]> code.delx.au - gnu-emacs/blob - src/alloc.c
Merged from miles@gnu.org--gnu-2005 (patch 469)
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
37
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
41
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "charset.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
58
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
62
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
68
69 #ifdef DOUG_LEA_MALLOC
70
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
76
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
79
80 #define MMAP_MAX_AREAS 100000000
81
82 #else /* not DOUG_LEA_MALLOC */
83
84 /* The following come from gmalloc.c. */
85
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
89
90 #endif /* not DOUG_LEA_MALLOC */
91
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
93
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
98
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
105
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
110
111 static pthread_mutex_t alloc_mutex;
112
113 #define BLOCK_INPUT_ALLOC \
114 do \
115 { \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
119 } \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
123 { \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
127 } \
128 while (0)
129
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
131
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
134
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
136
137 /* Value of _bytes_used, when spare_memory was freed. */
138
139 static __malloc_size_t bytes_used_when_full;
140
141 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
143
144 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
146 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
147
148 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
150 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
151
152 /* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
156
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
159
160 /* Number of bytes of consing done since the last gc. */
161
162 int consing_since_gc;
163
164 /* Count the amount of consing of various sorts of space. */
165
166 EMACS_INT cons_cells_consed;
167 EMACS_INT floats_consed;
168 EMACS_INT vector_cells_consed;
169 EMACS_INT symbols_consed;
170 EMACS_INT string_chars_consed;
171 EMACS_INT misc_objects_consed;
172 EMACS_INT intervals_consed;
173 EMACS_INT strings_consed;
174
175 /* Number of bytes of consing since GC before another GC should be done. */
176
177 EMACS_INT gc_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Nonzero means display messages at beginning and end of GC. */
190
191 int garbage_collection_messages;
192
193 #ifndef VIRT_ADDR_VARIES
194 extern
195 #endif /* VIRT_ADDR_VARIES */
196 int malloc_sbrk_used;
197
198 #ifndef VIRT_ADDR_VARIES
199 extern
200 #endif /* VIRT_ADDR_VARIES */
201 int malloc_sbrk_unused;
202
203 /* Number of live and free conses etc. */
204
205 static int total_conses, total_markers, total_symbols, total_vector_size;
206 static int total_free_conses, total_free_markers, total_free_symbols;
207 static int total_free_floats, total_floats;
208
209 /* Points to memory space allocated as "spare", to be freed if we run
210 out of memory. */
211
212 static char *spare_memory;
213
214 /* Amount of spare memory to keep in reserve. */
215
216 #define SPARE_MEMORY (1 << 14)
217
218 /* Number of extra blocks malloc should get when it needs more core. */
219
220 static int malloc_hysteresis;
221
222 /* Non-nil means defun should do purecopy on the function definition. */
223
224 Lisp_Object Vpurify_flag;
225
226 /* Non-nil means we are handling a memory-full error. */
227
228 Lisp_Object Vmemory_full;
229
230 #ifndef HAVE_SHM
231
232 /* Initialize it to a nonzero value to force it into data space
233 (rather than bss space). That way unexec will remap it into text
234 space (pure), on some systems. We have not implemented the
235 remapping on more recent systems because this is less important
236 nowadays than in the days of small memories and timesharing. */
237
238 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
239 #define PUREBEG (char *) pure
240
241 #else /* HAVE_SHM */
242
243 #define pure PURE_SEG_BITS /* Use shared memory segment */
244 #define PUREBEG (char *)PURE_SEG_BITS
245
246 #endif /* HAVE_SHM */
247
248 /* Pointer to the pure area, and its size. */
249
250 static char *purebeg;
251 static size_t pure_size;
252
253 /* Number of bytes of pure storage used before pure storage overflowed.
254 If this is non-zero, this implies that an overflow occurred. */
255
256 static size_t pure_bytes_used_before_overflow;
257
258 /* Value is non-zero if P points into pure space. */
259
260 #define PURE_POINTER_P(P) \
261 (((PNTR_COMPARISON_TYPE) (P) \
262 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
263 && ((PNTR_COMPARISON_TYPE) (P) \
264 >= (PNTR_COMPARISON_TYPE) purebeg))
265
266 /* Index in pure at which next pure object will be allocated.. */
267
268 EMACS_INT pure_bytes_used;
269
270 /* If nonzero, this is a warning delivered by malloc and not yet
271 displayed. */
272
273 char *pending_malloc_warning;
274
275 /* Pre-computed signal argument for use when memory is exhausted. */
276
277 Lisp_Object Vmemory_signal_data;
278
279 /* Maximum amount of C stack to save when a GC happens. */
280
281 #ifndef MAX_SAVE_STACK
282 #define MAX_SAVE_STACK 16000
283 #endif
284
285 /* Buffer in which we save a copy of the C stack at each GC. */
286
287 char *stack_copy;
288 int stack_copy_size;
289
290 /* Non-zero means ignore malloc warnings. Set during initialization.
291 Currently not used. */
292
293 int ignore_warnings;
294
295 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
296
297 /* Hook run after GC has finished. */
298
299 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
300
301 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
302 EMACS_INT gcs_done; /* accumulated GCs */
303
304 static void mark_buffer P_ ((Lisp_Object));
305 extern void mark_kboards P_ ((void));
306 extern void mark_ttys P_ ((void));
307 extern void mark_backtrace P_ ((void));
308 static void gc_sweep P_ ((void));
309 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
310 static void mark_face_cache P_ ((struct face_cache *));
311
312 #ifdef HAVE_WINDOW_SYSTEM
313 extern void mark_fringe_data P_ ((void));
314 static void mark_image P_ ((struct image *));
315 static void mark_image_cache P_ ((struct frame *));
316 #endif /* HAVE_WINDOW_SYSTEM */
317
318 static struct Lisp_String *allocate_string P_ ((void));
319 static void compact_small_strings P_ ((void));
320 static void free_large_strings P_ ((void));
321 static void sweep_strings P_ ((void));
322
323 extern int message_enable_multibyte;
324
325 /* When scanning the C stack for live Lisp objects, Emacs keeps track
326 of what memory allocated via lisp_malloc is intended for what
327 purpose. This enumeration specifies the type of memory. */
328
329 enum mem_type
330 {
331 MEM_TYPE_NON_LISP,
332 MEM_TYPE_BUFFER,
333 MEM_TYPE_CONS,
334 MEM_TYPE_STRING,
335 MEM_TYPE_MISC,
336 MEM_TYPE_SYMBOL,
337 MEM_TYPE_FLOAT,
338 /* Keep the following vector-like types together, with
339 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
340 first. Or change the code of live_vector_p, for instance. */
341 MEM_TYPE_VECTOR,
342 MEM_TYPE_PROCESS,
343 MEM_TYPE_HASH_TABLE,
344 MEM_TYPE_FRAME,
345 MEM_TYPE_WINDOW
346 };
347
348 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
349
350 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
351 #include <stdio.h> /* For fprintf. */
352 #endif
353
354 /* A unique object in pure space used to make some Lisp objects
355 on free lists recognizable in O(1). */
356
357 Lisp_Object Vdead;
358
359 #ifdef GC_MALLOC_CHECK
360
361 enum mem_type allocated_mem_type;
362 int dont_register_blocks;
363
364 #endif /* GC_MALLOC_CHECK */
365
366 /* A node in the red-black tree describing allocated memory containing
367 Lisp data. Each such block is recorded with its start and end
368 address when it is allocated, and removed from the tree when it
369 is freed.
370
371 A red-black tree is a balanced binary tree with the following
372 properties:
373
374 1. Every node is either red or black.
375 2. Every leaf is black.
376 3. If a node is red, then both of its children are black.
377 4. Every simple path from a node to a descendant leaf contains
378 the same number of black nodes.
379 5. The root is always black.
380
381 When nodes are inserted into the tree, or deleted from the tree,
382 the tree is "fixed" so that these properties are always true.
383
384 A red-black tree with N internal nodes has height at most 2
385 log(N+1). Searches, insertions and deletions are done in O(log N).
386 Please see a text book about data structures for a detailed
387 description of red-black trees. Any book worth its salt should
388 describe them. */
389
390 struct mem_node
391 {
392 /* Children of this node. These pointers are never NULL. When there
393 is no child, the value is MEM_NIL, which points to a dummy node. */
394 struct mem_node *left, *right;
395
396 /* The parent of this node. In the root node, this is NULL. */
397 struct mem_node *parent;
398
399 /* Start and end of allocated region. */
400 void *start, *end;
401
402 /* Node color. */
403 enum {MEM_BLACK, MEM_RED} color;
404
405 /* Memory type. */
406 enum mem_type type;
407 };
408
409 /* Base address of stack. Set in main. */
410
411 Lisp_Object *stack_base;
412
413 /* Root of the tree describing allocated Lisp memory. */
414
415 static struct mem_node *mem_root;
416
417 /* Lowest and highest known address in the heap. */
418
419 static void *min_heap_address, *max_heap_address;
420
421 /* Sentinel node of the tree. */
422
423 static struct mem_node mem_z;
424 #define MEM_NIL &mem_z
425
426 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
427 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
428 static void lisp_free P_ ((POINTER_TYPE *));
429 static void mark_stack P_ ((void));
430 static int live_vector_p P_ ((struct mem_node *, void *));
431 static int live_buffer_p P_ ((struct mem_node *, void *));
432 static int live_string_p P_ ((struct mem_node *, void *));
433 static int live_cons_p P_ ((struct mem_node *, void *));
434 static int live_symbol_p P_ ((struct mem_node *, void *));
435 static int live_float_p P_ ((struct mem_node *, void *));
436 static int live_misc_p P_ ((struct mem_node *, void *));
437 static void mark_maybe_object P_ ((Lisp_Object));
438 static void mark_memory P_ ((void *, void *));
439 static void mem_init P_ ((void));
440 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
441 static void mem_insert_fixup P_ ((struct mem_node *));
442 static void mem_rotate_left P_ ((struct mem_node *));
443 static void mem_rotate_right P_ ((struct mem_node *));
444 static void mem_delete P_ ((struct mem_node *));
445 static void mem_delete_fixup P_ ((struct mem_node *));
446 static INLINE struct mem_node *mem_find P_ ((void *));
447
448 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
449 static void check_gcpros P_ ((void));
450 #endif
451
452 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
453
454 /* Recording what needs to be marked for gc. */
455
456 struct gcpro *gcprolist;
457
458 /* Addresses of staticpro'd variables. Initialize it to a nonzero
459 value; otherwise some compilers put it into BSS. */
460
461 #define NSTATICS 1280
462 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
463
464 /* Index of next unused slot in staticvec. */
465
466 int staticidx = 0;
467
468 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
469
470
471 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
472 ALIGNMENT must be a power of 2. */
473
474 #define ALIGN(ptr, ALIGNMENT) \
475 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
476 & ~((ALIGNMENT) - 1)))
477
478
479 \f
480 /************************************************************************
481 Malloc
482 ************************************************************************/
483
484 /* Function malloc calls this if it finds we are near exhausting storage. */
485
486 void
487 malloc_warning (str)
488 char *str;
489 {
490 pending_malloc_warning = str;
491 }
492
493
494 /* Display an already-pending malloc warning. */
495
496 void
497 display_malloc_warning ()
498 {
499 call3 (intern ("display-warning"),
500 intern ("alloc"),
501 build_string (pending_malloc_warning),
502 intern ("emergency"));
503 pending_malloc_warning = 0;
504 }
505
506
507 #ifdef DOUG_LEA_MALLOC
508 # define BYTES_USED (mallinfo ().arena)
509 #else
510 # define BYTES_USED _bytes_used
511 #endif
512
513
514 /* Called if malloc returns zero. */
515
516 void
517 memory_full ()
518 {
519 Vmemory_full = Qt;
520
521 #ifndef SYSTEM_MALLOC
522 bytes_used_when_full = BYTES_USED;
523 #endif
524
525 /* The first time we get here, free the spare memory. */
526 if (spare_memory)
527 {
528 free (spare_memory);
529 spare_memory = 0;
530 }
531
532 /* This used to call error, but if we've run out of memory, we could
533 get infinite recursion trying to build the string. */
534 while (1)
535 Fsignal (Qnil, Vmemory_signal_data);
536 }
537
538 DEFUN ("memory-full-p", Fmemory_full_p, Smemory_full_p, 0, 0, 0,
539 doc: /* t if memory is nearly full, nil otherwise. */)
540 ()
541 {
542 return (spare_memory ? Qnil : Qt);
543 }
544
545 /* Called if we can't allocate relocatable space for a buffer. */
546
547 void
548 buffer_memory_full ()
549 {
550 /* If buffers use the relocating allocator, no need to free
551 spare_memory, because we may have plenty of malloc space left
552 that we could get, and if we don't, the malloc that fails will
553 itself cause spare_memory to be freed. If buffers don't use the
554 relocating allocator, treat this like any other failing
555 malloc. */
556
557 #ifndef REL_ALLOC
558 memory_full ();
559 #endif
560
561 Vmemory_full = Qt;
562
563 /* This used to call error, but if we've run out of memory, we could
564 get infinite recursion trying to build the string. */
565 while (1)
566 Fsignal (Qnil, Vmemory_signal_data);
567 }
568
569
570 #ifdef XMALLOC_OVERRUN_CHECK
571
572 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
573 and a 16 byte trailer around each block.
574
575 The header consists of 12 fixed bytes + a 4 byte integer contaning the
576 original block size, while the trailer consists of 16 fixed bytes.
577
578 The header is used to detect whether this block has been allocated
579 through these functions -- as it seems that some low-level libc
580 functions may bypass the malloc hooks.
581 */
582
583
584 #define XMALLOC_OVERRUN_CHECK_SIZE 16
585
586 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
587 { 0x9a, 0x9b, 0xae, 0xaf,
588 0xbf, 0xbe, 0xce, 0xcf,
589 0xea, 0xeb, 0xec, 0xed };
590
591 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
592 { 0xaa, 0xab, 0xac, 0xad,
593 0xba, 0xbb, 0xbc, 0xbd,
594 0xca, 0xcb, 0xcc, 0xcd,
595 0xda, 0xdb, 0xdc, 0xdd };
596
597 /* Macros to insert and extract the block size in the header. */
598
599 #define XMALLOC_PUT_SIZE(ptr, size) \
600 (ptr[-1] = (size & 0xff), \
601 ptr[-2] = ((size >> 8) & 0xff), \
602 ptr[-3] = ((size >> 16) & 0xff), \
603 ptr[-4] = ((size >> 24) & 0xff))
604
605 #define XMALLOC_GET_SIZE(ptr) \
606 (size_t)((unsigned)(ptr[-1]) | \
607 ((unsigned)(ptr[-2]) << 8) | \
608 ((unsigned)(ptr[-3]) << 16) | \
609 ((unsigned)(ptr[-4]) << 24))
610
611
612 /* The call depth in overrun_check functions. For example, this might happen:
613 xmalloc()
614 overrun_check_malloc()
615 -> malloc -> (via hook)_-> emacs_blocked_malloc
616 -> overrun_check_malloc
617 call malloc (hooks are NULL, so real malloc is called).
618 malloc returns 10000.
619 add overhead, return 10016.
620 <- (back in overrun_check_malloc)
621 add overhead again, return 10032
622 xmalloc returns 10032.
623
624 (time passes).
625
626 xfree(10032)
627 overrun_check_free(10032)
628 decrease overhed
629 free(10016) <- crash, because 10000 is the original pointer. */
630
631 static int check_depth;
632
633 /* Like malloc, but wraps allocated block with header and trailer. */
634
635 POINTER_TYPE *
636 overrun_check_malloc (size)
637 size_t size;
638 {
639 register unsigned char *val;
640 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
641
642 val = (unsigned char *) malloc (size + overhead);
643 if (val && check_depth == 1)
644 {
645 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
646 val += XMALLOC_OVERRUN_CHECK_SIZE;
647 XMALLOC_PUT_SIZE(val, size);
648 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
649 }
650 --check_depth;
651 return (POINTER_TYPE *)val;
652 }
653
654
655 /* Like realloc, but checks old block for overrun, and wraps new block
656 with header and trailer. */
657
658 POINTER_TYPE *
659 overrun_check_realloc (block, size)
660 POINTER_TYPE *block;
661 size_t size;
662 {
663 register unsigned char *val = (unsigned char *)block;
664 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
665
666 if (val
667 && check_depth == 1
668 && bcmp (xmalloc_overrun_check_header,
669 val - XMALLOC_OVERRUN_CHECK_SIZE,
670 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
671 {
672 size_t osize = XMALLOC_GET_SIZE (val);
673 if (bcmp (xmalloc_overrun_check_trailer,
674 val + osize,
675 XMALLOC_OVERRUN_CHECK_SIZE))
676 abort ();
677 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
678 val -= XMALLOC_OVERRUN_CHECK_SIZE;
679 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
680 }
681
682 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
683
684 if (val && check_depth == 1)
685 {
686 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
687 val += XMALLOC_OVERRUN_CHECK_SIZE;
688 XMALLOC_PUT_SIZE(val, size);
689 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
690 }
691 --check_depth;
692 return (POINTER_TYPE *)val;
693 }
694
695 /* Like free, but checks block for overrun. */
696
697 void
698 overrun_check_free (block)
699 POINTER_TYPE *block;
700 {
701 unsigned char *val = (unsigned char *)block;
702
703 ++check_depth;
704 if (val
705 && check_depth == 1
706 && bcmp (xmalloc_overrun_check_header,
707 val - XMALLOC_OVERRUN_CHECK_SIZE,
708 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
709 {
710 size_t osize = XMALLOC_GET_SIZE (val);
711 if (bcmp (xmalloc_overrun_check_trailer,
712 val + osize,
713 XMALLOC_OVERRUN_CHECK_SIZE))
714 abort ();
715 #ifdef XMALLOC_CLEAR_FREE_MEMORY
716 val -= XMALLOC_OVERRUN_CHECK_SIZE;
717 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
718 #else
719 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
720 val -= XMALLOC_OVERRUN_CHECK_SIZE;
721 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
722 #endif
723 }
724
725 free (val);
726 --check_depth;
727 }
728
729 #undef malloc
730 #undef realloc
731 #undef free
732 #define malloc overrun_check_malloc
733 #define realloc overrun_check_realloc
734 #define free overrun_check_free
735 #endif
736
737
738 /* Like malloc but check for no memory and block interrupt input.. */
739
740 POINTER_TYPE *
741 xmalloc (size)
742 size_t size;
743 {
744 register POINTER_TYPE *val;
745
746 BLOCK_INPUT;
747 val = (POINTER_TYPE *) malloc (size);
748 UNBLOCK_INPUT;
749
750 if (!val && size)
751 memory_full ();
752 return val;
753 }
754
755
756 /* Like realloc but check for no memory and block interrupt input.. */
757
758 POINTER_TYPE *
759 xrealloc (block, size)
760 POINTER_TYPE *block;
761 size_t size;
762 {
763 register POINTER_TYPE *val;
764
765 BLOCK_INPUT;
766 /* We must call malloc explicitly when BLOCK is 0, since some
767 reallocs don't do this. */
768 if (! block)
769 val = (POINTER_TYPE *) malloc (size);
770 else
771 val = (POINTER_TYPE *) realloc (block, size);
772 UNBLOCK_INPUT;
773
774 if (!val && size) memory_full ();
775 return val;
776 }
777
778
779 /* Like free but block interrupt input. */
780
781 void
782 xfree (block)
783 POINTER_TYPE *block;
784 {
785 BLOCK_INPUT;
786 free (block);
787 UNBLOCK_INPUT;
788 }
789
790
791 /* Like strdup, but uses xmalloc. */
792
793 char *
794 xstrdup (s)
795 const char *s;
796 {
797 size_t len = strlen (s) + 1;
798 char *p = (char *) xmalloc (len);
799 bcopy (s, p, len);
800 return p;
801 }
802
803
804 /* Unwind for SAFE_ALLOCA */
805
806 Lisp_Object
807 safe_alloca_unwind (arg)
808 Lisp_Object arg;
809 {
810 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
811
812 p->dogc = 0;
813 xfree (p->pointer);
814 p->pointer = 0;
815 free_misc (arg);
816 return Qnil;
817 }
818
819
820 /* Like malloc but used for allocating Lisp data. NBYTES is the
821 number of bytes to allocate, TYPE describes the intended use of the
822 allcated memory block (for strings, for conses, ...). */
823
824 #ifndef USE_LSB_TAG
825 static void *lisp_malloc_loser;
826 #endif
827
828 static POINTER_TYPE *
829 lisp_malloc (nbytes, type)
830 size_t nbytes;
831 enum mem_type type;
832 {
833 register void *val;
834
835 BLOCK_INPUT;
836
837 #ifdef GC_MALLOC_CHECK
838 allocated_mem_type = type;
839 #endif
840
841 val = (void *) malloc (nbytes);
842
843 #ifndef USE_LSB_TAG
844 /* If the memory just allocated cannot be addressed thru a Lisp
845 object's pointer, and it needs to be,
846 that's equivalent to running out of memory. */
847 if (val && type != MEM_TYPE_NON_LISP)
848 {
849 Lisp_Object tem;
850 XSETCONS (tem, (char *) val + nbytes - 1);
851 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
852 {
853 lisp_malloc_loser = val;
854 free (val);
855 val = 0;
856 }
857 }
858 #endif
859
860 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
861 if (val && type != MEM_TYPE_NON_LISP)
862 mem_insert (val, (char *) val + nbytes, type);
863 #endif
864
865 UNBLOCK_INPUT;
866 if (!val && nbytes)
867 memory_full ();
868 return val;
869 }
870
871 /* Free BLOCK. This must be called to free memory allocated with a
872 call to lisp_malloc. */
873
874 static void
875 lisp_free (block)
876 POINTER_TYPE *block;
877 {
878 BLOCK_INPUT;
879 free (block);
880 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
881 mem_delete (mem_find (block));
882 #endif
883 UNBLOCK_INPUT;
884 }
885
886 /* Allocation of aligned blocks of memory to store Lisp data. */
887 /* The entry point is lisp_align_malloc which returns blocks of at most */
888 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
889
890
891 /* BLOCK_ALIGN has to be a power of 2. */
892 #define BLOCK_ALIGN (1 << 10)
893
894 /* Padding to leave at the end of a malloc'd block. This is to give
895 malloc a chance to minimize the amount of memory wasted to alignment.
