_byte);
4718 else
4719 move_gap_both (end2, end2_byte);
4720 }
4721
4722 start2_byte = CHAR_TO_BYTE (start2);
4723 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4724 len2_byte = end2_byte - start2_byte;
4725
4726 #ifdef BYTE_COMBINING_DEBUG
4727 if (end1 == start2)
4728 {
4729 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4730 len2_byte, start1, start1_byte)
4731 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4732 len1_byte, end2, start2_byte + len2_byte)
4733 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4734 len1_byte, end2, start2_byte + len2_byte))
4735 emacs_abort ();
4736 }
4737 else
4738 {
4739 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4740 len2_byte, start1, start1_byte)
4741 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4742 len1_byte, start2, start2_byte)
4743 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4744 len2_byte, end1, start1_byte + len1_byte)
4745 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4746 len1_byte, end2, start2_byte + len2_byte))
4747 emacs_abort ();
4748 }
4749 #endif
4750
4751 /* Hmmm... how about checking to see if the gap is large
4752 enough to use as the temporary storage? That would avoid an
4753 allocation... interesting. Later, don't fool with it now. */
4754
4755 /* Working without memmove, for portability (sigh), so must be
4756 careful of overlapping subsections of the array... */
4757
4758 if (end1 == start2) /* adjacent regions */
4759 {
4760 modify_text (start1, end2);
4761 record_change (start1, len1 + len2);
4762
4763 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4764 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4765 /* Don't use Fset_text_properties: that can cause GC, which can
4766 clobber objects stored in the tmp_intervals. */
4767 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4768 if (tmp_interval3)
4769 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4770
4771 USE_SAFE_ALLOCA;
4772
4773 /* First region smaller than second. */
4774 if (len1_byte < len2_byte)
4775 {
4776 temp = SAFE_ALLOCA (len2_byte);
4777
4778 /* Don't precompute these addresses. We have to compute them
4779 at the last minute, because the relocating allocator might
4780 have moved the buffer around during the xmalloc. */
4781 start1_addr = BYTE_POS_ADDR (start1_byte);
4782 start2_addr = BYTE_POS_ADDR (start2_byte);
4783
4784 memcpy (temp, start2_addr, len2_byte);
4785 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4786 memcpy (start1_addr, temp, len2_byte);
4787 }
4788 else
4789 /* First region not smaller than second. */
4790 {
4791 temp = SAFE_ALLOCA (len1_byte);
4792 start1_addr = BYTE_POS_ADDR (start1_byte);
4793 start2_addr = BYTE_POS_ADDR (start2_byte);
4794 memcpy (temp, start1_addr, len1_byte);
4795 memcpy (start1_addr, start2_addr, len2_byte);
4796 memcpy (start1_addr + len2_byte, temp, len1_byte);
4797 }
4798
4799 SAFE_FREE ();
4800 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4801 len1, current_buffer, 0);
4802 graft_intervals_into_buffer (tmp_interval2, start1,
4803 len2, current_buffer, 0);
4804 update_compositions (start1, start1 + len2, CHECK_BORDER);
4805 update_compositions (start1 + len2, end2, CHECK_TAIL);
4806 }
4807 /* Non-adjacent regions, because end1 != start2, bleagh... */
4808 else
4809 {
4810 len_mid = start2_byte - (start1_byte + len1_byte);
4811
4812 if (len1_byte == len2_byte)
4813 /* Regions are same size, though, how nice. */
4814 {
4815 USE_SAFE_ALLOCA;
4816
4817 modify_text (start1, end1);
4818 modify_text (start2, end2);
4819 record_change (start1, len1);
4820 record_change (start2, len2);
4821 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4822 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4823
4824 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4825 if (tmp_interval3)
4826 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4827
4828 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4829 if (tmp_interval3)
4830 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4831
4832 temp = SAFE_ALLOCA (len1_byte);
4833 start1_addr = BYTE_POS_ADDR (start1_byte);
4834 start2_addr = BYTE_POS_ADDR (start2_byte);
4835 memcpy (temp, start1_addr, len1_byte);
4836 memcpy (start1_addr, start2_addr, len2_byte);
4837 memcpy (start2_addr, temp, len1_byte);
4838 SAFE_FREE ();
4839
4840 graft_intervals_into_buffer (tmp_interval1, start2,