896 It should be tuned to the particular malloc library used.
897 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
898 posix_memalign on the other hand would ideally prefer a value of 4
899 because otherwise, there's 1020 bytes wasted between each ablocks.
900 In Emacs, testing shows that those 1020 can most of the time be
901 efficiently used by malloc to place other objects, so a value of 0 can
902 still preferable unless you have a lot of aligned blocks and virtually
903 nothing else. */
904 #define BLOCK_PADDING 0
905 #define BLOCK_BYTES \
906 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
907
908 /* Internal data structures and constants. */
909
910 #define ABLOCKS_SIZE 16
911
912 /* An aligned block of memory. */
913 struct ablock
914 {
915 union
916 {
917 char payload[BLOCK_BYTES];
918 struct ablock *next_free;
919 } x;
920 /* `abase' is the aligned base of the ablocks. */
921 /* It is overloaded to hold the virtual `busy' field that counts
922 the number of used ablock in the parent ablocks.
923 The first ablock has the `busy' field, the others have the `abase'
924 field. To tell the difference, we assume that pointers will have
925 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
926 is used to tell whether the real base of the parent ablocks is `abase'
927 (if not, the word before the first ablock holds a pointer to the
928 real base). */
929 struct ablocks *abase;
930 /* The padding of all but the last ablock is unused. The padding of
931 the last ablock in an ablocks is not allocated. */
932 #if BLOCK_PADDING
933 char padding[BLOCK_PADDING];
934 #endif
935 };
936
937 /* A bunch of consecutive aligned blocks. */
938 struct ablocks
939 {
940 struct ablock blocks[ABLOCKS_SIZE];
941 };
942
943 /* Size of the block requested from malloc or memalign. */
944 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
945
946 #define ABLOCK_ABASE(block) \
947 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
948 ? (struct ablocks *)(block) \
949 : (block)->abase)
950
951 /* Virtual `busy' field. */
952 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
953
954 /* Pointer to the (not necessarily aligned) malloc block. */
955 #ifdef HAVE_POSIX_MEMALIGN
956 #define ABLOCKS_BASE(abase) (abase)
957 #else
958 #define ABLOCKS_BASE(abase) \
959 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
960 #endif
961
962 /* The list of free ablock. */
963 static struct ablock *free_ablock;
964
965 /* Allocate an aligned block of nbytes.
966 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
967 smaller or equal to BLOCK_BYTES. */
968 static POINTER_TYPE *
969 lisp_align_malloc (nbytes, type)
970 size_t nbytes;
971 enum mem_type type;
972 {
973 void *base, *val;
974 struct ablocks *abase;
975
976 eassert (nbytes <= BLOCK_BYTES);
977
978 BLOCK_INPUT;
979
980 #ifdef GC_MALLOC_CHECK
981 allocated_mem_type = type;
982 #endif
983
984 if (!free_ablock)
985 {
986 int i;
987 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
988
989 #ifdef DOUG_LEA_MALLOC
990 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
991 because mapped region contents are not preserved in
992 a dumped Emacs. */
993 mallopt (M_MMAP_MAX, 0);
994 #endif
995
996 #ifdef HAVE_POSIX_MEMALIGN
997 {
998 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
999 if (err)
1000 base = NULL;
1001 abase = base;
1002 }
1003 #else
1004 base = malloc (ABLOCKS_BYTES);
1005 abase = ALIGN (base, BLOCK_ALIGN);
1006 #endif
1007
1008 if (base == 0)
1009 {
1010 UNBLOCK_INPUT;
1011 memory_full ();
1012 }
1013
1014 aligned = (base == abase);
1015 if (!aligned)
1016 ((void**)abase)[-1] = base;
1017
1018 #ifdef DOUG_LEA_MALLOC
1019 /* Back to a reasonable maximum of mmap'ed areas. */
1020 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1021 #endif
1022
1023 #ifndef USE_LSB_TAG
1024 /* If the memory just allocated cannot be addressed thru a Lisp
1025 object's pointer, and it needs to be, that's equivalent to
1026 running out of memory. */
1027 if (type != MEM_TYPE_NON_LISP)
1028 {
1029 Lisp_Object tem;
1030 char *end = (char *) base + ABLOCKS_BYTES - 1;
1031 XSETCONS (tem, end);
1032 if ((char *) XCONS (tem) != end)
1033 {
1034 lisp_malloc_loser = base;
1035 free (base);
1036 UNBLOCK_INPUT;
1037 memory_full ();
1038 }
1039 }
1040 #endif
1041
1042 /* Initialize the blocks and put them on the free list.
1043 Is `base' was not properly aligned, we can't use the last block. */
1044 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1045 {
1046 abase->blocks[i].abase = abase;
1047 abase->blocks[i].x.next_free = free_ablock;
1048 free_ablock = &abase->blocks[i];
1049 }
1050 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1051
1052 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1053 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1054 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1055 eassert (ABLOCKS_BASE (abase) == base);
1056 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1057 }
1058
1059 abase = ABLOCK_ABASE (free_ablock);
1060 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1061 val = free_ablock;
1062 free_ablock = free_ablock->x.next_free;
1063
1064 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1065 if (val && type != MEM_TYPE_NON_LISP)
1066 mem_insert (val, (char *) val + nbytes, type);
1067 #endif
1068
1069 UNBLOCK_INPUT;
1070 if (!val && nbytes)
1071 memory_full ();
1072
1073 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1074 return val;
1075 }
1076
1077 static void
1078 lisp_align_free (block)
1079 POINTER_TYPE *block;
1080 {
1081 struct ablock *ablock = block;
1082 struct ablocks *abase = ABLOCK_ABASE (ablock);
1083
1084 BLOCK_INPUT;
1085 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1086 mem_delete (mem_find (block));
1087 #endif
1088 /* Put on free list. */
1089 ablock->x.next_free = free_ablock;
1090 free_ablock = ablock;
1091 /* Update busy count. */
1092 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1093
1094 if (2 > (long) ABLOCKS_BUSY (abase))
1095 { /* All the blocks are free. */
1096 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1097 struct ablock **tem = &free_ablock;
1098 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1099
1100 while (*tem)
1101 {
1102 if (*tem >= (struct ablock *) abase && *tem < atop)
1103 {
1104 i++;
1105 *tem = (*tem)->x.next_free;
1106 }
1107 else
1108 tem = &(*tem)->x.next_free;
1109 }
1110 eassert ((aligned & 1) == aligned);
1111 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1112 free (ABLOCKS_BASE (abase));
1113 }
1114 UNBLOCK_INPUT;
1115 }
1116
1117 /* Return a new buffer structure allocated from the heap with
1118 a call to lisp_malloc. */
1119
1120 struct buffer *
1121 allocate_buffer ()
1122 {
1123 struct buffer *b
1124 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1125 MEM_TYPE_BUFFER);
1126 return b;
1127 }
1128
1129 \f
1130 #ifndef SYSTEM_MALLOC
1131
1132 /* If we released our reserve (due to running out of memory),
1133 and we have a fair amount free once again,
1134 try to set aside another reserve in case we run out once more.
1135
1136 This is called when a relocatable block is freed in ralloc.c. */
1137
1138 void
1139 refill_memory_reserve ()
1140 {
1141 if (spare_memory == 0)
1142 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1143 }
1144
1145 \f
1146 /* Arranging to disable input signals while we're in malloc.
1147
1148 This only works with GNU malloc. To help out systems which can't
1149 use GNU malloc, all the calls to malloc, realloc, and free
1150 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1151 pair; unfortunately, we have no idea what C library functions
1152 might call malloc, so we can't really protect them unless you're
1153 using GNU malloc. Fortunately, most of the major operating systems
1154 can use GNU malloc. */
1155
1156 #ifndef SYNC_INPUT
1157
1158 #ifndef DOUG_LEA_MALLOC
1159 extern void * (*__malloc_hook) P_ ((size_t));
1160 extern void * (*__realloc_hook) P_ ((void *, size_t));
1161 extern void (*__free_hook) P_ ((void *));
1162 /* Else declared in malloc.h, perhaps with an extra arg. */
1163 #endif /* DOUG_LEA_MALLOC */
1164 static void * (*old_malloc_hook) ();
1165 static void * (*old_realloc_hook) ();
1166 static void (*old_free_hook) ();
1167
1168 /* This function is used as the hook for free to call. */
1169
1170 static void
1171 emacs_blocked_free (ptr)
1172 void *ptr;
1173 {
1174 BLOCK_INPUT_ALLOC;
1175
1176 #ifdef GC_MALLOC_CHECK
1177 if (ptr)
1178 {
1179 struct mem_node *m;
1180
1181 m = mem_find (ptr);
1182 if (m == MEM_NIL || m->start != ptr)
1183 {
1184 fprintf (stderr,
1185 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1186 abort ();
1187 }
1188 else
1189 {
1190 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1191 mem_delete (m);
1192 }
1193 }
1194 #endif /* GC_MALLOC_CHECK */
1195
1196 __free_hook = old_free_hook;
1197 free (ptr);
1198
1199 /* If we released our reserve (due to running out of memory),
1200 and we have a fair amount free once again,
1201 try to set aside another reserve in case we run out once more. */
1202 if (spare_memory == 0
1203 /* Verify there is enough space that even with the malloc
1204 hysteresis this call won't run out again.
1205 The code here is correct as long as SPARE_MEMORY
1206 is substantially larger than the block size malloc uses. */
1207 && (bytes_used_when_full
1208 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
1209 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1210
1211 __free_hook = emacs_blocked_free;
1212 UNBLOCK_INPUT_ALLOC;
1213 }
1214
1215
1216 /* This function is the malloc hook that Emacs uses. */
1217
1218 static void *
1219 emacs_blocked_malloc (size)
1220 size_t size;
1221 {
1222 void *value;
1223
1224 BLOCK_INPUT_ALLOC;
1225 __malloc_hook = old_malloc_hook;
1226 #ifdef DOUG_LEA_MALLOC
1227 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1228 #else
1229 __malloc_extra_blocks = malloc_hysteresis;
1230 #endif
1231
1232 value = (void *) malloc (size);
1233
1234 #ifdef GC_MALLOC_CHECK
1235 {
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1238 {
1239 fprintf (stderr, "Malloc returned %p which is already in use\n",
1240 value);
1241 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1242 m->start, m->end, (char *) m->end - (char *) m->start,
1243 m->type);
1244 abort ();
1245 }
1246
1247 if (!dont_register_blocks)
1248 {
1249 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1250 allocated_mem_type = MEM_TYPE_NON_LISP;
1251 }
1252 }
1253 #endif /* GC_MALLOC_CHECK */
1254
1255 __malloc_hook = emacs_blocked_malloc;
1256 UNBLOCK_INPUT_ALLOC;
1257
1258 /* fprintf (stderr, "%p malloc\n", value); */
1259 return value;
1260 }
1261
1262
1263 /* This function is the realloc hook that Emacs uses. */
1264
1265 static void *
1266 emacs_blocked_realloc (ptr, size)
1267 void *ptr;
1268 size_t size;
1269 {
1270 void *value;
1271
1272 BLOCK_INPUT_ALLOC;
1273 __realloc_hook = old_realloc_hook;
1274
1275 #ifdef GC_MALLOC_CHECK
1276 if (ptr)
1277 {
1278 struct mem_node *m = mem_find (ptr);
1279 if (m == MEM_NIL || m->start != ptr)
1280 {
1281 fprintf (stderr,
1282 "Realloc of %p which wasn't allocated with malloc\n",
1283 ptr);
1284 abort ();
1285 }
1286
1287 mem_delete (m);
1288 }
1289
1290 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1291
1292 /* Prevent malloc from registering blocks. */
1293 dont_register_blocks = 1;
1294 #endif /* GC_MALLOC_CHECK */
1295
1296 value = (void *) realloc (ptr, size);
1297
1298 #ifdef GC_MALLOC_CHECK
1299 dont_register_blocks = 0;
1300
1301 {
1302 struct mem_node *m = mem_find (value);
1303 if (m != MEM_NIL)
1304 {
1305 fprintf (stderr, "Realloc returns memory that is already in use\n");
1306 abort ();
1307 }
1308
1309 /* Can't handle zero size regions in the red-black tree. */
1310 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1311 }
1312
1313 /* fprintf (stderr, "%p <- realloc\n", value); */
1314 #endif /* GC_MALLOC_CHECK */
1315
1316 __realloc_hook = emacs_blocked_realloc;
1317 UNBLOCK_INPUT_ALLOC;
1318
1319 return value;
1320 }
1321
1322
1323 #ifdef HAVE_GTK_AND_PTHREAD
1324 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1325 normal malloc. Some thread implementations need this as they call
1326 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1327 calls malloc because it is the first call, and we have an endless loop. */
1328
1329 void
1330 reset_malloc_hooks ()
1331 {
1332 __free_hook = 0;
1333 __malloc_hook = 0;
1334 __realloc_hook = 0;
1335 }
1336 #endif /* HAVE_GTK_AND_PTHREAD */
1337
1338
1339 /* Called from main to set up malloc to use our hooks. */
1340
1341 void
1342 uninterrupt_malloc ()
1343 {
1344 #ifdef HAVE_GTK_AND_PTHREAD
1345 pthread_mutexattr_t attr;
1346
1347 /* GLIBC has a faster way to do this, but lets keep it portable.
1348 This is according to the Single UNIX Specification. */
1349 pthread_mutexattr_init (&attr);
1350 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1351 pthread_mutex_init (&alloc_mutex, &attr);
1352 #endif /* HAVE_GTK_AND_PTHREAD */
1353
1354 if (__free_hook != emacs_blocked_free)
1355 old_free_hook = __free_hook;
1356 __free_hook = emacs_blocked_free;
1357
1358 if (__malloc_hook != emacs_blocked_malloc)
1359 old_malloc_hook = __malloc_hook;
1360 __malloc_hook = emacs_blocked_malloc;
1361
1362 if (__realloc_hook != emacs_blocked_realloc)
1363 old_realloc_hook = __realloc_hook;
1364 __realloc_hook = emacs_blocked_realloc;
1365 }
1366
1367 #endif /* not SYNC_INPUT */
1368 #endif /* not SYSTEM_MALLOC */
1369
1370
1371 \f
1372 /***********************************************************************
1373 Interval Allocation
1374 ***********************************************************************/
1375
1376 /* Number of intervals allocated in an interval_block structure.
1377 The 1020 is 1024 minus malloc overhead. */
1378
1379 #define INTERVAL_BLOCK_SIZE \
1380 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1381
1382 /* Intervals are allocated in chunks in form of an interval_block
1383 structure. */
1384
1385 struct interval_block
1386 {
1387 /* Place `intervals' first, to preserve alignment. */
1388 struct interval intervals[INTERVAL_BLOCK_SIZE];
1389 struct interval_block *next;
1390 };
1391
1392 /* Current interval block. Its `next' pointer points to older
1393 blocks. */
1394
1395 struct interval_block *interval_block;
1396
1397 /* Index in interval_block above of the next unused interval
1398 structure. */
1399
1400 static int interval_block_index;
1401
1402 /* Number of free and live intervals. */
1403
1404 static int total_free_intervals, total_intervals;
1405
1406 /* List of free intervals. */
1407
1408 INTERVAL interval_free_list;
1409
1410 /* Total number of interval blocks now in use. */
1411
1412 int n_interval_blocks;
1413
1414
1415 /* Initialize interval allocation. */
1416
1417 static void
1418 init_intervals ()
1419 {
1420 interval_block = NULL;
1421 interval_block_index = INTERVAL_BLOCK_SIZE;
1422 interval_free_list = 0;
1423 n_interval_blocks = 0;
1424 }
1425
1426
1427 /* Return a new interval. */
1428
1429 INTERVAL
1430 make_interval ()
1431 {
1432 INTERVAL val;
1433
1434 if (interval_free_list)
1435 {
1436 val = interval_free_list;
1437 interval_free_list = INTERVAL_PARENT (interval_free_list);
1438 }
1439 else
1440 {
1441 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1442 {
1443 register struct interval_block *newi;
1444
1445 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1446 MEM_TYPE_NON_LISP);
1447
1448 newi->next = interval_block;
1449 interval_block = newi;
1450 interval_block_index = 0;
1451 n_interval_blocks++;
1452 }
1453 val = &interval_block->intervals[interval_block_index++];
1454 }
1455 consing_since_gc += sizeof (struct interval);
1456 intervals_consed++;
1457 RESET_INTERVAL (val);
1458 val->gcmarkbit = 0;
1459 return val;
1460 }
1461
1462
1463 /* Mark Lisp objects in interval I. */
1464
1465 static void
1466 mark_interval (i, dummy)
1467 register INTERVAL i;
1468 Lisp_Object dummy;
1469 {
1470 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1471 i->gcmarkbit = 1;
1472 mark_object (i->plist);
1473 }
1474
1475
1476 /* Mark the interval tree rooted in TREE. Don't call this directly;
1477 use the macro MARK_INTERVAL_TREE instead. */
1478
1479 static void
1480 mark_interval_tree (tree)
1481 register INTERVAL tree;
1482 {
1483 /* No need to test if this tree has been marked already; this
1484 function is always called through the MARK_INTERVAL_TREE macro,
1485 which takes care of that. */
1486
1487 traverse_intervals_noorder (tree, mark_interval, Qnil);
1488 }
1489
1490
1491 /* Mark the interval tree rooted in I. */
1492
1493 #define MARK_INTERVAL_TREE(i) \
1494 do { \
1495 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1496 mark_interval_tree (i); \
1497 } while (0)
1498
1499
1500 #define UNMARK_BALANCE_INTERVALS(i) \
1501 do { \
1502 if (! NULL_INTERVAL_P (i)) \
1503 (i) = balance_intervals (i); \
1504 } while (0)
1505
1506 \f
1507 /* Number support. If NO_UNION_TYPE isn't in effect, we
1508 can't create number objects in macros. */
1509 #ifndef make_number
1510 Lisp_Object
1511 make_number (n)
1512 EMACS_INT n;
1513 {
1514 Lisp_Object obj;
1515 obj.s.val = n;
1516 obj.s.type = Lisp_Int;
1517 return obj;
1518 }
1519 #endif
1520 \f
1521 /***********************************************************************
1522 String Allocation
1523 ***********************************************************************/
1524
1525 /* Lisp_Strings are allocated in string_block structures. When a new
1526 string_block is allocated, all the Lisp_Strings it contains are
1527 added to a free-list string_free_list. When a new Lisp_String is
1528 needed, it is taken from that list. During the sweep phase of GC,
1529 string_blocks that are entirely free are freed, except two which
1530 we keep.
1531
1532 String data is allocated from sblock structures. Strings larger
1533 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1534 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1535
1536 Sblocks consist internally of sdata structures, one for each
1537 Lisp_String. The sdata structure points to the Lisp_String it
1538 belongs to. The Lisp_String points back to the `u.data' member of
1539 its sdata structure.
1540
1541 When a Lisp_String is freed during GC, it is put back on
1542 string_free_list, and its `data' member and its sdata's `string'
1543 pointer is set to null. The size of the string is recorded in the
1544 `u.nbytes' member of the sdata. So, sdata structures that are no
1545 longer used, can be easily recognized, and it's easy to compact the
1546 sblocks of small strings which we do in compact_small_strings. */
1547
1548 /* Size in bytes of an sblock structure used for small strings. This
1549 is 8192 minus malloc overhead. */
1550
1551 #define SBLOCK_SIZE 8188
1552
1553 /* Strings larger than this are considered large strings. String data
1554 for large strings is allocated from individual sblocks. */
1555
1556 #define LARGE_STRING_BYTES 1024
1557
1558 /* Structure describing string memory sub-allocated from an sblock.
1559 This is where the contents of Lisp strings are stored. */
1560
1561 struct sdata
1562 {
1563 /* Back-pointer to the string this sdata belongs to. If null, this
1564 structure is free, and the NBYTES member of the union below
1565 contains the string's byte size (the same value that STRING_BYTES
1566 would return if STRING were non-null). If non-null, STRING_BYTES
1567 (STRING) is the size of the data, and DATA contains the string's
1568 contents. */
1569 struct Lisp_String *string;
1570
1571 #ifdef GC_CHECK_STRING_BYTES
1572
1573 EMACS_INT nbytes;
1574 unsigned char data[1];
1575
1576 #define SDATA_NBYTES(S) (S)->nbytes
1577 #define SDATA_DATA(S) (S)->data
1578
1579 #else /* not GC_CHECK_STRING_BYTES */
1580
1581 union
1582 {
1583 /* When STRING in non-null. */
1584 unsigned char data[1];
1585
1586 /* When STRING is null. */
1587 EMACS_INT nbytes;
1588 } u;
1589
1590
1591 #define SDATA_NBYTES(S) (S)->u.nbytes
1592 #define SDATA_DATA(S) (S)->u.data
1593
1594 #endif /* not GC_CHECK_STRING_BYTES */
1595 };
1596
1597
1598 /* Structure describing a block of memory which is sub-allocated to
1599 obtain string data memory for strings. Blocks for small strings
1600 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1601 as large as needed. */
1602
1603 struct sblock
1604 {
1605 /* Next in list. */
1606 struct sblock *next;
1607
1608 /* Pointer to the next free sdata block. This points past the end
1609 of the sblock if there isn't any space left in this block. */
1610 struct sdata *next_free;
1611
1612 /* Start of data. */
1613 struct sdata first_data;
1614 };
1615
1616 /* Number of Lisp strings in a string_block structure. The 1020 is
1617 1024 minus malloc overhead. */
1618
1619 #define STRING_BLOCK_SIZE \
1620 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1621
1622 /* Structure describing a block from which Lisp_String structures
1623 are allocated. */
1624
1625 struct string_block
1626 {
1627 /* Place `strings' first, to preserve alignment. */
1628 struct Lisp_String strings[STRING_BLOCK_SIZE];
1629 struct string_block *next;
1630 };
1631
1632 /* Head and tail of the list of sblock structures holding Lisp string
1633 data. We always allocate from current_sblock. The NEXT pointers
1634 in the sblock structures go from oldest_sblock to current_sblock. */
1635
1636 static struct sblock *oldest_sblock, *current_sblock;
1637
1638 /* List of sblocks for large strings. */
1639
1640 static struct sblock *large_sblocks;
1641
1642 /* List of string_block structures, and how many there are. */
1643
1644 static struct string_block *string_blocks;
1645 static int n_string_blocks;
1646
1647 /* Free-list of Lisp_Strings. */
1648
1649 static struct Lisp_String *string_free_list;
1650
1651 /* Number of live and free Lisp_Strings. */
1652
1653 static int total_strings, total_free_strings;
1654
1655 /* Number of bytes used by live strings. */
1656
1657 static int total_string_size;
1658
1659 /* Given a pointer to a Lisp_String S which is on the free-list
1660 string_free_list, return a pointer to its successor in the
1661 free-list. */
1662
1663 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1664
1665 /* Return a pointer to the sdata structure belonging to Lisp string S.
1666 S must be live, i.e. S->data must not be null. S->data is actually
1667 a pointer to the `u.data' member of its sdata structure; the
1668 structure starts at a constant offset in front of that. */
1669
1670 #ifdef GC_CHECK_STRING_BYTES
1671
1672 #define SDATA_OF_STRING(S) \
1673 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1674 - sizeof (EMACS_INT)))
1675
1676 #else /* not GC_CHECK_STRING_BYTES */
1677
1678 #define SDATA_OF_STRING(S) \
1679 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1680
1681 #endif /* not GC_CHECK_STRING_BYTES */
1682
1683
1684 #ifdef GC_CHECK_STRING_OVERRUN
1685
1686 /* We check for overrun in string data blocks by appending a small
1687 "cookie" after each allocated string data block, and check for the
1688 presence of this cookie during GC. */
1689
1690 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1691 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1692 { 0xde, 0xad, 0xbe, 0xef };
1693
1694 #else
1695 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1696 #endif
1697
1698 /* Value is the size of an sdata structure large enough to hold NBYTES
1699 bytes of string data. The value returned includes a terminating
1700 NUL byte, the size of the sdata structure, and padding. */
1701
1702 #ifdef GC_CHECK_STRING_BYTES
1703
1704 #define SDATA_SIZE(NBYTES) \
1705 ((sizeof (struct Lisp_String *) \
1706 + (NBYTES) + 1 \
1707 + sizeof (EMACS_INT) \
1708 + sizeof (EMACS_INT) - 1) \
1709 & ~(sizeof (EMACS_INT) - 1))
1710
1711 #else /* not GC_CHECK_STRING_BYTES */
1712
1713 #define SDATA_SIZE(NBYTES) \
1714 ((sizeof (struct Lisp_String *) \
1715 + (NBYTES) + 1 \
1716 + sizeof (EMACS_INT) - 1) \
1717 & ~(sizeof (EMACS_INT) - 1))
1718
1719 #endif /* not GC_CHECK_STRING_BYTES */
1720
1721 /* Extra bytes to allocate for each string. */
1722
1723 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1724
1725 /* Initialize string allocation. Called from init_alloc_once. */
1726
1727 void
1728 init_strings ()
1729 {
1730 total_strings = total_free_strings = total_string_size = 0;
1731 oldest_sblock = current_sblock = large_sblocks = NULL;
1732 string_blocks = NULL;
1733 n_string_blocks = 0;
1734 string_free_list = NULL;
1735 }
1736
1737
1738 #ifdef GC_CHECK_STRING_BYTES
1739
1740 static int check_string_bytes_count;
1741
1742 void check_string_bytes P_ ((int));
1743 void check_sblock P_ ((struct sblock *));
1744
1745 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1746
1747
1748 /* Like GC_STRING_BYTES, but with debugging check. */
1749
1750 int
1751 string_bytes (s)
1752 struct Lisp_String *s;
1753 {
1754 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1755 if (!PURE_POINTER_P (s)
1756 && s->data
1757 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1758 abort ();
1759 return nbytes;
1760 }
1761
1762 /* Check validity of Lisp strings' string_bytes member in B. */
1763
1764 void
1765 check_sblock (b)
1766 struct sblock *b;
1767 {
1768 struct sdata *from, *end, *from_end;
1769
1770 end = b->next_free;
1771
1772 for (from = &b->first_data; from < end; from = from_end)
1773 {
1774 /* Compute the next FROM here because copying below may
1775 overwrite data we need to compute it. */
1776 int nbytes;
1777
1778 /* Check that the string size recorded in the string is the
1779 same as the one recorded in the sdata structure. */
1780 if (from->string)
1781 CHECK_STRING_BYTES (from->string);
1782
1783 if (from->string)
1784 nbytes = GC_STRING_BYTES (from->string);
1785 else
1786 nbytes = SDATA_NBYTES (from);
1787
1788 nbytes = SDATA_SIZE (nbytes);
1789 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1790 }
1791 }
1792
1793
1794 /* Check validity of Lisp strings' string_bytes member. ALL_P
1795 non-zero means check all strings, otherwise check only most
1796 recently allocated strings. Used for hunting a bug. */
1797
1798 void
1799 check_string_bytes (all_p)
1800 int all_p;
1801 {
1802 if (all_p)
1803 {
1804 struct sblock *b;
1805
1806 for (b = large_sblocks; b; b = b->next)
1807 {
1808 struct Lisp_String *s = b->first_data.string;
1809 if (s)
1810 CHECK_STRING_BYTES (s);
1811 }
1812
1813 for (b = oldest_sblock; b; b = b->next)
1814 check_sblock (b);
1815 }
1816 else
1817 check_sblock (current_sblock);
1818 }
1819
1820 #endif /* GC_CHECK_STRING_BYTES */
1821
1822 #ifdef GC_CHECK_STRING_FREE_LIST
1823
1824 /* Walk through the string free list looking for bogus next pointers.
1825 This may catch buffer overrun from a previous string. */
1826
1827 static void
1828 check_string_free_list ()
1829 {
1830 struct Lisp_String *s;
1831
1832 /* Pop a Lisp_String off the free-list. */
1833 s = string_free_list;
1834 while (s != NULL)
1835 {
1836 if ((unsigned)s < 1024)
1837 abort();
1838 s = NEXT_FREE_LISP_STRING (s);
1839 }
1840 }
1841 #else
1842 #define check_string_free_list()
1843 #endif
1844
1845 /* Return a new Lisp_String. */
1846
1847 static struct Lisp_String *
1848 allocate_string ()
1849 {
1850 struct Lisp_String *s;
1851
1852 /* If the free-list is empty, allocate a new string_block, and
1853 add all the Lisp_Strings in it to the free-list. */
1854 if (string_free_list == NULL)
1855 {
1856 struct string_block *b;
1857 int i;
1858
1859 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1860 bzero (b, sizeof *b);
1861 b->next = string_blocks;
1862 string_blocks = b;
1863 ++n_string_blocks;
1864
1865 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1866 {
1867 s = b->strings + i;
1868 NEXT_FREE_LISP_STRING (s) = string_free_list;
1869 string_free_list = s;
1870 }
1871
1872 total_free_strings += STRING_BLOCK_SIZE;
1873 }
1874
1875 check_string_free_list ();
1876
1877 /* Pop a Lisp_String off the free-list. */
1878 s = string_free_list;
1879 string_free_list = NEXT_FREE_LISP_STRING (s);
1880
1881 /* Probably not strictly necessary, but play it safe. */
1882 bzero (s, sizeof *s);
1883
1884 --total_free_strings;
1885 ++total_strings;
1886 ++strings_consed;
1887 consing_since_gc += sizeof *s;
1888
1889 #ifdef GC_CHECK_STRING_BYTES
1890 if (!noninteractive
1891 #ifdef MAC_OS8
1892 && current_sblock
1893 #endif
1894 )
1895 {
1896 if (++check_string_bytes_count == 200)
1897 {
1898 check_string_bytes_count = 0;
1899 check_string_bytes (1);
1900 }
1901 else
1902 check_string_bytes (0);
1903 }
1904 #endif /* GC_CHECK_STRING_BYTES */
1905
1906 return s;
1907 }
1908
1909
1910 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1911 plus a NUL byte at the end. Allocate an sdata structure for S, and
1912 set S->data to its `u.data' member. Store a NUL byte at the end of
1913 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1914 S->data if it was initially non-null. */
1915
1916 void
1917 allocate_string_data (s, nchars, nbytes)
1918 struct Lisp_String *s;
1919 int nchars, nbytes;
1920 {
1921 struct sdata *data, *old_data;
1922 struct sblock *b;
1923 int needed, old_nbytes;
1924
1925 /* Determine the number of bytes needed to store NBYTES bytes
1926 of string data. */
1927 needed = SDATA_SIZE (nbytes);
1928
1929 if (nbytes > LARGE_STRING_BYTES)
1930 {
1931 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1932
1933 #ifdef DOUG_LEA_MALLOC
1934 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1935 because mapped region contents are not preserved in
1936 a dumped Emacs.
1937
1938 In case you think of allowing it in a dumped Emacs at the
1939 cost of not being able to re-dump, there's another reason:
1940 mmap'ed data typically have an address towards the top of the
1941 address space, which won't fit into an EMACS_INT (at least on
1942 32-bit systems with the current tagging scheme). --fx */
1943 BLOCK_INPUT;
1944 mallopt (M_MMAP_MAX, 0);
1945 UNBLOCK_INPUT;
1946 #endif
1947
1948 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1949
1950 #ifdef DOUG_LEA_MALLOC
1951 /* Back to a reasonable maximum of mmap'ed areas. */
1952 BLOCK_INPUT;
1953 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1954 UNBLOCK_INPUT;
1955 #endif
1956
1957 b->next_free = &b->first_data;
1958 b->first_data.string = NULL;
1959 b->next = large_sblocks;
1960 large_sblocks = b;
1961 }
1962 else if (current_sblock == NULL
1963 || (((char *) current_sblock + SBLOCK_SIZE
1964 - (char *) current_sblock->next_free)
1965 < (needed + GC_STRING_EXTRA)))
1966 {
1967 /* Not enough room in the current sblock. */
1968 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1969 b->next_free = &b->first_data;
1970 b->first_data.string = NULL;
1971 b->next = NULL;
1972
1973 if (current_sblock)
1974 current_sblock->next = b;
1975 else
1976 oldest_sblock = b;
1977 current_sblock = b;
1978 }
1979 else
1980 b = current_sblock;
1981
1982 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1983 old_nbytes = GC_STRING_BYTES (s);
1984
1985 data = b->next_free;
1986 data->string = s;
1987 s->data = SDATA_DATA (data);
1988 #ifdef GC_CHECK_STRING_BYTES
1989 SDATA_NBYTES (data) = nbytes;
1990 #endif
1991 s->size = nchars;
1992 s->size_byte = nbytes;
1993 s->data[nbytes] = '\0';
1994 #ifdef GC_CHECK_STRING_OVERRUN
1995 bcopy (string_overrun_cookie, (char *) data + needed,
1996 GC_STRING_OVERRUN_COOKIE_SIZE);
1997 #endif
1998 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1999
2000 /* If S had already data assigned, mark that as free by setting its
2001 string back-pointer to null, and recording the size of the data
2002 in it. */
2003 if (old_data)
2004 {
2005 SDATA_NBYTES (old_data) = old_nbytes;
2006 old_data->string = NULL;
2007 }
2008
2009 consing_since_gc += needed;
2010 }
2011
2012
2013 /* Sweep and compact strings. */
2014
2015 static void
2016 sweep_strings ()
2017 {
2018 struct string_block *b, *next;
2019 struct string_block *live_blocks = NULL;
2020
2021 string_free_list = NULL;
2022 total_strings = total_free_strings = 0;
2023 total_string_size = 0;
2024
2025 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2026 for (b = string_blocks; b; b = next)
2027 {
2028 int i, nfree = 0;
2029 struct Lisp_String *free_list_before = string_free_list;
2030
2031 next = b->next;
2032
2033 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2034 {
2035 struct Lisp_String *s = b->strings + i;
2036
2037 if (s->data)
2038 {
2039 /* String was not on free-list before. */
2040 if (STRING_MARKED_P (s))
2041 {
2042 /* String is live; unmark it and its intervals. */
2043 UNMARK_STRING (s);
2044
2045 if (!NULL_INTERVAL_P (s->intervals))
2046 UNMARK_BALANCE_INTERVALS (s->intervals);
2047
2048 ++total_strings;
2049 total_string_size += STRING_BYTES (s);
2050 }
2051 else
2052 {
2053 /* String is dead. Put it on the free-list. */
2054 struct sdata *data = SDATA_OF_STRING (s);
2055
2056 /* Save the size of S in its sdata so that we know
2057 how large that is. Reset the sdata's string
2058 back-pointer so that we know it's free. */
2059 #ifdef GC_CHECK_STRING_BYTES
2060 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2061 abort ();
2062 #else
2063 data->u.nbytes = GC_STRING_BYTES (s);
2064 #endif
2065 data->string = NULL;
2066
2067 /* Reset the strings's `data' member so that we
2068 know it's free. */
2069 s->data = NULL;
2070
2071 /* Put the string on the free-list. */
2072 NEXT_FREE_LISP_STRING (s) = string_free_list;
2073 string_free_list = s;
2074 ++nfree;
2075 }
2076 }
2077 else
2078 {
2079 /* S was on the free-list before. Put it there again. */
2080 NEXT_FREE_LISP_STRING (s) = string_free_list;
2081 string_free_list = s;
2082 ++nfree;
2083 }
2084 }
2085
2086 /* Free blocks that contain free Lisp_Strings only, except
2087 the first two of them. */
2088 if (nfree == STRING_BLOCK_SIZE
2089 && total_free_strings > STRING_BLOCK_SIZE)
2090 {
2091 lisp_free (b);
2092 --n_string_blocks;
2093 string_free_list = free_list_before;
2094 }
2095 else
2096 {
2097 total_free_strings += nfree;
2098 b->next = live_blocks;
2099 live_blocks = b;
2100 }
2101 }
2102
2103 check_string_free_list ();
2104
2105 string_blocks = live_blocks;
2106 free_large_strings ();
2107 compact_small_strings ();
2108
2109 check_string_free_list ();
2110 }
2111
2112
2113 /* Free dead large strings. */
2114
2115 static void
2116 free_large_strings ()
2117 {
2118 struct sblock *b, *next;
2119 struct sblock *live_blocks = NULL;
2120
2121 for (b = large_sblocks; b; b = next)
2122 {
2123 next = b->next;
2124
2125 if (b->first_data.string == NULL)
2126 lisp_free (b);
2127 else
2128 {
2129 b->next = live_blocks;
2130 live_blocks = b;
2131 }
2132 }
2133
2134 large_sblocks = live_blocks;
2135 }
2136
2137
2138 /* Compact data of small strings. Free sblocks that don't contain
2139 data of live strings after compaction. */
2140
2141 static void
2142 compact_small_strings ()
2143 {
2144 struct sblock *b, *tb, *next;
2145 struct sdata *from, *to, *end, *tb_end;
2146 struct sdata *to_end, *from_end;
2147
2148 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2149 to, and TB_END is the end of TB. */
2150 tb = oldest_sblock;
2151 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2152 to = &tb->first_data;
2153
2154 /* Step through the blocks from the oldest to the youngest. We
2155 expect that old blocks will stabilize over time, so that less
2156 copying will happen this way. */
2157 for (b = oldest_sblock; b; b = b->next)
2158 {
2159 end = b->next_free;
2160 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2161
2162 for (from = &b->first_data; from < end; from = from_end)
2163 {
2164 /* Compute the next FROM here because copying below may
2165 overwrite data we need to compute it. */
2166 int nbytes;
2167
2168 #ifdef GC_CHECK_STRING_BYTES
2169 /* Check that the string size recorded in the string is the
2170 same as the one recorded in the sdata structure. */
2171 if (from->string
2172 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2173 abort ();
2174 #endif /* GC_CHECK_STRING_BYTES */
2175
2176 if (from->string)
2177 nbytes = GC_STRING_BYTES (from->string);
2178 else
2179 nbytes = SDATA_NBYTES (from);
2180
2181 if (nbytes > LARGE_STRING_BYTES)
2182 abort ();
2183
2184 nbytes = SDATA_SIZE (nbytes);
2185 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2186
2187 #ifdef GC_CHECK_STRING_OVERRUN
2188 if (bcmp (string_overrun_cookie,
2189 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2190 GC_STRING_OVERRUN_COOKIE_SIZE))
2191 abort ();
2192 #endif
2193
2194 /* FROM->string non-null means it's alive. Copy its data. */
2195 if (from->string)
2196 {
2197 /* If TB is full, proceed with the next sblock. */
2198 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2199 if (to_end > tb_end)
2200 {
2201 tb->next_free = to;
2202 tb = tb->next;
2203 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2204 to = &tb->first_data;
2205 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2206 }
2207
2208 /* Copy, and update the string's `data' pointer. */
2209 if (from != to)
2210 {
2211 xassert (tb != b || to <= from);
2212 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2213 to->string->data = SDATA_DATA (to);
2214 }
2215
2216 /* Advance past the sdata we copied to. */
2217 to = to_end;
2218 }
2219 }
2220 }
2221
2222 /* The rest of the sblocks following TB don't contain live data, so
2223 we can free them. */
2224 for (b = tb->next; b; b = next)
2225 {
2226 next = b->next;
2227 lisp_free (b);
2228 }
2229
2230 tb->next_free = to;
2231 tb->next = NULL;
2232 current_sblock = tb;
2233 }
2234
2235
2236 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2237 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2238 LENGTH must be an integer.