4841 len1, current_buffer, 0);
4842 graft_intervals_into_buffer (tmp_interval2, start1,
4843 len2, current_buffer, 0);
4844 }
4845
4846 else if (len1_byte < len2_byte) /* Second region larger than first */
4847 /* Non-adjacent & unequal size, area between must also be shifted. */
4848 {
4849 USE_SAFE_ALLOCA;
4850
4851 modify_text (start1, end2);
4852 record_change (start1, (end2 - start1));
4853 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4854 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4855 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4856
4857 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4858 if (tmp_interval3)
4859 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4860
4861 /* holds region 2 */
4862 temp = SAFE_ALLOCA (len2_byte);
4863 start1_addr = BYTE_POS_ADDR (start1_byte);
4864 start2_addr = BYTE_POS_ADDR (start2_byte);
4865 memcpy (temp, start2_addr, len2_byte);
4866 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4867 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4868 memcpy (start1_addr, temp, len2_byte);
4869 SAFE_FREE ();
4870
4871 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4872 len1, current_buffer, 0);
4873 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4874 len_mid, current_buffer, 0);
4875 graft_intervals_into_buffer (tmp_interval2, start1,
4876 len2, current_buffer, 0);
4877 }
4878 else
4879 /* Second region smaller than first. */
4880 {
4881 USE_SAFE_ALLOCA;
4882
4883 record_change (start1, (end2 - start1));
4884 modify_text (start1, end2);
4885
4886 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4887 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4888 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4889
4890 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4891 if (tmp_interval3)
4892 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4893
4894 /* holds region 1 */
4895 temp = SAFE_ALLOCA (len1_byte);
4896 start1_addr = BYTE_POS_ADDR (start1_byte);
4897 start2_addr = BYTE_POS_ADDR (start2_byte);
4898 memcpy (temp, start1_addr, len1_byte);
4899 memcpy (start1_addr, start2_addr, len2_byte);
4900 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4901 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4902 SAFE_FREE ();
4903
4904 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4905 len1, current_buffer, 0);
4906 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4907 len_mid, current_buffer, 0);
4908 graft_intervals_into_buffer (tmp_interval2, start1,
4909 len2, current_buffer, 0);
4910 }
4911
4912 update_compositions (start1, start1 + len2, CHECK_BORDER);
4913 update_compositions (end2 - len1, end2, CHECK_BORDER);
4914 }
4915
4916 /* When doing multiple transpositions, it might be nice
4917 to optimize this. Perhaps the markers in any one buffer
4918 should be organized in some sorted data tree. */
4919 if (NILP (leave_markers))
4920 {
4921 transpose_markers (start1, end1, start2, end2,
4922 start1_byte, start1_byte + len1_byte,
4923 start2_byte, start2_byte + len2_byte);
4924 fix_start_end_in_overlays (start1, end2);
4925 }
4926
4927 signal_after_change (start1, end2 - start1, end2 - start1);
4928 return Qnil;
4929 }
4930
4931 \f
4932 void
4933 syms_of_editfns (void)
4934 {
4935 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4936
4937 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4938 doc: /* Non-nil means text motion commands don't notice fields. */);
4939 Vinhibit_field_text_motion = Qnil;
4940
4941 DEFVAR_LISP ("buffer-access-fontify-functions",
4942 Vbuffer_access_fontify_functions,
4943 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4944 Each function is called with two arguments which specify the range
4945 of the buffer being accessed. */);
4946 Vbuffer_access_fontify_functions = Qnil;
4947
4948 {
4949 Lisp_Object obuf;
4950 obuf = Fcurrent_buffer ();
4951 /* Do this here, because init_buffer_once is too early--it won't work. */
4952 Fset_buffer (Vprin1_to_string_buffer);
4953 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4954 Fset (Fmake_local_variable (Qbuffer_access_fontify_functions), Qnil);
4955 Fset_buffer (obuf);
4956 }
4957
4958 DEFVAR_LISP ("buffer-access-fontified-property",
4959 Vbuffer_access_fontified_property,
4960 doc: /* Property which (if non-nil) indicates text has been fontified.