2239 INIT must be an integer that represents a character. */)
2240 (length, init)
2241 Lisp_Object length, init;
2242 {
2243 register Lisp_Object val;
2244 register unsigned char *p, *end;
2245 int c, nbytes;
2246
2247 CHECK_NATNUM (length);
2248 CHECK_NUMBER (init);
2249
2250 c = XINT (init);
2251 if (SINGLE_BYTE_CHAR_P (c))
2252 {
2253 nbytes = XINT (length);
2254 val = make_uninit_string (nbytes);
2255 p = SDATA (val);
2256 end = p + SCHARS (val);
2257 while (p != end)
2258 *p++ = c;
2259 }
2260 else
2261 {
2262 unsigned char str[MAX_MULTIBYTE_LENGTH];
2263 int len = CHAR_STRING (c, str);
2264
2265 nbytes = len * XINT (length);
2266 val = make_uninit_multibyte_string (XINT (length), nbytes);
2267 p = SDATA (val);
2268 end = p + nbytes;
2269 while (p != end)
2270 {
2271 bcopy (str, p, len);
2272 p += len;
2273 }
2274 }
2275
2276 *p = 0;
2277 return val;
2278 }
2279
2280
2281 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2282 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2283 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2284 (length, init)
2285 Lisp_Object length, init;
2286 {
2287 register Lisp_Object val;
2288 struct Lisp_Bool_Vector *p;
2289 int real_init, i;
2290 int length_in_chars, length_in_elts, bits_per_value;
2291
2292 CHECK_NATNUM (length);
2293
2294 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2295
2296 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2297 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2298 / BOOL_VECTOR_BITS_PER_CHAR);
2299
2300 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2301 slot `size' of the struct Lisp_Bool_Vector. */
2302 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2303 p = XBOOL_VECTOR (val);
2304
2305 /* Get rid of any bits that would cause confusion. */
2306 p->vector_size = 0;
2307 XSETBOOL_VECTOR (val, p);
2308 p->size = XFASTINT (length);
2309
2310 real_init = (NILP (init) ? 0 : -1);
2311 for (i = 0; i < length_in_chars ; i++)
2312 p->data[i] = real_init;
2313
2314 /* Clear the extraneous bits in the last byte. */
2315 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2316 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2317 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2318
2319 return val;
2320 }
2321
2322
2323 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2324 of characters from the contents. This string may be unibyte or
2325 multibyte, depending on the contents. */
2326
2327 Lisp_Object
2328 make_string (contents, nbytes)
2329 const char *contents;
2330 int nbytes;
2331 {
2332 register Lisp_Object val;
2333 int nchars, multibyte_nbytes;
2334
2335 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2336 if (nbytes == nchars || nbytes != multibyte_nbytes)
2337 /* CONTENTS contains no multibyte sequences or contains an invalid
2338 multibyte sequence. We must make unibyte string. */
2339 val = make_unibyte_string (contents, nbytes);
2340 else
2341 val = make_multibyte_string (contents, nchars, nbytes);
2342 return val;
2343 }
2344
2345
2346 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2347
2348 Lisp_Object
2349 make_unibyte_string (contents, length)
2350 const char *contents;
2351 int length;
2352 {
2353 register Lisp_Object val;
2354 val = make_uninit_string (length);
2355 bcopy (contents, SDATA (val), length);
2356 STRING_SET_UNIBYTE (val);
2357 return val;
2358 }
2359
2360
2361 /* Make a multibyte string from NCHARS characters occupying NBYTES
2362 bytes at CONTENTS. */
2363
2364 Lisp_Object
2365 make_multibyte_string (contents, nchars, nbytes)
2366 const char *contents;
2367 int nchars, nbytes;
2368 {
2369 register Lisp_Object val;
2370 val = make_uninit_multibyte_string (nchars, nbytes);
2371 bcopy (contents, SDATA (val), nbytes);
2372 return val;
2373 }
2374
2375
2376 /* Make a string from NCHARS characters occupying NBYTES bytes at
2377 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2378
2379 Lisp_Object
2380 make_string_from_bytes (contents, nchars, nbytes)
2381 const char *contents;
2382 int nchars, nbytes;
2383 {
2384 register Lisp_Object val;
2385 val = make_uninit_multibyte_string (nchars, nbytes);
2386 bcopy (contents, SDATA (val), nbytes);
2387 if (SBYTES (val) == SCHARS (val))
2388 STRING_SET_UNIBYTE (val);
2389 return val;
2390 }
2391
2392
2393 /* Make a string from NCHARS characters occupying NBYTES bytes at
2394 CONTENTS. The argument MULTIBYTE controls whether to label the
2395 string as multibyte. If NCHARS is negative, it counts the number of
2396 characters by itself. */
2397
2398 Lisp_Object
2399 make_specified_string (contents, nchars, nbytes, multibyte)
2400 const char *contents;
2401 int nchars, nbytes;
2402 int multibyte;
2403 {
2404 register Lisp_Object val;
2405
2406 if (nchars < 0)
2407 {
2408 if (multibyte)
2409 nchars = multibyte_chars_in_text (contents, nbytes);
2410 else
2411 nchars = nbytes;
2412 }
2413 val = make_uninit_multibyte_string (nchars, nbytes);
2414 bcopy (contents, SDATA (val), nbytes);
2415 if (!multibyte)
2416 STRING_SET_UNIBYTE (val);
2417 return val;
2418 }
2419
2420
2421 /* Make a string from the data at STR, treating it as multibyte if the
2422 data warrants. */
2423
2424 Lisp_Object
2425 build_string (str)
2426 const char *str;
2427 {
2428 return make_string (str, strlen (str));
2429 }
2430
2431
2432 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2433 occupying LENGTH bytes. */
2434
2435 Lisp_Object
2436 make_uninit_string (length)
2437 int length;
2438 {
2439 Lisp_Object val;
2440 val = make_uninit_multibyte_string (length, length);
2441 STRING_SET_UNIBYTE (val);
2442 return val;
2443 }
2444
2445
2446 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2447 which occupy NBYTES bytes. */
2448
2449 Lisp_Object
2450 make_uninit_multibyte_string (nchars, nbytes)
2451 int nchars, nbytes;
2452 {
2453 Lisp_Object string;
2454 struct Lisp_String *s;
2455
2456 if (nchars < 0)
2457 abort ();
2458
2459 s = allocate_string ();
2460 allocate_string_data (s, nchars, nbytes);
2461 XSETSTRING (string, s);
2462 string_chars_consed += nbytes;
2463 return string;
2464 }
2465
2466
2467 \f
2468 /***********************************************************************
2469 Float Allocation
2470 ***********************************************************************/
2471
2472 /* We store float cells inside of float_blocks, allocating a new
2473 float_block with malloc whenever necessary. Float cells reclaimed
2474 by GC are put on a free list to be reallocated before allocating
2475 any new float cells from the latest float_block. */
2476
2477 #define FLOAT_BLOCK_SIZE \
2478 (((BLOCK_BYTES - sizeof (struct float_block *) \
2479 /* The compiler might add padding at the end. */ \
2480 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2481 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2482
2483 #define GETMARKBIT(block,n) \
2484 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2485 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2486 & 1)
2487
2488 #define SETMARKBIT(block,n) \
2489 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2490 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2491
2492 #define UNSETMARKBIT(block,n) \
2493 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2494 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2495
2496 #define FLOAT_BLOCK(fptr) \
2497 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2498
2499 #define FLOAT_INDEX(fptr) \
2500 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2501
2502 struct float_block
2503 {
2504 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2505 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2506 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2507 struct float_block *next;
2508 };
2509
2510 #define FLOAT_MARKED_P(fptr) \
2511 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2512
2513 #define FLOAT_MARK(fptr) \
2514 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2515
2516 #define FLOAT_UNMARK(fptr) \
2517 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2518
2519 /* Current float_block. */
2520
2521 struct float_block *float_block;
2522
2523 /* Index of first unused Lisp_Float in the current float_block. */
2524
2525 int float_block_index;
2526
2527 /* Total number of float blocks now in use. */
2528
2529 int n_float_blocks;
2530
2531 /* Free-list of Lisp_Floats. */
2532
2533 struct Lisp_Float *float_free_list;
2534
2535
2536 /* Initialize float allocation. */
2537
2538 void
2539 init_float ()
2540 {
2541 float_block = NULL;
2542 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2543 float_free_list = 0;
2544 n_float_blocks = 0;
2545 }
2546
2547
2548 /* Explicitly free a float cell by putting it on the free-list. */
2549
2550 void
2551 free_float (ptr)
2552 struct Lisp_Float *ptr;
2553 {
2554 *(struct Lisp_Float **)&ptr->data = float_free_list;
2555 float_free_list = ptr;
2556 }
2557
2558
2559 /* Return a new float object with value FLOAT_VALUE. */
2560
2561 Lisp_Object
2562 make_float (float_value)
2563 double float_value;
2564 {
2565 register Lisp_Object val;
2566
2567 if (float_free_list)
2568 {
2569 /* We use the data field for chaining the free list
2570 so that we won't use the same field that has the mark bit. */
2571 XSETFLOAT (val, float_free_list);
2572 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2573 }
2574 else
2575 {
2576 if (float_block_index == FLOAT_BLOCK_SIZE)
2577 {
2578 register struct float_block *new;
2579
2580 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2581 MEM_TYPE_FLOAT);
2582 new->next = float_block;
2583 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2584 float_block = new;
2585 float_block_index = 0;
2586 n_float_blocks++;
2587 }
2588 XSETFLOAT (val, &float_block->floats[float_block_index]);
2589 float_block_index++;
2590 }
2591
2592 XFLOAT_DATA (val) = float_value;
2593 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2594 consing_since_gc += sizeof (struct Lisp_Float);
2595 floats_consed++;
2596 return val;
2597 }
2598
2599
2600 \f
2601 /***********************************************************************
2602 Cons Allocation
2603 ***********************************************************************/
2604
2605 /* We store cons cells inside of cons_blocks, allocating a new
2606 cons_block with malloc whenever necessary. Cons cells reclaimed by
2607 GC are put on a free list to be reallocated before allocating
2608 any new cons cells from the latest cons_block. */
2609
2610 #define CONS_BLOCK_SIZE \
2611 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2612 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2613
2614 #define CONS_BLOCK(fptr) \
2615 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2616
2617 #define CONS_INDEX(fptr) \
2618 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2619
2620 struct cons_block
2621 {
2622 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2623 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2624 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2625 struct cons_block *next;
2626 };
2627
2628 #define CONS_MARKED_P(fptr) \
2629 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2630
2631 #define CONS_MARK(fptr) \
2632 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2633
2634 #define CONS_UNMARK(fptr) \
2635 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2636
2637 /* Current cons_block. */
2638
2639 struct cons_block *cons_block;
2640
2641 /* Index of first unused Lisp_Cons in the current block. */
2642
2643 int cons_block_index;
2644
2645 /* Free-list of Lisp_Cons structures. */
2646
2647 struct Lisp_Cons *cons_free_list;
2648
2649 /* Total number of cons blocks now in use. */
2650
2651 int n_cons_blocks;
2652
2653
2654 /* Initialize cons allocation. */
2655
2656 void
2657 init_cons ()
2658 {
2659 cons_block = NULL;
2660 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2661 cons_free_list = 0;
2662 n_cons_blocks = 0;
2663 }
2664
2665
2666 /* Explicitly free a cons cell by putting it on the free-list. */
2667
2668 void
2669 free_cons (ptr)
2670 struct Lisp_Cons *ptr;
2671 {
2672 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2673 #if GC_MARK_STACK
2674 ptr->car = Vdead;
2675 #endif
2676 cons_free_list = ptr;
2677 }
2678
2679 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2680 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2681 (car, cdr)
2682 Lisp_Object car, cdr;
2683 {
2684 register Lisp_Object val;
2685
2686 if (cons_free_list)
2687 {
2688 /* We use the cdr for chaining the free list
2689 so that we won't use the same field that has the mark bit. */
2690 XSETCONS (val, cons_free_list);
2691 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2692 }
2693 else
2694 {
2695 if (cons_block_index == CONS_BLOCK_SIZE)
2696 {
2697 register struct cons_block *new;
2698 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2699 MEM_TYPE_CONS);
2700 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2701 new->next = cons_block;
2702 cons_block = new;
2703 cons_block_index = 0;
2704 n_cons_blocks++;
2705 }
2706 XSETCONS (val, &cons_block->conses[cons_block_index]);
2707 cons_block_index++;
2708 }
2709
2710 XSETCAR (val, car);
2711 XSETCDR (val, cdr);
2712 eassert (!CONS_MARKED_P (XCONS (val)));
2713 consing_since_gc += sizeof (struct Lisp_Cons);
2714 cons_cells_consed++;
2715 return val;
2716 }
2717
2718 /* Get an error now if there's any junk in the cons free list. */
2719 void
2720 check_cons_list ()
2721 {
2722 #ifdef GC_CHECK_CONS_LIST
2723 struct Lisp_Cons *tail = cons_free_list;
2724
2725 while (tail)
2726 tail = *(struct Lisp_Cons **)&tail->cdr;
2727 #endif
2728 }
2729
2730 /* Make a list of 2, 3, 4 or 5 specified objects. */
2731
2732 Lisp_Object
2733 list2 (arg1, arg2)
2734 Lisp_Object arg1, arg2;
2735 {
2736 return Fcons (arg1, Fcons (arg2, Qnil));
2737 }
2738
2739
2740 Lisp_Object
2741 list3 (arg1, arg2, arg3)
2742 Lisp_Object arg1, arg2, arg3;
2743 {
2744 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2745 }
2746
2747
2748 Lisp_Object
2749 list4 (arg1, arg2, arg3, arg4)
2750 Lisp_Object arg1, arg2, arg3, arg4;
2751 {
2752 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2753 }
2754
2755
2756 Lisp_Object
2757 list5 (arg1, arg2, arg3, arg4, arg5)
2758 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2759 {
2760 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2761 Fcons (arg5, Qnil)))));
2762 }
2763
2764
2765 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2766 doc: /* Return a newly created list with specified arguments as elements.
2767 Any number of arguments, even zero arguments, are allowed.
2768 usage: (list &rest OBJECTS) */)
2769 (nargs, args)
2770 int nargs;
2771 register Lisp_Object *args;
2772 {
2773 register Lisp_Object val;
2774 val = Qnil;
2775
2776 while (nargs > 0)
2777 {
2778 nargs--;
2779 val = Fcons (args[nargs], val);
2780 }
2781 return val;
2782 }
2783
2784
2785 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2786 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2787 (length, init)
2788 register Lisp_Object length, init;
2789 {
2790 register Lisp_Object val;
2791 register int size;
2792
2793 CHECK_NATNUM (length);
2794 size = XFASTINT (length);
2795
2796 val = Qnil;
2797 while (size > 0)
2798 {
2799 val = Fcons (init, val);
2800 --size;
2801
2802 if (size > 0)
2803 {
2804 val = Fcons (init, val);
2805 --size;
2806
2807 if (size > 0)
2808 {
2809 val = Fcons (init, val);
2810 --size;
2811
2812 if (size > 0)
2813 {
2814 val = Fcons (init, val);
2815 --size;
2816
2817 if (size > 0)
2818 {
2819 val = Fcons (init, val);
2820 --size;
2821 }
2822 }
2823 }
2824 }
2825
2826 QUIT;
2827 }
2828
2829 return val;
2830 }
2831
2832
2833 \f
2834 /***********************************************************************
2835 Vector Allocation
2836 ***********************************************************************/
2837
2838 /* Singly-linked list of all vectors. */
2839
2840 struct Lisp_Vector *all_vectors;
2841
2842 /* Total number of vector-like objects now in use. */
2843
2844 int n_vectors;
2845
2846
2847 /* Value is a pointer to a newly allocated Lisp_Vector structure
2848 with room for LEN Lisp_Objects. */
2849
2850 static struct Lisp_Vector *
2851 allocate_vectorlike (len, type)
2852 EMACS_INT len;
2853 enum mem_type type;
2854 {
2855 struct Lisp_Vector *p;
2856 size_t nbytes;
2857
2858 #ifdef DOUG_LEA_MALLOC
2859 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2860 because mapped region contents are not preserved in
2861 a dumped Emacs. */
2862 BLOCK_INPUT;
2863 mallopt (M_MMAP_MAX, 0);
2864 UNBLOCK_INPUT;
2865 #endif
2866
2867 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2868 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2869
2870 #ifdef DOUG_LEA_MALLOC
2871 /* Back to a reasonable maximum of mmap'ed areas. */
2872 BLOCK_INPUT;
2873 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2874 UNBLOCK_INPUT;
2875 #endif
2876
2877 consing_since_gc += nbytes;
2878 vector_cells_consed += len;
2879
2880 p->next = all_vectors;
2881 all_vectors = p;
2882 ++n_vectors;
2883 return p;
2884 }
2885
2886
2887 /* Allocate a vector with NSLOTS slots. */
2888
2889 struct Lisp_Vector *
2890 allocate_vector (nslots)
2891 EMACS_INT nslots;
2892 {
2893 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2894 v->size = nslots;
2895 return v;
2896 }
2897
2898
2899 /* Allocate other vector-like structures. */
2900
2901 struct Lisp_Hash_Table *
2902 allocate_hash_table ()
2903 {
2904 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2905 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2906 EMACS_INT i;
2907
2908 v->size = len;
2909 for (i = 0; i < len; ++i)
2910 v->contents[i] = Qnil;
2911
2912 return (struct Lisp_Hash_Table *) v;
2913 }
2914
2915
2916 struct window *
2917 allocate_window ()
2918 {
2919 EMACS_INT len = VECSIZE (struct window);
2920 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2921 EMACS_INT i;
2922
2923 for (i = 0; i < len; ++i)
2924 v->contents[i] = Qnil;
2925 v->size = len;
2926
2927 return (struct window *) v;
2928 }
2929
2930
2931 struct frame *
2932 allocate_frame ()
2933 {
2934 EMACS_INT len = VECSIZE (struct frame);
2935 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2936 EMACS_INT i;
2937
2938 for (i = 0; i < len; ++i)
2939 v->contents[i] = make_number (0);
2940 v->size = len;
2941 return (struct frame *) v;
2942 }
2943
2944
2945 struct Lisp_Process *
2946 allocate_process ()
2947 {
2948 EMACS_INT len = VECSIZE (struct Lisp_Process);
2949 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2950 EMACS_INT i;
2951
2952 for (i = 0; i < len; ++i)
2953 v->contents[i] = Qnil;
2954 v->size = len;
2955
2956 return (struct Lisp_Process *) v;
2957 }
2958
2959
2960 struct Lisp_Vector *
2961 allocate_other_vector (len)
2962 EMACS_INT len;
2963 {
2964 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2965 EMACS_INT i;
2966
2967 for (i = 0; i < len; ++i)
2968 v->contents[i] = Qnil;
2969 v->size = len;
2970
2971 return v;
2972 }
2973
2974
2975 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2976 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2977 See also the function `vector'. */)
2978 (length, init)
2979 register Lisp_Object length, init;
2980 {
2981 Lisp_Object vector;
2982 register EMACS_INT sizei;
2983 register int index;
2984 register struct Lisp_Vector *p;
2985
2986 CHECK_NATNUM (length);
2987 sizei = XFASTINT (length);
2988
2989 p = allocate_vector (sizei);
2990 for (index = 0; index < sizei; index++)
2991 p->contents[index] = init;
2992
2993 XSETVECTOR (vector, p);
2994 return vector;
2995 }
2996
2997
2998 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2999 doc: /* Return a newly created char-table, with purpose PURPOSE.
3000 Each element is initialized to INIT, which defaults to nil.
3001 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3002 The property's value should be an integer between 0 and 10. */)
3003 (purpose, init)
3004 register Lisp_Object purpose, init;
3005 {
3006 Lisp_Object vector;
3007 Lisp_Object n;
3008 CHECK_SYMBOL (purpose);
3009 n = Fget (purpose, Qchar_table_extra_slots);
3010 CHECK_NUMBER (n);
3011 if (XINT (n) < 0 || XINT (n) > 10)
3012 args_out_of_range (n, Qnil);
3013 /* Add 2 to the size for the defalt and parent slots. */
3014 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3015 init);
3016 XCHAR_TABLE (vector)->top = Qt;
3017 XCHAR_TABLE (vector)->parent = Qnil;
3018 XCHAR_TABLE (vector)->purpose = purpose;
3019 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3020 return vector;
3021 }
3022
3023
3024 /* Return a newly created sub char table with slots initialized by INIT.
3025 Since a sub char table does not appear as a top level Emacs Lisp
3026 object, we don't need a Lisp interface to make it. */
3027
3028 Lisp_Object
3029 make_sub_char_table (init)
3030 Lisp_Object init;
3031 {
3032 Lisp_Object vector
3033 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3034 XCHAR_TABLE (vector)->top = Qnil;
3035 XCHAR_TABLE (vector)->defalt = Qnil;
3036 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3037 return vector;
3038 }
3039
3040
3041 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3042 doc: /* Return a newly created vector with specified arguments as elements.
3043 Any number of arguments, even zero arguments, are allowed.
3044 usage: (vector &rest OBJECTS) */)
3045 (nargs, args)
3046 register int nargs;
3047 Lisp_Object *args;
3048 {
3049 register Lisp_Object len, val;
3050 register int index;
3051 register struct Lisp_Vector *p;
3052
3053 XSETFASTINT (len, nargs);
3054 val = Fmake_vector (len, Qnil);
3055 p = XVECTOR (val);
3056 for (index = 0; index < nargs; index++)
3057 p->contents[index] = args[index];
3058 return val;
3059 }
3060
3061
3062 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3063 doc: /* Create a byte-code object with specified arguments as elements.
3064 The arguments should be the arglist, bytecode-string, constant vector,
3065 stack size, (optional) doc string, and (optional) interactive spec.
3066 The first four arguments are required; at most six have any
3067 significance.
3068 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3069 (nargs, args)
3070 register int nargs;
3071 Lisp_Object *args;
3072 {
3073 register Lisp_Object len, val;
3074 register int index;
3075 register struct Lisp_Vector *p;
3076
3077 XSETFASTINT (len, nargs);
3078 if (!NILP (Vpurify_flag))
3079 val = make_pure_vector ((EMACS_INT) nargs);
3080 else
3081 val = Fmake_vector (len, Qnil);
3082
3083 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3084 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3085 earlier because they produced a raw 8-bit string for byte-code
3086 and now such a byte-code string is loaded as multibyte while
3087 raw 8-bit characters converted to multibyte form. Thus, now we
3088 must convert them back to the original unibyte form. */
3089 args[1] = Fstring_as_unibyte (args[1]);
3090
3091 p = XVECTOR (val);
3092 for (index = 0; index < nargs; index++)
3093 {
3094 if (!NILP (Vpurify_flag))
3095 args[index] = Fpurecopy (args[index]);
3096 p->contents[index] = args[index];
3097 }
3098 XSETCOMPILED (val, p);
3099 return val;
3100 }
3101
3102
3103 \f
3104 /***********************************************************************
3105 Symbol Allocation
3106 ***********************************************************************/
3107
3108 /* Each symbol_block is just under 1020 bytes long, since malloc
3109 really allocates in units of powers of two and uses 4 bytes for its
3110 own overhead. */
3111
3112 #define SYMBOL_BLOCK_SIZE \
3113 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3114
3115 struct symbol_block
3116 {
3117 /* Place `symbols' first, to preserve alignment. */
3118 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3119 struct symbol_block *next;
3120 };
3121
3122 /* Current symbol block and index of first unused Lisp_Symbol
3123 structure in it. */
3124
3125 struct symbol_block *symbol_block;
3126 int symbol_block_index;
3127
3128 /* List of free symbols. */
3129
3130 struct Lisp_Symbol *symbol_free_list;
3131
3132 /* Total number of symbol blocks now in use. */
3133
3134 int n_symbol_blocks;
3135
3136
3137 /* Initialize symbol allocation. */
3138
3139 void
3140 init_symbol ()
3141 {
3142 symbol_block = NULL;
3143 symbol_block_index = SYMBOL_BLOCK_SIZE;
3144 symbol_free_list = 0;
3145 n_symbol_blocks = 0;
3146 }
3147
3148
3149 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3150 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3151 Its value and function definition are void, and its property list is nil. */)
3152 (name)
3153 Lisp_Object name;
3154 {
3155 register Lisp_Object val;
3156 register struct Lisp_Symbol *p;
3157
3158 CHECK_STRING (name);
3159
3160 if (symbol_free_list)
3161 {
3162 XSETSYMBOL (val, symbol_free_list);
3163 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3164 }
3165 else
3166 {
3167 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3168 {
3169 struct symbol_block *new;
3170 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3171 MEM_TYPE_SYMBOL);
3172 new->next = symbol_block;
3173 symbol_block = new;
3174 symbol_block_index = 0;
3175 n_symbol_blocks++;
3176 }
3177 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3178 symbol_block_index++;
3179 }
3180
3181 p = XSYMBOL (val);
3182 p->xname = name;
3183 p->plist = Qnil;
3184 p->value = Qunbound;
3185 p->function = Qunbound;
3186 p->next = NULL;
3187 p->gcmarkbit = 0;
3188 p->interned = SYMBOL_UNINTERNED;
3189 p->constant = 0;
3190 p->indirect_variable = 0;
3191 consing_since_gc += sizeof (struct Lisp_Symbol);
3192 symbols_consed++;
3193 return val;
3194 }
3195
3196
3197 \f
3198 /***********************************************************************
3199 Marker (Misc) Allocation
3200 ***********************************************************************/
3201
3202 /* Allocation of markers and other objects that share that structure.
3203 Works like allocation of conses. */
3204
3205 #define MARKER_BLOCK_SIZE \
3206 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3207
3208 struct marker_block
3209 {
3210 /* Place `markers' first, to preserve alignment. */
3211 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3212 struct marker_block *next;
3213 };
3214
3215 struct marker_block *marker_block;
3216 int marker_block_index;
3217
3218 union Lisp_Misc *marker_free_list;
3219
3220 /* Total number of marker blocks now in use. */
3221
3222 int n_marker_blocks;
3223
3224 void
3225 init_marker ()
3226 {
3227 marker_block = NULL;
3228 marker_block_index = MARKER_BLOCK_SIZE;
3229 marker_free_list = 0;
3230 n_marker_blocks = 0;
3231 }
3232
3233 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3234
3235 Lisp_Object
3236 allocate_misc ()
3237 {
3238 Lisp_Object val;
3239
3240 if (marker_free_list)
3241 {
3242 XSETMISC (val, marker_free_list);
3243 marker_free_list = marker_free_list->u_free.chain;
3244 }
3245 else
3246 {
3247 if (marker_block_index == MARKER_BLOCK_SIZE)
3248 {
3249 struct marker_block *new;
3250 new = (struct marker_block *) lisp_malloc (sizeof *new,
3251 MEM_TYPE_MISC);
3252 new->next = marker_block;
3253 marker_block = new;
3254 marker_block_index = 0;
3255 n_marker_blocks++;
3256 total_free_markers += MARKER_BLOCK_SIZE;
3257 }
3258 XSETMISC (val, &marker_block->markers[marker_block_index]);
3259 marker_block_index++;
3260 }
3261
3262 --total_free_markers;
3263 consing_since_gc += sizeof (union Lisp_Misc);
3264 misc_objects_consed++;
3265 XMARKER (val)->gcmarkbit = 0;
3266 return val;
3267 }
3268
3269 /* Free a Lisp_Misc object */
3270
3271 void
3272 free_misc (misc)
3273 Lisp_Object misc;
3274 {
3275 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3276 XMISC (misc)->u_free.chain = marker_free_list;
3277 marker_free_list = XMISC (misc);
3278
3279 total_free_markers++;
3280 }
3281
3282 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3283 INTEGER. This is used to package C values to call record_unwind_protect.
3284 The unwind function can get the C values back using XSAVE_VALUE. */
3285
3286 Lisp_Object
3287 make_save_value (pointer, integer)
3288 void *pointer;
3289 int integer;
3290 {
3291 register Lisp_Object val;
3292 register struct Lisp_Save_Value *p;
3293
3294 val = allocate_misc ();
3295 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3296 p = XSAVE_VALUE (val);
3297 p->pointer = pointer;
3298 p->integer = integer;
3299 p->dogc = 0;
3300 return val;
3301 }
3302
3303 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3304 doc: /* Return a newly allocated marker which does not point at any place. */)
3305 ()
3306 {
3307 register Lisp_Object val;
3308 register struct Lisp_Marker *p;
3309
3310 val = allocate_misc ();
3311 XMISCTYPE (val) = Lisp_Misc_Marker;
3312 p = XMARKER (val);
3313 p->buffer = 0;
3314 p->bytepos = 0;
3315 p->charpos = 0;
3316 p->next = NULL;
3317 p->insertion_type = 0;
3318 return val;
3319 }
3320
3321 /* Put MARKER back on the free list after using it temporarily. */
3322
3323 void
3324 free_marker (marker)
3325 Lisp_Object marker;
3326 {
3327 unchain_marker (XMARKER (marker));
3328 free_misc (marker);
3329 }
3330
3331 \f
3332 /* Return a newly created vector or string with specified arguments as
3333 elements. If all the arguments are characters that can fit
3334 in a string of events, make a string; otherwise, make a vector.
3335
3336 Any number of arguments, even zero arguments, are allowed. */
3337
3338 Lisp_Object
3339 make_event_array (nargs, args)
3340 register int nargs;
3341 Lisp_Object *args;
3342 {
3343 int i;
3344
3345 for (i = 0; i < nargs; i++)
3346 /* The things that fit in a string
3347 are characters that are in 0...127,
3348 after discarding the meta bit and all the bits above it. */
3349 if (!INTEGERP (args[i])
3350 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3351 return Fvector (nargs, args);
3352
3353 /* Since the loop exited, we know that all the things in it are
3354 characters, so we can make a string. */
3355 {
3356 Lisp_Object result;
3357
3358 result = Fmake_string (make_number (nargs), make_number (0));
3359 for (i = 0; i < nargs; i++)
3360 {
3361 SSET (result, i, XINT (args[i]));
3362 /* Move the meta bit to the right place for a string char. */
3363 if (XINT (args[i]) & CHAR_META)
3364 SSET (result, i, SREF (result, i) | 0x80);
3365 }
3366
3367 return result;
3368 }
3369 }
3370
3371
3372 \f
3373 /************************************************************************
3374 C Stack Marking
3375 ************************************************************************/
3376
3377 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3378
3379 /* Conservative C stack marking requires a method to identify possibly
3380 live Lisp objects given a pointer value. We do this by keeping
3381 track of blocks of Lisp data that are allocated in a red-black tree
3382 (see also the comment of mem_node which is the type of nodes in
3383 that tree). Function lisp_malloc adds information for an allocated
3384 block to the red-black tree with calls to mem_insert, and function
3385 lisp_free removes it with mem_delete. Functions live_string_p etc
3386 call mem_find to lookup information about a given pointer in the
3387 tree, and use that to determine if the pointer points to a Lisp
3388 object or not. */
3389
3390 /* Initialize this part of alloc.c. */
3391
3392 static void
3393 mem_init ()
3394 {
3395 mem_z.left = mem_z.right = MEM_NIL;
3396 mem_z.parent = NULL;
3397 mem_z.color = MEM_BLACK;
3398 mem_z.start = mem_z.end = NULL;
3399 mem_root = MEM_NIL;
3400 }
3401
3402
3403 /* Value is a pointer to the mem_node containing START. Value is
3404 MEM_NIL if there is no node in the tree containing START. */
3405
3406 static INLINE struct mem_node *
3407 mem_find (start)
3408 void *start;
3409 {
3410 struct mem_node *p;
3411
3412 if (start < min_heap_address || start > max_heap_address)
3413 return MEM_NIL;
3414
3415 /* Make the search always successful to speed up the loop below. */
3416 mem_z.start = start;
3417 mem_z.end = (char *) start + 1;
3418
3419 p = mem_root;
3420 while (start < p->start || start >= p->end)
3421 p = start < p->start ? p->left : p->right;
3422 return p;
3423 }
3424
3425
3426 /* Insert a new node into the tree for a block of memory with start
3427 address START, end address END, and type TYPE. Value is a
3428 pointer to the node that was inserted. */
3429
3430 static struct mem_node *
3431 mem_insert (start, end, type)
3432 void *start, *end;
3433 enum mem_type type;
3434 {
3435 struct mem_node *c, *parent, *x;
3436
3437 if (start < min_heap_address)
3438 min_heap_address = start;
3439 if (end > max_heap_address)
3440 max_heap_address = end;
3441
3442 /* See where in the tree a node for START belongs. In this
3443 particular application, it shouldn't happen that a node is already
3444 present. For debugging purposes, let's check that. */
3445 c = mem_root;
3446 parent = NULL;
3447
3448 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3449
3450 while (c != MEM_NIL)
3451 {
3452 if (start >= c->start && start < c->end)
3453 abort ();
3454 parent = c;
3455 c = start < c->start ? c->left : c->right;
3456 }
3457
3458 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3459
3460 while (c != MEM_NIL)
3461 {
3462 parent = c;
3463 c = start < c->start ? c->left : c->right;
3464 }
3465
3466 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3467
3468 /* Create a new node. */
3469 #ifdef GC_MALLOC_CHECK
3470 x = (struct mem_node *) _malloc_internal (sizeof *x);
3471 if (x == NULL)
3472 abort ();
3473 #else
3474 x = (struct mem_node *) xmalloc (sizeof *x);
3475 #endif
3476 x->start = start;
3477 x->end = end;
3478 x->type = type;
3479 x->parent = parent;
3480 x->left = x->right = MEM_NIL;
3481 x->color = MEM_RED;
3482
3483 /* Insert it as child of PARENT or install it as root. */
3484 if (parent)
3485 {
3486 if (start < parent->start)
3487 parent->left = x;
3488 else
3489 parent->right = x;
3490 }
3491 else
3492 mem_root = x;
3493
3494 /* Re-establish red-black tree properties. */
3495 mem_insert_fixup (x);
3496
3497 return x;
3498 }
3499
3500
3501 /* Re-establish the red-black properties of the tree, and thereby
3502 balance the tree, after node X has been inserted; X is always red. */
3503
3504 static void
3505 mem_insert_fixup (x)
3506 struct mem_node *x;
3507 {
3508 while (x != mem_root && x->parent->color == MEM_RED)
3509 {
3510 /* X is red and its parent is red. This is a violation of
3511 red-black tree property #3. */
3512
3513 if (x->parent == x->parent->parent->left)
3514 {
3515 /* We're on the left side of our grandparent, and Y is our
3516 "uncle". */
3517 struct mem_node *y = x->parent->parent->right;
3518
3519 if (y->color == MEM_RED)
3520 {
3521 /* Uncle and parent are red but should be black because
3522 X is red. Change the colors accordingly and proceed
3523 with the grandparent. */
3524 x->parent->color = MEM_BLACK;
3525 y->color = MEM_BLACK;
3526 x->parent->parent->color = MEM_RED;
3527 x = x->parent->parent;
3528 }
3529 else
3530 {
3531 /* Parent and uncle have different colors; parent is
3532 red, uncle is black. */
3533 if (x == x->parent->right)
3534 {
3535 x = x->parent;
3536 mem_rotate_left (x);
3537 }
3538
3539 x->parent->color = MEM_BLACK;
3540 x->parent->parent->color = MEM_RED;
3541 mem_rotate_right (x->parent->parent);
3542 }
3543 }
3544 else
3545 {
3546 /* This is the symmetrical case of above. */
3547 struct mem_node *y = x->parent->parent->left;
3548
3549 if (y->color == MEM_RED)
3550 {
3551 x->parent->color = MEM_BLACK;
3552 y->color = MEM_BLACK;
3553 x->parent->parent->color = MEM_RED;
3554 x = x->parent->parent;
3555 }
3556 else
3557 {
3558 if (x == x->parent->left)
3559 {
3560 x = x->parent;
3561 mem_rotate_right (x);
3562 }
3563
3564 x->parent->color = MEM_BLACK;
3565 x->parent->parent->color = MEM_RED;
3566 mem_rotate_left (x->parent->parent);
3567 }
3568 }
3569 }
3570
3571 /* The root may have been changed to red due to the algorithm. Set
3572 it to black so that property #5 is satisfied. */
3573 mem_root->color = MEM_BLACK;
3574 }
3575
3576
3577 /* (x) (y)
3578 / \ / \
3579 a (y) ===> (x) c
3580 / \ / \
3581 b c a b */
3582
3583 static void
3584 mem_rotate_left (x)
3585 struct mem_node *x;
3586 {
3587 struct mem_node *y;
3588
3589 /* Turn y's left sub-tree into x's right sub-tree. */
3590 y = x->right;
3591 x->right = y->left;
3592 if (y->left != MEM_NIL)
3593 y->left->parent = x;
3594
3595 /* Y's parent was x's parent. */
3596 if (y != MEM_NIL)
3597 y->parent = x->parent;
3598
3599 /* Get the parent to point to y instead of x. */
3600 if (x->parent)
3601 {
3602 if (x == x->parent->left)
3603 x->parent->left = y;
3604 else
3605 x->parent->right = y;
3606 }
3607 else
3608 mem_root = y;
3609
3610 /* Put x on y's left. */
3611 y->left = x;
3612 if (x != MEM_NIL)
3613 x->parent = y;
3614 }
3615
3616
3617 /* (x) (Y)
3618 / \ / \
3619 (y) c ===> a (x)
3620 / \ / \
3621 a b b c */
3622
3623 static void
3624 mem_rotate_right (x)
3625 struct mem_node *x;
3626 {
3627 struct mem_node *y = x->left;
3628
3629 x->left = y->right;
3630 if (y->right != MEM_NIL)
3631 y->right->parent = x;
3632
3633 if (y != MEM_NIL)
3634 y->parent = x->parent;
3635 if (x->parent)
3636 {
3637 if (x == x->parent->right)
3638 x->parent->right = y;
3639 else
3640 x->parent->left = y;
3641 }
3642 else
3643 mem_root = y;
3644
3645 y->right = x;
3646 if (x != MEM_NIL)
3647 x->parent = y;
3648 }
3649
3650
3651 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3652
3653 static void
3654 mem_delete (z)
3655 struct mem_node *z;
3656 {
3657 struct mem_node *x, *y;
3658
3659 if (!z || z == MEM_NIL)
3660 return;
3661
3662 if (z->left == MEM_NIL || z->right == MEM_NIL)
3663 y = z;
3664 else
3665 {
3666 y = z->right;
3667 while (y->left != MEM_NIL)
3668 y = y->left;
3669 }
3670
3671 if (y->left != MEM_NIL)
3672 x = y->left;
3673 else
3674 x = y->right;
3675
3676 x->parent = y->parent;
3677 if (y->parent)
3678 {
3679 if (y == y->parent->left)
3680 y->parent->left = x;
3681 else
3682 y->parent->right = x;
3683 }
3684 else
3685 mem_root = x;
3686
3687 if (y != z)
3688 {
3689 z->start = y->start;
3690 z->end = y->end;
3691 z->type = y->type;
3692 }
3693
3694 if (y->color == MEM_BLACK)
3695 mem_delete_fixup (x);
3696
3697 #ifdef GC_MALLOC_CHECK
3698 _free_internal (y);
3699 #else
3700 xfree (y);
3701 #endif
3702 }
3703
3704
3705 /* Re-establish the red-black properties of the tree, after a
3706 deletion. */
3707
3708 static void
3709 mem_delete_fixup (x)
3710 struct mem_node *x;
3711 {
3712 while (x != mem_root && x->color == MEM_BLACK)
3713 {
3714 if (x == x->parent->left)
3715 {
3716 struct mem_node *w = x->parent->right;
3717
3718 if (w->color == MEM_RED)
3719 {
3720 w->color = MEM_BLACK;
3721 x->parent->color = MEM_RED;
3722 mem_rotate_left (x->parent);
3723 w = x->parent->right;
3724 }
3725
3726 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3727 {
3728 w->color = MEM_RED;
3729 x = x->parent;
3730 }
3731 else
3732 {
3733 if (w->right->color == MEM_BLACK)
3734 {
3735 w->left->color = MEM_BLACK;
3736 w->color = MEM_RED;
3737 mem_rotate_right (w);
3738 w = x->parent->right;
3739 }
3740 w->color = x->parent->color;
3741 x->parent->color = MEM_BLACK;
3742 w->right->color = MEM_BLACK;
3743 mem_rotate_left (x->parent);
3744 x = mem_root;
3745 }
3746 }
3747 else
3748 {
3749 struct mem_node *w = x->parent->left;
3750
3751 if (w->color == MEM_RED)
3752 {
3753 w->color = MEM_BLACK;
3754 x->parent->color = MEM_RED;
3755 mem_rotate_right (x->parent);
3756 w = x->parent->left;
3757 }
3758
3759 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3760 {
3761 w->color = MEM_RED;
3762 x = x->parent;
3763 }
3764 else
3765 {
3766 if (w->left->color == MEM_BLACK)
3767 {
3768 w->right->color = MEM_BLACK;
3769 w->color = MEM_RED;
3770 mem_rotate_left (w);
3771 w = x->parent->left;
3772 }
3773
3774 w->color = x->parent->color;
3775 x->parent->color = MEM_BLACK;
3776 w->left->color = MEM_BLACK;
3777 mem_rotate_right (x->parent);
3778 x = mem_root;
3779 }
3780 }
3781 }
3782
3783 x->color = MEM_BLACK;
3784 }
3785
3786
3787 /* Value is non-zero if P is a pointer to a live Lisp string on
3788 the heap. M is a pointer to the mem_block for P. */
3789
3790 static INLINE int
3791 live_string_p (m, p)
3792 struct mem_node *m;
3793 void *p;
3794 {
3795 if (m->type == MEM_TYPE_STRING)
3796 {
3797 struct string_block *b = (struct string_block *) m->start;
3798 int offset = (char *) p - (char *) &b->strings[0];
3799
3800 /* P must point to the start of a Lisp_String structure, and it
3801 must not be on the free-list. */
3802 return (offset >= 0
3803 && offset % sizeof b->strings[0] == 0
3804 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3805 && ((struct Lisp_String *) p)->data != NULL);
3806 }
3807 else
3808 return 0;
3809 }
3810
3811
3812 /* Value is non-zero if P is a pointer to a live Lisp cons on
3813 the heap. M is a pointer to the mem_block for P. */
3814
3815 static INLINE int
3816 live_cons_p (m, p)
3817 struct mem_node *m;
3818 void *p;
3819 {
3820 if (m->type == MEM_TYPE_CONS)
3821 {
3822 struct cons_block *b = (struct cons_block *) m->start;
3823 int offset = (char *) p - (char *) &b->conses[0];
3824
3825 /* P must point to the start of a Lisp_Cons, not be
3826 one of the unused cells in the current cons block,
3827 and not be on the free-list. */
3828 return (offset >= 0
3829 && offset % sizeof b->conses[0] == 0
3830 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3831 && (b != cons_block
3832 || offset / sizeof b->conses[0] < cons_block_index)
3833 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3834 }
3835 else
3836 return 0;
3837 }
3838
3839
3840 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3841 the heap. M is a pointer to the mem_block for P. */
3842
3843 static INLINE int
3844 live_symbol_p (m, p)
3845 struct mem_node *m;
3846 void *p;
3847 {
3848 if (m->type == MEM_TYPE_SYMBOL)
3849 {
3850 struct symbol_block *b = (struct symbol_block *) m->start;
3851 int offset = (char *) p - (char *) &b->symbols[0];
3852
3853 /* P must point to the start of a Lisp_Symbol, not be
3854 one of the unused cells in the current symbol block,
3855 and not be on the free-list. */
3856 return (offset >= 0
3857 && offset % sizeof b->symbols[0] == 0
3858 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3859 && (b != symbol_block
3860 || offset / sizeof b->symbols[0] < symbol_block_index)
3861 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3862 }
3863 else
3864 return 0;
3865 }
3866
3867
3868 /* Value is non-zero if P is a pointer to a live Lisp float on
3869 the heap. M is a pointer to the mem_block for P. */
3870
3871 static INLINE int
3872 live_float_p (m, p)
3873 struct mem_node *m;
3874 void *p;
3875 {
3876 if (m->type == MEM_TYPE_FLOAT)
3877 {
3878 struct float_block *b = (struct float_block *) m->start;
3879 int offset = (char *) p - (char *) &b->floats[0];
3880
3881 /* P must point to the start of a Lisp_Float and not be
3882 one of the unused cells in the current float block. */
3883 return (offset >= 0
3884 && offset % sizeof b->floats[0] == 0
3885 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3886 && (b != float_block
3887 || offset / sizeof b->floats[0] < float_block_index));
3888 }
3889 else
3890 return 0;
3891 }
3892
3893
3894 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3895 the heap. M is a pointer to the mem_block for P. */
3896
3897 static INLINE int
3898 live_misc_p (m, p)
3899 struct mem_node *m;
3900 void *p;
3901 {
3902 if (m->type == MEM_TYPE_MISC)
3903 {
3904 struct marker_block *b = (struct marker_block *) m->start;
3905 int offset = (char *) p - (char *) &b->markers[0];
3906
3907 /* P must point to the start of a Lisp_Misc, not be
3908 one of the unused cells in the current misc block,
3909 and not be on the free-list. */
3910 return (offset >= 0
3911 && offset % sizeof b->markers[0] == 0
3912 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3913 && (b != marker_block
3914 || offset / sizeof b->markers[0] < marker_block_index)
3915 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3916 }
3917 else
3918 return 0;
3919 }
3920
3921
3922 /* Value is non-zero if P is a pointer to a live vector-like object.