4961 `buffer-substring' need not call the `buffer-access-fontify-functions'
4962 functions if all the text being accessed has this property. */);
4963 Vbuffer_access_fontified_property = Qnil;
4964
4965 DEFVAR_LISP ("system-name", Vsystem_name,
4966 doc: /* The host name of the machine Emacs is running on. */);
4967 Vsystem_name = cached_system_name = Qnil;
4968
4969 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4970 doc: /* The full name of the user logged in. */);
4971
4972 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4973 doc: /* The user's name, taken from environment variables if possible. */);
4974 Vuser_login_name = Qnil;
4975
4976 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4977 doc: /* The user's name, based upon the real uid only. */);
4978
4979 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4980 doc: /* The release of the operating system Emacs is running on. */);
4981
4982 defsubr (&Spropertize);
4983 defsubr (&Schar_equal);
4984 defsubr (&Sgoto_char);
4985 defsubr (&Sstring_to_char);
4986 defsubr (&Schar_to_string);
4987 defsubr (&Sbyte_to_string);
4988 defsubr (&Sbuffer_substring);
4989 defsubr (&Sbuffer_substring_no_properties);
4990 defsubr (&Sbuffer_string);
4991 defsubr (&Sget_pos_property);
4992
4993 defsubr (&Spoint_marker);
4994 defsubr (&Smark_marker);
4995 defsubr (&Spoint);
4996 defsubr (&Sregion_beginning);
4997 defsubr (&Sregion_end);
4998
4999 /* Symbol for the text property used to mark fields. */
5000 DEFSYM (Qfield, "field");
5001
5002 /* A special value for Qfield properties. */
5003 DEFSYM (Qboundary, "boundary");
5004
5005 defsubr (&Sfield_beginning);
5006 defsubr (&Sfield_end);
5007 defsubr (&Sfield_string);
5008 defsubr (&Sfield_string_no_properties);
5009 defsubr (&Sdelete_field);
5010 defsubr (&Sconstrain_to_field);
5011
5012 defsubr (&Sline_beginning_position);
5013 defsubr (&Sline_end_position);
5014
5015 defsubr (&Ssave_excursion);
5016 defsubr (&Ssave_current_buffer);
5017
5018 defsubr (&Sbuffer_size);
5019 defsubr (&Spoint_max);
5020 defsubr (&Spoint_min);
5021 defsubr (&Spoint_min_marker);
5022 defsubr (&Spoint_max_marker);
5023 defsubr (&Sgap_position);
5024 defsubr (&Sgap_size);
5025 defsubr (&Sposition_bytes);
5026 defsubr (&Sbyte_to_position);
5027
5028 defsubr (&Sbobp);
5029 defsubr (&Seobp);
5030 defsubr (&Sbolp);
5031 defsubr (&Seolp);
5032 defsubr (&Sfollowing_char);
5033 defsubr (&Sprevious_char);
5034 defsubr (&Schar_after);
5035 defsubr (&Schar_before);
5036 defsubr (&Sinsert);
5037 defsubr (&Sinsert_before_markers);
5038 defsubr (&Sinsert_and_inherit);
5039 defsubr (&Sinsert_and_inherit_before_markers);
5040 defsubr (&Sinsert_char);
5041 defsubr (&Sinsert_byte);
5042
5043 defsubr (&Suser_login_name);
5044 defsubr (&Suser_real_login_name);
5045 defsubr (&Suser_uid);
5046 defsubr (&Suser_real_uid);
5047 defsubr (&Sgroup_gid);
5048 defsubr (&Sgroup_real_gid);
5049 defsubr (&Suser_full_name);
5050 defsubr (&Semacs_pid);
5051 defsubr (&Scurrent_time);
5052 defsubr (&Stime_add);
5053 defsubr (&Stime_subtract);
5054 defsubr (&Stime_less_p);
5055 defsubr (&Sget_internal_run_time);
5056 defsubr (&Sformat_time_string);
5057 defsubr (&Sfloat_time);
5058 defsubr (&Sdecode_time);
5059 defsubr (&Sencode_time);
5060 defsubr (&Scurrent_time_string);
5061 defsubr (&Scurrent_time_zone);
5062 defsubr (&Sset_time_zone_rule);
5063 defsubr (&Ssystem_name);
5064 defsubr (&Smessage);
5065 defsubr (&Smessage_box);
5066 defsubr (&Smessage_or_box);
5067 defsubr (&Scurrent_message);
5068 defsubr (&Sformat);
5069
5070 defsubr (&Sinsert_buffer_substring);
5071 defsubr (&Scompare_buffer_substrings);
5072 defsubr (&Ssubst_char_in_region);
5073 defsubr (&Stranslate_region_internal);
5074 defsubr (&Sdelete_region);
5075 defsubr (&Sdelete_and_extract_region);
5076 defsubr (&Swiden);
5077 defsubr (&Snarrow_to_region);
5078 defsubr (&Ssave_restriction);
5079 defsubr (&Stranspose_regions);
5080 }