3923 M is a pointer to the mem_block for P. */
3924
3925 static INLINE int
3926 live_vector_p (m, p)
3927 struct mem_node *m;
3928 void *p;
3929 {
3930 return (p == m->start
3931 && m->type >= MEM_TYPE_VECTOR
3932 && m->type <= MEM_TYPE_WINDOW);
3933 }
3934
3935
3936 /* Value is non-zero if P is a pointer to a live buffer. M is a
3937 pointer to the mem_block for P. */
3938
3939 static INLINE int
3940 live_buffer_p (m, p)
3941 struct mem_node *m;
3942 void *p;
3943 {
3944 /* P must point to the start of the block, and the buffer
3945 must not have been killed. */
3946 return (m->type == MEM_TYPE_BUFFER
3947 && p == m->start
3948 && !NILP (((struct buffer *) p)->name));
3949 }
3950
3951 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3952
3953 #if GC_MARK_STACK
3954
3955 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3956
3957 /* Array of objects that are kept alive because the C stack contains
3958 a pattern that looks like a reference to them . */
3959
3960 #define MAX_ZOMBIES 10
3961 static Lisp_Object zombies[MAX_ZOMBIES];
3962
3963 /* Number of zombie objects. */
3964
3965 static int nzombies;
3966
3967 /* Number of garbage collections. */
3968
3969 static int ngcs;
3970
3971 /* Average percentage of zombies per collection. */
3972
3973 static double avg_zombies;
3974
3975 /* Max. number of live and zombie objects. */
3976
3977 static int max_live, max_zombies;
3978
3979 /* Average number of live objects per GC. */
3980
3981 static double avg_live;
3982
3983 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3984 doc: /* Show information about live and zombie objects. */)
3985 ()
3986 {
3987 Lisp_Object args[8], zombie_list = Qnil;
3988 int i;
3989 for (i = 0; i < nzombies; i++)
3990 zombie_list = Fcons (zombies[i], zombie_list);
3991 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3992 args[1] = make_number (ngcs);
3993 args[2] = make_float (avg_live);
3994 args[3] = make_float (avg_zombies);
3995 args[4] = make_float (avg_zombies / avg_live / 100);
3996 args[5] = make_number (max_live);
3997 args[6] = make_number (max_zombies);
3998 args[7] = zombie_list;
3999 return Fmessage (8, args);
4000 }
4001
4002 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4003
4004
4005 /* Mark OBJ if we can prove it's a Lisp_Object. */
4006
4007 static INLINE void
4008 mark_maybe_object (obj)
4009 Lisp_Object obj;
4010 {
4011 void *po = (void *) XPNTR (obj);
4012 struct mem_node *m = mem_find (po);
4013
4014 if (m != MEM_NIL)
4015 {
4016 int mark_p = 0;
4017
4018 switch (XGCTYPE (obj))
4019 {
4020 case Lisp_String:
4021 mark_p = (live_string_p (m, po)
4022 && !STRING_MARKED_P ((struct Lisp_String *) po));
4023 break;
4024
4025 case Lisp_Cons:
4026 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4027 break;
4028
4029 case Lisp_Symbol:
4030 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4031 break;
4032
4033 case Lisp_Float:
4034 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4035 break;
4036
4037 case Lisp_Vectorlike:
4038 /* Note: can't check GC_BUFFERP before we know it's a
4039 buffer because checking that dereferences the pointer
4040 PO which might point anywhere. */
4041 if (live_vector_p (m, po))
4042 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4043 else if (live_buffer_p (m, po))
4044 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4045 break;
4046
4047 case Lisp_Misc:
4048 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4049 break;
4050
4051 case Lisp_Int:
4052 case Lisp_Type_Limit:
4053 break;
4054 }
4055
4056 if (mark_p)
4057 {
4058 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4059 if (nzombies < MAX_ZOMBIES)
4060 zombies[nzombies] = obj;
4061 ++nzombies;
4062 #endif
4063 mark_object (obj);
4064 }
4065 }
4066 }
4067
4068
4069 /* If P points to Lisp data, mark that as live if it isn't already
4070 marked. */
4071
4072 static INLINE void
4073 mark_maybe_pointer (p)
4074 void *p;
4075 {
4076 struct mem_node *m;
4077
4078 /* Quickly rule out some values which can't point to Lisp data. We
4079 assume that Lisp data is aligned on even addresses. */
4080 if ((EMACS_INT) p & 1)
4081 return;
4082
4083 m = mem_find (p);
4084 if (m != MEM_NIL)
4085 {
4086 Lisp_Object obj = Qnil;
4087
4088 switch (m->type)
4089 {
4090 case MEM_TYPE_NON_LISP:
4091 /* Nothing to do; not a pointer to Lisp memory. */
4092 break;
4093
4094 case MEM_TYPE_BUFFER:
4095 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4096 XSETVECTOR (obj, p);
4097 break;
4098
4099 case MEM_TYPE_CONS:
4100 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4101 XSETCONS (obj, p);
4102 break;
4103
4104 case MEM_TYPE_STRING:
4105 if (live_string_p (m, p)
4106 && !STRING_MARKED_P ((struct Lisp_String *) p))
4107 XSETSTRING (obj, p);
4108 break;
4109
4110 case MEM_TYPE_MISC:
4111 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4112 XSETMISC (obj, p);
4113 break;
4114
4115 case MEM_TYPE_SYMBOL:
4116 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4117 XSETSYMBOL (obj, p);
4118 break;
4119
4120 case MEM_TYPE_FLOAT:
4121 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4122 XSETFLOAT (obj, p);
4123 break;
4124
4125 case MEM_TYPE_VECTOR:
4126 case MEM_TYPE_PROCESS:
4127 case MEM_TYPE_HASH_TABLE:
4128 case MEM_TYPE_FRAME:
4129 case MEM_TYPE_WINDOW:
4130 if (live_vector_p (m, p))
4131 {
4132 Lisp_Object tem;
4133 XSETVECTOR (tem, p);
4134 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4135 obj = tem;
4136 }
4137 break;
4138
4139 default:
4140 abort ();
4141 }
4142
4143 if (!GC_NILP (obj))
4144 mark_object (obj);
4145 }
4146 }
4147
4148
4149 /* Mark Lisp objects referenced from the address range START..END. */
4150
4151 static void
4152 mark_memory (start, end)
4153 void *start, *end;
4154 {
4155 Lisp_Object *p;
4156 void **pp;
4157
4158 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4159 nzombies = 0;
4160 #endif
4161
4162 /* Make START the pointer to the start of the memory region,
4163 if it isn't already. */
4164 if (end < start)
4165 {
4166 void *tem = start;
4167 start = end;
4168 end = tem;
4169 }
4170
4171 /* Mark Lisp_Objects. */
4172 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4173 mark_maybe_object (*p);
4174
4175 /* Mark Lisp data pointed to. This is necessary because, in some
4176 situations, the C compiler optimizes Lisp objects away, so that
4177 only a pointer to them remains. Example:
4178
4179 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4180 ()
4181 {
4182 Lisp_Object obj = build_string ("test");
4183 struct Lisp_String *s = XSTRING (obj);
4184 Fgarbage_collect ();
4185 fprintf (stderr, "test `%s'\n", s->data);
4186 return Qnil;
4187 }
4188
4189 Here, `obj' isn't really used, and the compiler optimizes it
4190 away. The only reference to the life string is through the
4191 pointer `s'. */
4192
4193 for (pp = (void **) start; (void *) pp < end; ++pp)
4194 mark_maybe_pointer (*pp);
4195 }
4196
4197 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4198 the GCC system configuration. In gcc 3.2, the only systems for
4199 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4200 by others?) and ns32k-pc532-min. */
4201
4202 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4203
4204 static int setjmp_tested_p, longjmps_done;
4205
4206 #define SETJMP_WILL_LIKELY_WORK "\
4207 \n\
4208 Emacs garbage collector has been changed to use conservative stack\n\
4209 marking. Emacs has determined that the method it uses to do the\n\
4210 marking will likely work on your system, but this isn't sure.\n\
4211 \n\
4212 If you are a system-programmer, or can get the help of a local wizard\n\
4213 who is, please take a look at the function mark_stack in alloc.c, and\n\
4214 verify that the methods used are appropriate for your system.\n\
4215 \n\
4216 Please mail the result to <emacs-devel@gnu.org>.\n\
4217 "
4218
4219 #define SETJMP_WILL_NOT_WORK "\
4220 \n\
4221 Emacs garbage collector has been changed to use conservative stack\n\
4222 marking. Emacs has determined that the default method it uses to do the\n\
4223 marking will not work on your system. We will need a system-dependent\n\
4224 solution for your system.\n\
4225 \n\
4226 Please take a look at the function mark_stack in alloc.c, and\n\
4227 try to find a way to make it work on your system.\n\
4228 \n\
4229 Note that you may get false negatives, depending on the compiler.\n\
4230 In particular, you need to use -O with GCC for this test.\n\
4231 \n\
4232 Please mail the result to <emacs-devel@gnu.org>.\n\
4233 "
4234
4235
4236 /* Perform a quick check if it looks like setjmp saves registers in a
4237 jmp_buf. Print a message to stderr saying so. When this test
4238 succeeds, this is _not_ a proof that setjmp is sufficient for
4239 conservative stack marking. Only the sources or a disassembly
4240 can prove that. */
4241
4242 static void
4243 test_setjmp ()
4244 {
4245 char buf[10];
4246 register int x;
4247 jmp_buf jbuf;
4248 int result = 0;
4249
4250 /* Arrange for X to be put in a register. */
4251 sprintf (buf, "1");
4252 x = strlen (buf);
4253 x = 2 * x - 1;
4254
4255 setjmp (jbuf);
4256 if (longjmps_done == 1)
4257 {
4258 /* Came here after the longjmp at the end of the function.
4259
4260 If x == 1, the longjmp has restored the register to its
4261 value before the setjmp, and we can hope that setjmp
4262 saves all such registers in the jmp_buf, although that
4263 isn't sure.
4264
4265 For other values of X, either something really strange is
4266 taking place, or the setjmp just didn't save the register. */
4267
4268 if (x == 1)
4269 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4270 else
4271 {
4272 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4273 exit (1);
4274 }
4275 }
4276
4277 ++longjmps_done;
4278 x = 2;
4279 if (longjmps_done == 1)
4280 longjmp (jbuf, 1);
4281 }
4282
4283 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4284
4285
4286 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4287
4288 /* Abort if anything GCPRO'd doesn't survive the GC. */
4289
4290 static void
4291 check_gcpros ()
4292 {
4293 struct gcpro *p;
4294 int i;
4295
4296 for (p = gcprolist; p; p = p->next)
4297 for (i = 0; i < p->nvars; ++i)
4298 if (!survives_gc_p (p->var[i]))
4299 /* FIXME: It's not necessarily a bug. It might just be that the
4300 GCPRO is unnecessary or should release the object sooner. */
4301 abort ();
4302 }
4303
4304 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4305
4306 static void
4307 dump_zombies ()
4308 {
4309 int i;
4310
4311 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4312 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4313 {
4314 fprintf (stderr, " %d = ", i);
4315 debug_print (zombies[i]);
4316 }
4317 }
4318
4319 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4320
4321
4322 /* Mark live Lisp objects on the C stack.
4323
4324 There are several system-dependent problems to consider when
4325 porting this to new architectures:
4326
4327 Processor Registers
4328
4329 We have to mark Lisp objects in CPU registers that can hold local
4330 variables or are used to pass parameters.
4331
4332 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4333 something that either saves relevant registers on the stack, or
4334 calls mark_maybe_object passing it each register's contents.
4335
4336 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4337 implementation assumes that calling setjmp saves registers we need
4338 to see in a jmp_buf which itself lies on the stack. This doesn't
4339 have to be true! It must be verified for each system, possibly
4340 by taking a look at the source code of setjmp.
4341
4342 Stack Layout
4343
4344 Architectures differ in the way their processor stack is organized.
4345 For example, the stack might look like this
4346
4347 +----------------+
4348 | Lisp_Object | size = 4
4349 +----------------+
4350 | something else | size = 2
4351 +----------------+
4352 | Lisp_Object | size = 4
4353 +----------------+
4354 | ... |
4355
4356 In such a case, not every Lisp_Object will be aligned equally. To
4357 find all Lisp_Object on the stack it won't be sufficient to walk
4358 the stack in steps of 4 bytes. Instead, two passes will be
4359 necessary, one starting at the start of the stack, and a second
4360 pass starting at the start of the stack + 2. Likewise, if the
4361 minimal alignment of Lisp_Objects on the stack is 1, four passes
4362 would be necessary, each one starting with one byte more offset
4363 from the stack start.
4364
4365 The current code assumes by default that Lisp_Objects are aligned
4366 equally on the stack. */
4367
4368 static void
4369 mark_stack ()
4370 {
4371 int i;
4372 jmp_buf j;
4373 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4374 void *end;
4375
4376 /* This trick flushes the register windows so that all the state of
4377 the process is contained in the stack. */
4378 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4379 needed on ia64 too. See mach_dep.c, where it also says inline
4380 assembler doesn't work with relevant proprietary compilers. */
4381 #ifdef sparc
4382 asm ("ta 3");
4383 #endif
4384
4385 /* Save registers that we need to see on the stack. We need to see
4386 registers used to hold register variables and registers used to
4387 pass parameters. */
4388 #ifdef GC_SAVE_REGISTERS_ON_STACK
4389 GC_SAVE_REGISTERS_ON_STACK (end);
4390 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4391
4392 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4393 setjmp will definitely work, test it
4394 and print a message with the result
4395 of the test. */
4396 if (!setjmp_tested_p)
4397 {
4398 setjmp_tested_p = 1;
4399 test_setjmp ();
4400 }
4401 #endif /* GC_SETJMP_WORKS */
4402
4403 setjmp (j);
4404 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4405 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4406
4407 /* This assumes that the stack is a contiguous region in memory. If
4408 that's not the case, something has to be done here to iterate
4409 over the stack segments. */
4410 #ifndef GC_LISP_OBJECT_ALIGNMENT
4411 #ifdef __GNUC__
4412 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4413 #else
4414 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4415 #endif
4416 #endif
4417 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4418 mark_memory ((char *) stack_base + i, end);
4419 /* Allow for marking a secondary stack, like the register stack on the
4420 ia64. */
4421 #ifdef GC_MARK_SECONDARY_STACK
4422 GC_MARK_SECONDARY_STACK ();
4423 #endif
4424
4425 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4426 check_gcpros ();
4427 #endif
4428 }
4429
4430
4431 #endif /* GC_MARK_STACK != 0 */
4432
4433
4434 \f
4435 /***********************************************************************
4436 Pure Storage Management
4437 ***********************************************************************/
4438
4439 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4440 pointer to it. TYPE is the Lisp type for which the memory is
4441 allocated. TYPE < 0 means it's not used for a Lisp object.
4442
4443 If store_pure_type_info is set and TYPE is >= 0, the type of
4444 the allocated object is recorded in pure_types. */
4445
4446 static POINTER_TYPE *
4447 pure_alloc (size, type)
4448 size_t size;
4449 int type;
4450 {
4451 POINTER_TYPE *result;
4452 #ifdef USE_LSB_TAG
4453 size_t alignment = (1 << GCTYPEBITS);
4454 #else
4455 size_t alignment = sizeof (EMACS_INT);
4456
4457 /* Give Lisp_Floats an extra alignment. */
4458 if (type == Lisp_Float)
4459 {
4460 #if defined __GNUC__ && __GNUC__ >= 2
4461 alignment = __alignof (struct Lisp_Float);
4462 #else
4463 alignment = sizeof (struct Lisp_Float);
4464 #endif
4465 }
4466 #endif
4467
4468 again:
4469 result = ALIGN (purebeg + pure_bytes_used, alignment);
4470 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4471
4472 if (pure_bytes_used <= pure_size)
4473 return result;
4474
4475 /* Don't allocate a large amount here,
4476 because it might get mmap'd and then its address
4477 might not be usable. */
4478 purebeg = (char *) xmalloc (10000);
4479 pure_size = 10000;
4480 pure_bytes_used_before_overflow += pure_bytes_used - size;
4481 pure_bytes_used = 0;
4482 goto again;
4483 }
4484
4485
4486 /* Print a warning if PURESIZE is too small. */
4487
4488 void
4489 check_pure_size ()
4490 {
4491 if (pure_bytes_used_before_overflow)
4492 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4493 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4494 }
4495
4496
4497 /* Return a string allocated in pure space. DATA is a buffer holding
4498 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4499 non-zero means make the result string multibyte.
4500
4501 Must get an error if pure storage is full, since if it cannot hold
4502 a large string it may be able to hold conses that point to that
4503 string; then the string is not protected from gc. */
4504
4505 Lisp_Object
4506 make_pure_string (data, nchars, nbytes, multibyte)
4507 char *data;
4508 int nchars, nbytes;
4509 int multibyte;
4510 {
4511 Lisp_Object string;
4512 struct Lisp_String *s;
4513
4514 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4515 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4516 s->size = nchars;
4517 s->size_byte = multibyte ? nbytes : -1;
4518 bcopy (data, s->data, nbytes);
4519 s->data[nbytes] = '\0';
4520 s->intervals = NULL_INTERVAL;
4521 XSETSTRING (string, s);
4522 return string;
4523 }
4524
4525
4526 /* Return a cons allocated from pure space. Give it pure copies
4527 of CAR as car and CDR as cdr. */
4528
4529 Lisp_Object
4530 pure_cons (car, cdr)
4531 Lisp_Object car, cdr;
4532 {
4533 register Lisp_Object new;
4534 struct Lisp_Cons *p;
4535
4536 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4537 XSETCONS (new, p);
4538 XSETCAR (new, Fpurecopy (car));
4539 XSETCDR (new, Fpurecopy (cdr));
4540 return new;
4541 }
4542
4543
4544 /* Value is a float object with value NUM allocated from pure space. */
4545
4546 Lisp_Object
4547 make_pure_float (num)
4548 double num;
4549 {
4550 register Lisp_Object new;
4551 struct Lisp_Float *p;
4552
4553 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4554 XSETFLOAT (new, p);
4555 XFLOAT_DATA (new) = num;
4556 return new;
4557 }
4558
4559
4560 /* Return a vector with room for LEN Lisp_Objects allocated from
4561 pure space. */
4562
4563 Lisp_Object
4564 make_pure_vector (len)
4565 EMACS_INT len;
4566 {
4567 Lisp_Object new;
4568 struct Lisp_Vector *p;
4569 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4570
4571 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4572 XSETVECTOR (new, p);
4573 XVECTOR (new)->size = len;
4574 return new;
4575 }
4576
4577
4578 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4579 doc: /* Make a copy of OBJECT in pure storage.
4580 Recursively copies contents of vectors and cons cells.
4581 Does not copy symbols. Copies strings without text properties. */)
4582 (obj)
4583 register Lisp_Object obj;
4584 {
4585 if (NILP (Vpurify_flag))
4586 return obj;
4587
4588 if (PURE_POINTER_P (XPNTR (obj)))
4589 return obj;
4590
4591 if (CONSP (obj))
4592 return pure_cons (XCAR (obj), XCDR (obj));
4593 else if (FLOATP (obj))
4594 return make_pure_float (XFLOAT_DATA (obj));
4595 else if (STRINGP (obj))
4596 return make_pure_string (SDATA (obj), SCHARS (obj),
4597 SBYTES (obj),
4598 STRING_MULTIBYTE (obj));
4599 else if (COMPILEDP (obj) || VECTORP (obj))
4600 {
4601 register struct Lisp_Vector *vec;
4602 register int i;
4603 EMACS_INT size;
4604
4605 size = XVECTOR (obj)->size;
4606 if (size & PSEUDOVECTOR_FLAG)
4607 size &= PSEUDOVECTOR_SIZE_MASK;
4608 vec = XVECTOR (make_pure_vector (size));
4609 for (i = 0; i < size; i++)
4610 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4611 if (COMPILEDP (obj))
4612 XSETCOMPILED (obj, vec);
4613 else
4614 XSETVECTOR (obj, vec);
4615 return obj;
4616 }
4617 else if (MARKERP (obj))
4618 error ("Attempt to copy a marker to pure storage");
4619
4620 return obj;
4621 }
4622
4623
4624 \f
4625 /***********************************************************************
4626 Protection from GC
4627 ***********************************************************************/
4628
4629 /* Put an entry in staticvec, pointing at the variable with address
4630 VARADDRESS. */
4631
4632 void
4633 staticpro (varaddress)
4634 Lisp_Object *varaddress;
4635 {
4636 staticvec[staticidx++] = varaddress;
4637 if (staticidx >= NSTATICS)
4638 abort ();
4639 }
4640
4641 struct catchtag
4642 {
4643 Lisp_Object tag;
4644 Lisp_Object val;
4645 struct catchtag *next;
4646 };
4647
4648 \f
4649 /***********************************************************************
4650 Protection from GC
4651 ***********************************************************************/
4652
4653 /* Temporarily prevent garbage collection. */
4654
4655 int
4656 inhibit_garbage_collection ()
4657 {
4658 int count = SPECPDL_INDEX ();
4659 int nbits = min (VALBITS, BITS_PER_INT);
4660
4661 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4662 return count;
4663 }
4664
4665
4666 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4667 doc: /* Reclaim storage for Lisp objects no longer needed.
4668 Garbage collection happens automatically if you cons more than
4669 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4670 `garbage-collect' normally returns a list with info on amount of space in use:
4671 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4672 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4673 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4674 (USED-STRINGS . FREE-STRINGS))
4675 However, if there was overflow in pure space, `garbage-collect'
4676 returns nil, because real GC can't be done. */)
4677 ()
4678 {
4679 register struct specbinding *bind;
4680 struct catchtag *catch;
4681 struct handler *handler;
4682 char stack_top_variable;
4683 register int i;
4684 int message_p;
4685 Lisp_Object total[8];
4686 int count = SPECPDL_INDEX ();
4687 EMACS_TIME t1, t2, t3;
4688
4689 if (abort_on_gc)
4690 abort ();
4691
4692 /* Can't GC if pure storage overflowed because we can't determine
4693 if something is a pure object or not. */
4694 if (pure_bytes_used_before_overflow)
4695 return Qnil;
4696
4697 CHECK_CONS_LIST ();
4698
4699 /* Don't keep undo information around forever.
4700 Do this early on, so it is no problem if the user quits. */
4701 {
4702 register struct buffer *nextb = all_buffers;
4703
4704 while (nextb)
4705 {
4706 /* If a buffer's undo list is Qt, that means that undo is
4707 turned off in that buffer. Calling truncate_undo_list on
4708 Qt tends to return NULL, which effectively turns undo back on.
4709 So don't call truncate_undo_list if undo_list is Qt. */
4710 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4711 truncate_undo_list (nextb);
4712
4713 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4714 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4715 {
4716 /* If a buffer's gap size is more than 10% of the buffer
4717 size, or larger than 2000 bytes, then shrink it
4718 accordingly. Keep a minimum size of 20 bytes. */
4719 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4720
4721 if (nextb->text->gap_size > size)
4722 {
4723 struct buffer *save_current = current_buffer;
4724 current_buffer = nextb;
4725 make_gap (-(nextb->text->gap_size - size));
4726 current_buffer = save_current;
4727 }
4728 }
4729
4730 nextb = nextb->next;
4731 }
4732 }
4733
4734 EMACS_GET_TIME (t1);
4735
4736 /* In case user calls debug_print during GC,
4737 don't let that cause a recursive GC. */
4738 consing_since_gc = 0;
4739
4740 /* Save what's currently displayed in the echo area. */
4741 message_p = push_message ();
4742 record_unwind_protect (pop_message_unwind, Qnil);
4743
4744 /* Save a copy of the contents of the stack, for debugging. */
4745 #if MAX_SAVE_STACK > 0
4746 if (NILP (Vpurify_flag))
4747 {
4748 i = &stack_top_variable - stack_bottom;
4749 if (i < 0) i = -i;
4750 if (i < MAX_SAVE_STACK)
4751 {
4752 if (stack_copy == 0)
4753 stack_copy = (char *) xmalloc (stack_copy_size = i);
4754 else if (stack_copy_size < i)
4755 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4756 if (stack_copy)
4757 {
4758 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4759 bcopy (stack_bottom, stack_copy, i);
4760 else
4761 bcopy (&stack_top_variable, stack_copy, i);
4762 }
4763 }
4764 }
4765 #endif /* MAX_SAVE_STACK > 0 */
4766
4767 if (garbage_collection_messages)
4768 message1_nolog ("Garbage collecting...");
4769
4770 BLOCK_INPUT;
4771
4772 shrink_regexp_cache ();
4773
4774 gc_in_progress = 1;
4775
4776 /* clear_marks (); */
4777
4778 /* Mark all the special slots that serve as the roots of accessibility. */
4779
4780 for (i = 0; i < staticidx; i++)
4781 mark_object (*staticvec[i]);
4782
4783 for (bind = specpdl; bind != specpdl_ptr; bind++)
4784 {
4785 mark_object (bind->symbol);
4786 mark_object (bind->old_value);
4787 }
4788 mark_kboards ();
4789 mark_ttys ();
4790
4791 #ifdef USE_GTK
4792 {
4793 extern void xg_mark_data ();
4794 xg_mark_data ();
4795 }
4796 #endif
4797
4798 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4799 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4800 mark_stack ();
4801 #else
4802 {
4803 register struct gcpro *tail;
4804 for (tail = gcprolist; tail; tail = tail->next)
4805 for (i = 0; i < tail->nvars; i++)
4806 mark_object (tail->var[i]);
4807 }
4808 #endif
4809
4810 mark_byte_stack ();
4811 for (catch = catchlist; catch; catch = catch->next)
4812 {
4813 mark_object (catch->tag);
4814 mark_object (catch->val);
4815 }
4816 for (handler = handlerlist; handler; handler = handler->next)
4817 {
4818 mark_object (handler->handler);
4819 mark_object (handler->var);
4820 }
4821 mark_backtrace ();
4822
4823 #ifdef HAVE_WINDOW_SYSTEM
4824 mark_fringe_data ();
4825 #endif
4826
4827 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4828 mark_stack ();
4829 #endif
4830
4831 /* Everything is now marked, except for the things that require special
4832 finalization, i.e. the undo_list.
4833 Look thru every buffer's undo list
4834 for elements that update markers that were not marked,
4835 and delete them. */
4836 {
4837 register struct buffer *nextb = all_buffers;
4838
4839 while (nextb)
4840 {
4841 /* If a buffer's undo list is Qt, that means that undo is
4842 turned off in that buffer. Calling truncate_undo_list on
4843 Qt tends to return NULL, which effectively turns undo back on.
4844 So don't call truncate_undo_list if undo_list is Qt. */
4845 if (! EQ (nextb->undo_list, Qt))
4846 {
4847 Lisp_Object tail, prev;
4848 tail = nextb->undo_list;
4849 prev = Qnil;
4850 while (CONSP (tail))
4851 {
4852 if (GC_CONSP (XCAR (tail))
4853 && GC_MARKERP (XCAR (XCAR (tail)))
4854 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4855 {
4856 if (NILP (prev))
4857 nextb->undo_list = tail = XCDR (tail);
4858 else
4859 {
4860 tail = XCDR (tail);
4861 XSETCDR (prev, tail);
4862 }
4863 }
4864 else
4865 {
4866 prev = tail;
4867 tail = XCDR (tail);
4868 }
4869 }
4870 }
4871 /* Now that we have stripped the elements that need not be in the
4872 undo_list any more, we can finally mark the list. */
4873 mark_object (nextb->undo_list);
4874
4875 nextb = nextb->next;
4876 }
4877 }
4878
4879 gc_sweep ();
4880
4881 /* Clear the mark bits that we set in certain root slots. */
4882
4883 unmark_byte_stack ();
4884 VECTOR_UNMARK (&buffer_defaults);
4885 VECTOR_UNMARK (&buffer_local_symbols);
4886
4887 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4888 dump_zombies ();
4889 #endif
4890
4891 UNBLOCK_INPUT;
4892
4893 CHECK_CONS_LIST ();
4894
4895 /* clear_marks (); */
4896 gc_in_progress = 0;
4897
4898 consing_since_gc = 0;
4899 if (gc_cons_threshold < 10000)
4900 gc_cons_threshold = 10000;
4901
4902 if (garbage_collection_messages)
4903 {
4904 if (message_p || minibuf_level > 0)
4905 restore_message ();
4906 else
4907 message1_nolog ("Garbage collecting...done");
4908 }
4909
4910 unbind_to (count, Qnil);
4911
4912 total[0] = Fcons (make_number (total_conses),
4913 make_number (total_free_conses));
4914 total[1] = Fcons (make_number (total_symbols),
4915 make_number (total_free_symbols));
4916 total[2] = Fcons (make_number (total_markers),
4917 make_number (total_free_markers));
4918 total[3] = make_number (total_string_size);
4919 total[4] = make_number (total_vector_size);
4920 total[5] = Fcons (make_number (total_floats),
4921 make_number (total_free_floats));
4922 total[6] = Fcons (make_number (total_intervals),
4923 make_number (total_free_intervals));
4924 total[7] = Fcons (make_number (total_strings),
4925 make_number (total_free_strings));
4926
4927 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4928 {
4929 /* Compute average percentage of zombies. */
4930 double nlive = 0;
4931
4932 for (i = 0; i < 7; ++i)
4933 if (CONSP (total[i]))
4934 nlive += XFASTINT (XCAR (total[i]));
4935
4936 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4937 max_live = max (nlive, max_live);
4938 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4939 max_zombies = max (nzombies, max_zombies);
4940 ++ngcs;
4941 }
4942 #endif
4943
4944 if (!NILP (Vpost_gc_hook))
4945 {
4946 int count = inhibit_garbage_collection ();
4947 safe_run_hooks (Qpost_gc_hook);
4948 unbind_to (count, Qnil);
4949 }
4950
4951 /* Accumulate statistics. */
4952 EMACS_GET_TIME (t2);
4953 EMACS_SUB_TIME (t3, t2, t1);
4954 if (FLOATP (Vgc_elapsed))
4955 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4956 EMACS_SECS (t3) +
4957 EMACS_USECS (t3) * 1.0e-6);
4958 gcs_done++;
4959
4960 return Flist (sizeof total / sizeof *total, total);
4961 }
4962
4963
4964 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4965 only interesting objects referenced from glyphs are strings. */
4966
4967 static void
4968 mark_glyph_matrix (matrix)
4969 struct glyph_matrix *matrix;
4970 {
4971 struct glyph_row *row = matrix->rows;
4972 struct glyph_row *end = row + matrix->nrows;
4973
4974 for (; row < end; ++row)
4975 if (row->enabled_p)
4976 {
4977 int area;
4978 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4979 {
4980 struct glyph *glyph = row->glyphs[area];
4981 struct glyph *end_glyph = glyph + row->used[area];
4982
4983 for (; glyph < end_glyph; ++glyph)
4984 if (GC_STRINGP (glyph->object)
4985 && !STRING_MARKED_P (XSTRING (glyph->object)))
4986 mark_object (glyph->object);
4987 }
4988 }
4989 }
4990
4991
4992 /* Mark Lisp faces in the face cache C. */
4993
4994 static void
4995 mark_face_cache (c)
4996 struct face_cache *c;
4997 {
4998 if (c)
4999 {
5000 int i, j;
5001 for (i = 0; i < c->used; ++i)
5002 {
5003 struct face *face = FACE_FROM_ID (c->f, i);
5004
5005 if (face)
5006 {
5007 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5008 mark_object (face->lface[j]);
5009 }
5010 }
5011 }
5012 }
5013
5014
5015 #ifdef HAVE_WINDOW_SYSTEM
5016
5017 /* Mark Lisp objects in image IMG. */
5018
5019 static void
5020 mark_image (img)
5021 struct image *img;
5022 {
5023 mark_object (img->spec);
5024
5025 if (!NILP (img->data.lisp_val))
5026 mark_object (img->data.lisp_val);
5027 }
5028
5029
5030 /* Mark Lisp objects in image cache of frame F. It's done this way so
5031 that we don't have to include xterm.h here. */
5032
5033 static void
5034 mark_image_cache (f)
5035 struct frame *f;
5036 {
5037 forall_images_in_image_cache (f, mark_image);
5038 }
5039
5040 #endif /* HAVE_X_WINDOWS */
5041
5042
5043 \f
5044 /* Mark reference to a Lisp_Object.
5045 If the object referred to has not been seen yet, recursively mark
5046 all the references contained in it. */
5047
5048 #define LAST_MARKED_SIZE 500
5049 Lisp_Object last_marked[LAST_MARKED_SIZE];
5050 int last_marked_index;
5051
5052 /* For debugging--call abort when we cdr down this many
5053 links of a list, in mark_object. In debugging,
5054 the call to abort will hit a breakpoint.
5055 Normally this is zero and the check never goes off. */
5056 int mark_object_loop_halt;
5057
5058 void
5059 mark_object (arg)
5060 Lisp_Object arg;
5061 {
5062 register Lisp_Object obj = arg;
5063 #ifdef GC_CHECK_MARKED_OBJECTS
5064 void *po;
5065 struct mem_node *m;
5066 #endif
5067 int cdr_count = 0;
5068
5069 loop:
5070
5071 if (PURE_POINTER_P (XPNTR (obj)))
5072 return;
5073
5074 last_marked[last_marked_index++] = obj;
5075 if (last_marked_index == LAST_MARKED_SIZE)
5076 last_marked_index = 0;
5077
5078 /* Perform some sanity checks on the objects marked here. Abort if
5079 we encounter an object we know is bogus. This increases GC time
5080 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5081 #ifdef GC_CHECK_MARKED_OBJECTS
5082
5083 po = (void *) XPNTR (obj);
5084
5085 /* Check that the object pointed to by PO is known to be a Lisp
5086 structure allocated from the heap. */
5087 #define CHECK_ALLOCATED() \
5088 do { \
5089 m = mem_find (po); \
5090 if (m == MEM_NIL) \
5091 abort (); \
5092 } while (0)
5093
5094 /* Check that the object pointed to by PO is live, using predicate
5095 function LIVEP. */
5096 #define CHECK_LIVE(LIVEP) \
5097 do { \
5098 if (!LIVEP (m, po)) \
5099 abort (); \
5100 } while (0)
5101
5102 /* Check both of the above conditions. */
5103 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5104 do { \
5105 CHECK_ALLOCATED (); \
5106 CHECK_LIVE (LIVEP); \
5107 } while (0) \
5108
5109 #else /* not GC_CHECK_MARKED_OBJECTS */
5110
5111 #define CHECK_ALLOCATED() (void) 0
5112 #define CHECK_LIVE(LIVEP) (void) 0
5113 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5114
5115 #endif /* not GC_CHECK_MARKED_OBJECTS */
5116
5117 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5118 {
5119 case Lisp_String:
5120 {
5121 register struct Lisp_String *ptr = XSTRING (obj);
5122 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5123 MARK_INTERVAL_TREE (ptr->intervals);
5124 MARK_STRING (ptr);
5125 #ifdef GC_CHECK_STRING_BYTES
5126 /* Check that the string size recorded in the string is the
5127 same as the one recorded in the sdata structure. */
5128 CHECK_STRING_BYTES (ptr);
5129 #endif /* GC_CHECK_STRING_BYTES */
5130 }
5131 break;
5132
5133 case Lisp_Vectorlike:
5134 #ifdef GC_CHECK_MARKED_OBJECTS
5135 m = mem_find (po);
5136 if (m == MEM_NIL && !GC_SUBRP (obj)
5137 && po != &buffer_defaults
5138 && po != &buffer_local_symbols)
5139 abort ();
5140 #endif /* GC_CHECK_MARKED_OBJECTS */
5141
5142 if (GC_BUFFERP (obj))
5143 {
5144 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5145 {
5146 #ifdef GC_CHECK_MARKED_OBJECTS
5147 if (po != &buffer_defaults && po != &buffer_local_symbols)
5148 {
5149 struct buffer *b;
5150 for (b = all_buffers; b && b != po; b = b->next)
5151 ;
5152 if (b == NULL)
5153 abort ();
5154 }
5155 #endif /* GC_CHECK_MARKED_OBJECTS */
5156 mark_buffer (obj);
5157 }
5158 }
5159 else if (GC_SUBRP (obj))
5160 break;
5161 else if (GC_COMPILEDP (obj))
5162 /* We could treat this just like a vector, but it is better to
5163 save the COMPILED_CONSTANTS element for last and avoid
5164 recursion there. */
5165 {
5166 register struct Lisp_Vector *ptr = XVECTOR (obj);
5167 register EMACS_INT size = ptr->size;
5168 register int i;
5169
5170 if (VECTOR_MARKED_P (ptr))
5171 break; /* Already marked */
5172
5173 CHECK_LIVE (live_vector_p);
5174 VECTOR_MARK (ptr); /* Else mark it */
5175 size &= PSEUDOVECTOR_SIZE_MASK;
5176 for (i = 0; i < size; i++) /* and then mark its elements */
5177 {
5178 if (i != COMPILED_CONSTANTS)
5179 mark_object (ptr->contents[i]);
5180 }
5181 obj = ptr->contents[COMPILED_CONSTANTS];
5182 goto loop;
5183 }
5184 else if (GC_FRAMEP (obj))
5185 {
5186 register struct frame *ptr = XFRAME (obj);
5187
5188 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5189 VECTOR_MARK (ptr); /* Else mark it */
5190
5191 CHECK_LIVE (live_vector_p);
5192 mark_object (ptr->name);
5193 mark_object (ptr->icon_name);
5194 mark_object (ptr->title);
5195 mark_object (ptr->focus_frame);
5196 mark_object (ptr->selected_window);
5197 mark_object (ptr->minibuffer_window);
5198 mark_object (ptr->param_alist);
5199 mark_object (ptr->scroll_bars);
5200 mark_object (ptr->condemned_scroll_bars);
5201 mark_object (ptr->menu_bar_items);
5202 mark_object (ptr->face_alist);
5203 mark_object (ptr->menu_bar_vector);
5204 mark_object (ptr->buffer_predicate);
5205 mark_object (ptr->buffer_list);
5206 mark_object (ptr->menu_bar_window);
5207 mark_object (ptr->tool_bar_window);
5208 mark_face_cache (ptr->face_cache);
5209 #ifdef HAVE_WINDOW_SYSTEM
5210 mark_image_cache (ptr);
5211 mark_object (ptr->tool_bar_items);
5212 mark_object (ptr->desired_tool_bar_string);
5213 mark_object (ptr->current_tool_bar_string);
5214 #endif /* HAVE_WINDOW_SYSTEM */
5215 }
5216 else if (GC_BOOL_VECTOR_P (obj))
5217 {
5218 register struct Lisp_Vector *ptr = XVECTOR (obj);
5219
5220 if (VECTOR_MARKED_P (ptr))
5221 break; /* Already marked */
5222 CHECK_LIVE (live_vector_p);
5223 VECTOR_MARK (ptr); /* Else mark it */
5224 }
5225 else if (GC_WINDOWP (obj))
5226 {
5227 register struct Lisp_Vector *ptr = XVECTOR (obj);
5228 struct window *w = XWINDOW (obj);
5229 register int i;
5230
5231 /* Stop if already marked. */
5232 if (VECTOR_MARKED_P (ptr))
5233 break;
5234
5235 /* Mark it. */
5236 CHECK_LIVE (live_vector_p);
5237 VECTOR_MARK (ptr);
5238
5239 /* There is no Lisp data above The member CURRENT_MATRIX in
5240 struct WINDOW. Stop marking when that slot is reached. */
5241 for (i = 0;
5242 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5243 i++)
5244 mark_object (ptr->contents[i]);
5245
5246 /* Mark glyphs for leaf windows. Marking window matrices is
5247 sufficient because frame matrices use the same glyph
5248 memory. */
5249 if (NILP (w->hchild)
5250 && NILP (w->vchild)
5251 && w->current_matrix)
5252 {
5253 mark_glyph_matrix (w->current_matrix);
5254 mark_glyph_matrix (w->desired_matrix);
5255 }
5256 }
5257 else if (GC_HASH_TABLE_P (obj))
5258 {
5259 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5260
5261 /* Stop if already marked. */
5262 if (VECTOR_MARKED_P (h))
5263 break;
5264
5265 /* Mark it. */
5266 CHECK_LIVE (live_vector_p);
5267 VECTOR_MARK (h);
5268
5269 /* Mark contents. */
5270 /* Do not mark next_free or next_weak.
5271 Being in the next_weak chain
5272 should not keep the hash table alive.
5273 No need to mark `count' since it is an integer. */
5274 mark_object (h->test);
5275 mark_object (h->weak);
5276 mark_object (h->rehash_size);
5277 mark_object (h->rehash_threshold);
5278 mark_object (h->hash);
5279 mark_object (h->next);
5280 mark_object (h->index);
5281 mark_object (h->user_hash_function);
5282 mark_object (h->user_cmp_function);
5283
5284 /* If hash table is not weak, mark all keys and values.
5285 For weak tables, mark only the vector. */
5286 if (GC_NILP (h->weak))
5287 mark_object (h->key_and_value);
5288 else
5289 VECTOR_MARK (XVECTOR (h->key_and_value));
5290 }
5291 else
5292 {
5293 register struct Lisp_Vector *ptr = XVECTOR (obj);
5294 register EMACS_INT size = ptr->size;
5295 register int i;
5296
5297 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5298 CHECK_LIVE (live_vector_p);
5299 VECTOR_MARK (ptr); /* Else mark it */
5300 if (size & PSEUDOVECTOR_FLAG)
5301 size &= PSEUDOVECTOR_SIZE_MASK;
5302
5303 for (i = 0; i < size; i++) /* and then mark its elements */
5304 mark_object (ptr->contents[i]);
5305 }
5306 break;
5307
5308 case Lisp_Symbol:
5309 {
5310 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5311 struct Lisp_Symbol *ptrx;
5312
5313 if (ptr->gcmarkbit) break;
5314 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5315 ptr->gcmarkbit = 1;
5316 mark_object (ptr->value);
5317 mark_object (ptr->function);
5318 mark_object (ptr->plist);
5319
5320 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5321 MARK_STRING (XSTRING (ptr->xname));
5322 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5323
5324 /* Note that we do not mark the obarray of the symbol.
5325 It is safe not to do so because nothing accesses that
5326 slot except to check whether it is nil. */
5327 ptr = ptr->next;
5328 if (ptr)
5329 {
5330 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5331 XSETSYMBOL (obj, ptrx);
5332 goto loop;
5333 }
5334 }
5335 break;
5336
5337 case Lisp_Misc:
5338 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5339 if (XMARKER (obj)->gcmarkbit)
5340 break;
5341 XMARKER (obj)->gcmarkbit = 1;
5342
5343 switch (XMISCTYPE (obj))
5344 {
5345 case Lisp_Misc_Buffer_Local_Value:
5346 case Lisp_Misc_Some_Buffer_Local_Value:
5347 {
5348 register struct Lisp_Buffer_Local_Value *ptr
5349 = XBUFFER_LOCAL_VALUE (obj);
5350 /* If the cdr is nil, avoid recursion for the car. */
5351 if (EQ (ptr->cdr, Qnil))
5352 {
5353 obj = ptr->realvalue;
5354 goto loop;
5355 }
5356 mark_object (ptr->realvalue);
5357 mark_object (ptr->buffer);
5358 mark_object (ptr->frame);
5359 obj = ptr->cdr;
5360 goto loop;
5361 }
5362
5363 case Lisp_Misc_Marker:
5364 /* DO NOT mark thru the marker's chain.
5365 The buffer's markers chain does not preserve markers from gc;
5366 instead, markers are removed from the chain when freed by gc. */
5367 break;
5368
5369 case Lisp_Misc_Intfwd:
5370 case Lisp_Misc_Boolfwd:
5371 case Lisp_Misc_Objfwd:
5372 case Lisp_Misc_Buffer_Objfwd:
5373 case Lisp_Misc_Kboard_Objfwd:
5374 /* Don't bother with Lisp_Buffer_Objfwd,
5375 since all markable slots in current buffer marked anyway. */
5376 /* Don't need to do Lisp_Objfwd, since the places they point
5377 are protected with staticpro. */
5378 break;
5379
5380 case Lisp_Misc_Save_Value:
5381 #if GC_MARK_STACK
5382 {
5383 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5384 /* If DOGC is set, POINTER is the address of a memory
5385 area containing INTEGER potential Lisp_Objects. */
5386 if (ptr->dogc)
5387 {
5388 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5389 int nelt;
5390 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5391 mark_maybe_object (*p);
5392 }
5393 }
5394 #endif
5395 break;
5396
5397 case Lisp_Misc_Overlay:
5398 {
5399 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5400 mark_object (ptr->start);
5401 mark_object (ptr->end);
5402 mark_object (ptr->plist);
5403 if (ptr->next)
5404 {
5405 XSETMISC (obj, ptr->next);
5406 goto loop;
5407 }
5408 }
5409 break;
5410
5411 default:
5412 abort ();
5413 }
5414 break;
5415
5416 case Lisp_Cons:
5417 {
5418 register struct Lisp_Cons *ptr = XCONS (obj);
5419 if (CONS_MARKED_P (ptr)) break;
5420 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5421 CONS_MARK (ptr);
5422 /* If the cdr is nil, avoid recursion for the car. */
5423 if (EQ (ptr->cdr, Qnil))
5424 {
5425 obj = ptr->car;
5426 cdr_count = 0;
5427 goto loop;
5428 }
5429 mark_object (ptr->car);
5430 obj = ptr->cdr;
5431 cdr_count++;
5432 if (cdr_count == mark_object_loop_halt)
5433 abort ();
5434 goto loop;
5435 }
5436
5437 case Lisp_Float:
5438 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5439 FLOAT_MARK (XFLOAT (obj));
5440 break;
5441
5442 case Lisp_Int:
5443 break;
5444
5445 default:
5446 abort ();
5447 }
5448
5449 #undef CHECK_LIVE
5450 #undef CHECK_ALLOCATED
5451 #undef CHECK_ALLOCATED_AND_LIVE
5452 }
5453
5454 /* Mark the pointers in a buffer structure. */
5455
5456 static void
5457 mark_buffer (buf)
5458 Lisp_Object buf;
5459 {
5460 register struct buffer *buffer = XBUFFER (buf);
5461 register Lisp_Object *ptr, tmp;
5462 Lisp_Object base_buffer;
5463
5464 VECTOR_MARK (buffer);
5465
5466 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5467
5468 /* For now, we just don't mark the undo_list. It's done later in
5469 a special way just before the sweep phase, and after stripping
5470 some of its elements that are not needed any more. */
5471
5472 if (buffer->overlays_before)
5473 {
5474 XSETMISC (tmp, buffer->overlays_before);
5475 mark_object (tmp);
5476 }
5477 if (buffer->overlays_after)
5478 {
5479 XSETMISC (tmp, buffer->overlays_after);
5480 mark_object (tmp);
5481 }
5482
5483 for (ptr = &buffer->name;
5484 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5485 ptr++)
5486 mark_object (*ptr);
5487
5488 /* If this is an indirect buffer, mark its base buffer. */
5489 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5490 {
5491 XSETBUFFER (base_buffer, buffer->base_buffer);
5492 mark_buffer (base_buffer);
5493 }
5494 }
5495
5496
5497 /* Value is non-zero if OBJ will survive the current GC because it's
5498 either marked or does not need to be marked to survive. */
5499
5500 int
5501 survives_gc_p (obj)
5502 Lisp_Object obj;
5503 {
5504 int survives_p;
5505
5506 switch (XGCTYPE (obj))
5507 {
5508 case Lisp_Int:
5509 survives_p = 1;
5510 break;
5511
5512 case Lisp_Symbol:
5513 survives_p = XSYMBOL (obj)->gcmarkbit;
5514 break;
5515
5516 case Lisp_Misc:
5517 survives_p = XMARKER (obj)->gcmarkbit;
5518 break;
5519
5520 case Lisp_String:
5521 survives_p = STRING_MARKED_P (XSTRING (obj));
5522 break;
5523
5524 case Lisp_Vectorlike:
5525 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5526 break;
5527
5528 case Lisp_Cons:
5529 survives_p = CONS_MARKED_P (XCONS (obj));
5530 break;
5531
5532 case Lisp_Float:
5533 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5534 break;
5535
5536 default:
5537 abort ();
5538 }
5539
5540 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5541 }
5542
5543
5544 \f
5545 /* Sweep: find all structures not marked, and free them. */
5546
5547 static void
5548 gc_sweep ()
5549 {
5550 /* Remove or mark entries in weak hash tables.
5551 This must be done before any object is unmarked. */
5552 sweep_weak_hash_tables ();
5553
5554 sweep_strings ();
5555 #ifdef GC_CHECK_STRING_BYTES
5556 if (!noninteractive)
5557 check_string_bytes (1);
5558 #endif
5559
5560 /* Put all unmarked conses on free list */
5561 {
5562 register struct cons_block *cblk;
5563 struct cons_block **cprev = &cons_block;
5564 register int lim = cons_block_index;
5565 register int num_free = 0, num_used = 0;
5566
5567 cons_free_list = 0;
5568
5569 for (cblk = cons_block; cblk; cblk = *cprev)
5570 {
5571 register int i;
5572 int this_free = 0;
5573 for (i = 0; i < lim; i++)
5574 if (!CONS_MARKED_P (&cblk->conses[i]))
5575 {
5576 this_free++;
5577 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5578 cons_free_list = &cblk->conses[i];
5579 #if GC_MARK_STACK
5580 cons_free_list->car = Vdead;
5581 #endif
5582 }
5583 else
5584 {
5585 num_used++;
5586 CONS_UNMARK (&cblk->conses[i]);
5587 }
5588 lim = CONS_BLOCK_SIZE;
5589 /* If this block contains only free conses and we have already
5590 seen more than two blocks worth of free conses then deallocate
5591 this block. */
5592 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5593 {
5594 *cprev = cblk->next;
5595 /* Unhook from the free list. */
5596 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5597 lisp_align_free (cblk);
5598 n_cons_blocks--;
5599 }
5600 else
5601 {
5602 num_free += this_free;
5603 cprev = &cblk->next;
5604 }
5605 }
5606 total_conses = num_used;
5607 total_free_conses = num_free;
5608 }
5609
5610 /* Put all unmarked floats on free list */
5611 {
5612 register struct float_block *fblk;
5613 struct float_block **fprev = &float_block;
5614 register int lim = float_block_index;
5615 register int num_free = 0, num_used = 0;
5616
5617 float_free_list = 0;
5618
5619 for (fblk = float_block; fblk; fblk = *fprev)
5620 {
5621 register int i;
5622 int this_free = 0;
5623 for (i = 0; i < lim; i++)
5624 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5625 {
5626 this_free++;
5627 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5628 float_free_list = &fblk->floats[i];
5629 }
5630 else
5631 {
5632 num_used++;
5633 FLOAT_UNMARK (&fblk->floats[i]);
5634 }
5635 lim = FLOAT_BLOCK_SIZE;
5636 /* If this block contains only free floats and we have already
5637 seen more than two blocks worth of free floats then deallocate
5638 this block. */
5639 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5640 {
5641 *fprev = fblk->next;
5642 /* Unhook from the free list. */
5643 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5644 lisp_align_free (fblk);
5645 n_float_blocks--;
5646 }
5647 else
5648 {
5649 num_free += this_free;
5650 fprev = &fblk->next;
5651 }
5652 }
5653 total_floats = num_used;
5654 total_free_floats = num_free;
5655 }
5656
5657 /* Put all unmarked intervals on free list */
5658 {
5659 register struct interval_block *iblk;
5660 struct interval_block **iprev = &interval_block;
5661 register int lim = interval_block_index;
5662 register int num_free = 0, num_used = 0;
5663
5664 interval_free_list = 0;
5665
5666 for (iblk = interval_block; iblk; iblk = *iprev)
5667 {
5668 register int i;
5669 int this_free = 0;
5670
5671 for (i = 0; i < lim; i++)
5672 {
5673 if (!iblk->intervals[i].gcmarkbit)
5674 {
5675 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5676 interval_free_list = &iblk->intervals[i];
5677 this_free++;
5678 }
5679 else
5680 {
5681 num_used++;
5682 iblk->intervals[i].gcmarkbit = 0;
5683 }
5684 }
5685 lim = INTERVAL_BLOCK_SIZE;
5686 /* If this block contains only free intervals and we have already
5687 seen more than two blocks worth of free intervals then
5688 deallocate this block. */
5689 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5690 {
5691 *iprev = iblk->next;
5692 /* Unhook from the free list. */
5693 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5694 lisp_free (iblk);
5695 n_interval_blocks--;
5696 }
5697 else
5698 {
5699 num_free += this_free;
5700 iprev = &iblk->next;
5701 }
5702 }
5703 total_intervals = num_used;
5704 total_free_intervals = num_free;
5705 }
5706
5707 /* Put all unmarked symbols on free list */
5708 {
5709 register struct symbol_block *sblk;
5710 struct symbol_block **sprev = &symbol_block;
5711 register int lim = symbol_block_index;
5712 register int num_free = 0, num_used = 0;
5713
5714 symbol_free_list = NULL;
5715
5716 for (sblk = symbol_block; sblk; sblk = *sprev)
5717 {
5718 int this_free = 0;
5719 struct Lisp_Symbol *sym = sblk->symbols;
5720 struct Lisp_Symbol *end = sym + lim;
5721
5722 for (; sym < end; ++sym)
5723 {
5724 /* Check if the symbol was created during loadup. In such a case
5725 it might be pointed to by pure bytecode which we don't trace,
5726 so we conservatively assume that it is live. */
5727 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5728
5729 if (!sym->gcmarkbit && !pure_p)
5730 {
5731 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5732 symbol_free_list = sym;
5733 #if GC_MARK_STACK
5734 symbol_free_list->function = Vdead;
5735 #endif
5736 ++this_free;
5737 }
5738 else
5739 {
5740 ++num_used;
5741 if (!pure_p)
5742 UNMARK_STRING (XSTRING (sym->xname));
5743 sym->gcmarkbit = 0;
5744 }
5745 }
5746
5747 lim = SYMBOL_BLOCK_SIZE;
5748 /* If this block contains only free symbols and we have already
5749 seen more than two blocks worth of free symbols then deallocate
5750 this block. */
5751 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5752 {
5753 *sprev = sblk->next;
5754 /* Unhook from the free list. */
5755 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5756 lisp_free (sblk);
5757 n_symbol_blocks--;
5758 }
5759 else
5760 {
5761 num_free += this_free;
5762 sprev = &sblk->next;
5763 }
5764 }
5765 total_symbols = num_used;
5766 total_free_symbols = num_free;
5767 }
5768
5769 /* Put all unmarked misc's on free list.
5770 For a marker, first unchain it from the buffer it points into. */
5771 {
5772 register struct marker_block *mblk;
5773 struct marker_block **mprev = &marker_block;
5774 register int lim = marker_block_index;
5775 register int num_free = 0, num_used = 0;
5776
5777 marker_free_list = 0;
5778
5779 for (mblk = marker_block; mblk; mblk = *mprev)
5780 {
5781 register int i;
5782 int this_free = 0;
5783
5784 for (i = 0; i < lim; i++)
5785 {
5786 if (!mblk->markers[i].u_marker.gcmarkbit)
5787 {
5788 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5789 unchain_marker (&mblk->markers[i].u_marker);
5790 /* Set the type of the freed object to Lisp_Misc_Free.
5791 We could leave the type alone, since nobody checks it,
5792 but this might catch bugs faster. */
5793 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5794 mblk->markers[i].u_free.chain = marker_free_list;
5795 marker_free_list = &mblk->markers[i];
5796 this_free++;
5797 }
5798 else
5799 {
5800 num_used++;
5801 mblk->markers[i].u_marker.gcmarkbit = 0;
5802 }
5803 }
5804 lim = MARKER_BLOCK_SIZE;
5805 /* If this block contains only free markers and we have already
5806 seen more than two blocks worth of free markers then deallocate
5807 this block. */
5808 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5809 {
5810 *mprev = mblk->next;
5811 /* Unhook from the free list. */
5812 marker_free_list = mblk->markers[0].u_free.chain;
5813 lisp_free (mblk);
5814 n_marker_blocks--;
5815 }
5816 else
5817 {
5818 num_free += this_free;
5819 mprev = &mblk->next;
5820 }
5821 }
5822
5823 total_markers = num_used;
5824 total_free_markers = num_free;
5825 }
5826
5827 /* Free all unmarked buffers */
5828 {
5829 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5830
5831 while (buffer)
5832 if (!VECTOR_MARKED_P (buffer))
5833 {
5834 if (prev)
5835 prev->next = buffer->next;
5836 else
5837 all_buffers = buffer->next;
5838 next = buffer->next;
5839 lisp_free (buffer);
5840 buffer = next;
5841 }
5842 else
5843 {
5844 VECTOR_UNMARK (buffer);
5845 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5846 prev = buffer, buffer = buffer->next;
5847 }
5848 }
5849
5850 /* Free all unmarked vectors */
5851 {
5852 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5853 total_vector_size = 0;
5854
5855 while (vector)
5856 if (!VECTOR_MARKED_P (vector))
5857 {
5858 if (prev)
5859 prev->next = vector->next;
5860 else
5861 all_vectors = vector->next;
5862 next = vector->next;
5863 lisp_free (vector);
5864 n_vectors--;
5865 vector = next;
5866
5867 }
5868 else
5869 {
5870 VECTOR_UNMARK (vector);
5871 if (vector->size & PSEUDOVECTOR_FLAG)
5872 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5873 else
5874 total_vector_size += vector->size;
5875 prev = vector, vector = vector->next;
5876 }
5877 }
5878
5879 #ifdef GC_CHECK_STRING_BYTES
5880 if (!noninteractive)
5881 check_string_bytes (1);
5882 #endif
5883 }
5884
5885
5886
5887 \f
5888 /* Debugging aids. */
5889
5890 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5891 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5892 This may be helpful in debugging Emacs's memory usage.
5893 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5894 ()
5895 {
5896 Lisp_Object end;
5897
5898 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5899
5900 return end;
5901 }
5902
5903 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5904 doc: /* Return a list of counters that measure how much consing there has been.
5905 Each of these counters increments for a certain kind of object.
5906 The counters wrap around from the largest positive integer to zero.
5907 Garbage collection does not decrease them.
5908 The elements of the value are as follows:
5909 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5910 All are in units of 1 = one object consed
5911 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5912 objects consed.
5913 MISCS include overlays, markers, and some internal types.
5914 Frames, windows, buffers, and subprocesses count as vectors
5915 (but the contents of a buffer's text do not count here). */)
5916 ()
5917 {
5918 Lisp_Object consed[8];
5919
5920 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5921 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5922 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5923 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5924 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5925 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5926 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5927 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5928
5929 return Flist (8, consed);
5930 }
5931
5932 int suppress_checking;
5933 void
5934 die (msg, file, line)
5935 const char *msg;
5936 const char *file;
5937 int line;
5938 {
5939 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5940 file, line, msg);
5941 abort ();
5942 }
5943 \f
5944 /* Initialization */
5945
5946 void
5947 init_alloc_once ()
5948 {
5949 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5950 purebeg = PUREBEG;
5951 pure_size = PURESIZE;
5952 pure_bytes_used = 0;
5953 pure_bytes_used_before_overflow = 0;
5954
5955 /* Initialize the list of free aligned blocks. */
5956 free_ablock = NULL;
5957
5958 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5959 mem_init ();
5960 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5961 #endif
5962
5963 all_vectors = 0;
5964 ignore_warnings = 1;
5965 #ifdef DOUG_LEA_MALLOC
5966 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5967 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5968 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5969 #endif
5970 init_strings ();
5971 init_cons ();
5972 init_symbol ();
5973 init_marker ();
5974 init_float ();
5975 init_intervals ();
5976
5977 #ifdef REL_ALLOC
5978 malloc_hysteresis = 32;
5979 #else
5980 malloc_hysteresis = 0;
5981 #endif
5982
5983 spare_memory = (char *) malloc (SPARE_MEMORY);
5984
5985 ignore_warnings = 0;
5986 gcprolist = 0;
5987 byte_stack_list = 0;
5988 staticidx = 0;
5989 consing_since_gc = 0;
5990 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5991 #ifdef VIRT_ADDR_VARIES
5992 malloc_sbrk_unused = 1<<22; /* A large number */
5993 malloc_sbrk_used = 100000; /* as reasonable as any number */
5994 #endif /* VIRT_ADDR_VARIES */
5995 }
5996
5997 void
5998 init_alloc ()
5999 {
6000 gcprolist = 0;
6001 byte_stack_list = 0;
6002 #if GC_MARK_STACK
6003 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6004 setjmp_tested_p = longjmps_done = 0;
6005 #endif
6006 #endif
6007 Vgc_elapsed = make_float (0.0);
6008 gcs_done = 0;
6009 }
6010
6011 void
6012 syms_of_alloc ()
6013 {
6014 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6015 doc: /* *Number of bytes of consing between garbage collections.
6016 Garbage collection can happen automatically once this many bytes have been
6017 allocated since the last garbage collection. All data types count.
6018
6019 Garbage collection happens automatically only when `eval' is called.
6020
6021 By binding this temporarily to a large number, you can effectively
6022 prevent garbage collection during a part of the program. */);
6023
6024 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6025 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6026
6027 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6028 doc: /* Number of cons cells that have been consed so far. */);
6029
6030 DEFVAR_INT ("floats-consed", &floats_consed,
6031 doc: /* Number of floats that have been consed so far. */);
6032
6033 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6034 doc: /* Number of vector cells that have been consed so far. */);
6035
6036 DEFVAR_INT ("symbols-consed", &symbols_consed,
6037 doc: /* Number of symbols that have been consed so far. */);
6038
6039 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6040 doc: /* Number of string characters that have been consed so far. */);
6041
6042 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6043 doc: /* Number of miscellaneous objects that have been consed so far. */);
6044
6045 DEFVAR_INT ("intervals-consed", &intervals_consed,
6046 doc: /* Number of intervals that have been consed so far. */);
6047
6048 DEFVAR_INT ("strings-consed", &strings_consed,
6049 doc: /* Number of strings that have been consed so far. */);
6050
6051 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6052 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6053 This means that certain objects should be allocated in shared (pure) space. */);
6054
6055 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6056 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6057 garbage_collection_messages = 0;
6058
6059 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6060 doc: /* Hook run after garbage collection has finished. */);
6061 Vpost_gc_hook = Qnil;
6062 Qpost_gc_hook = intern ("post-gc-hook");
6063 staticpro (&Qpost_gc_hook);
6064
6065 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6066 doc: /* Precomputed `signal' argument for memory-full error. */);
6067 /* We build this in advance because if we wait until we need it, we might
6068 not be able to allocate the memory to hold it. */
6069 Vmemory_signal_data
6070 = list2 (Qerror,
6071 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6072
6073 DEFVAR_LISP ("memory-full", &Vmemory_full,
6074 doc: /* Non-nil means we are handling a memory-full error. */);
6075 Vmemory_full = Qnil;
6076
6077 staticpro (&Qgc_cons_threshold);
6078 Qgc_cons_threshold = intern ("gc-cons-threshold");
6079
6080 staticpro (&Qchar_table_extra_slots);
6081 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6082
6083 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6084 doc: /* Accumulated time elapsed in garbage collections.
6085 The time is in seconds as a floating point value. */);
6086 DEFVAR_INT ("gcs-done", &gcs_done,
6087 doc: /* Accumulated number of garbage collections done. */);
6088
6089 defsubr (&Smemory_full_p);
6090 defsubr (&Scons);
6091 defsubr (&Slist);
6092 defsubr (&Svector);
6093 defsubr (&Smake_byte_code);
6094 defsubr (&Smake_list);
6095 defsubr (&Smake_vector);
6096 defsubr (&Smake_char_table);
6097 defsubr (&Smake_string);
6098 defsubr (&Smake_bool_vector);
6099 defsubr (&Smake_symbol);
6100 defsubr (&Smake_marker);
6101 defsubr (&Spurecopy);
6102 defsubr (&Sgarbage_collect);
6103 defsubr (&Smemory_limit);
6104 defsubr (&Smemory_use_counts);
6105
6106 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6107 defsubr (&Sgc_status);
6108 #endif
6109 }
6110
6111 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6112 (do not change this comment) */