]> code.delx.au - gnu-emacs/blob - src/keymap.c
Merged from miles@gnu.org--gnu-2005 (patch 469)
[gnu-emacs] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 1986, 1987, 1988, 1993, 1994, 1995, 1998, 1999, 2000,
3 2001, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "frame.h"
31 #include "termhooks.h"
32 #include "blockinput.h"
33 #include "puresize.h"
34 #include "intervals.h"
35 #include "keymap.h"
36
37 /* The number of elements in keymap vectors. */
38 #define DENSE_TABLE_SIZE (0200)
39
40 /* Actually allocate storage for these variables */
41
42 Lisp_Object current_global_map; /* Current global keymap */
43
44 Lisp_Object global_map; /* default global key bindings */
45
46 Lisp_Object meta_map; /* The keymap used for globally bound
47 ESC-prefixed default commands */
48
49 Lisp_Object control_x_map; /* The keymap used for globally bound
50 C-x-prefixed default commands */
51
52 /* was MinibufLocalMap */
53 Lisp_Object Vminibuffer_local_map;
54 /* The keymap used by the minibuf for local
55 bindings when spaces are allowed in the
56 minibuf */
57
58 /* was MinibufLocalNSMap */
59 Lisp_Object Vminibuffer_local_ns_map;
60 /* The keymap used by the minibuf for local
61 bindings when spaces are not encouraged
62 in the minibuf */
63
64 /* keymap used for minibuffers when doing completion */
65 /* was MinibufLocalCompletionMap */
66 Lisp_Object Vminibuffer_local_completion_map;
67
68 /* keymap used for minibuffers when doing completion and require a match */
69 /* was MinibufLocalMustMatchMap */
70 Lisp_Object Vminibuffer_local_must_match_map;
71
72 /* Alist of minor mode variables and keymaps. */
73 Lisp_Object Vminor_mode_map_alist;
74
75 /* Alist of major-mode-specific overrides for
76 minor mode variables and keymaps. */
77 Lisp_Object Vminor_mode_overriding_map_alist;
78
79 /* List of emulation mode keymap alists. */
80 Lisp_Object Vemulation_mode_map_alists;
81
82 /* A list of all commands given new bindings since a certain time
83 when nil was stored here.
84 This is used to speed up recomputation of menu key equivalents
85 when Emacs starts up. t means don't record anything here. */
86 Lisp_Object Vdefine_key_rebound_commands;
87
88 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
89
90 /* Alist of elements like (DEL . "\d"). */
91 static Lisp_Object exclude_keys;
92
93 /* Pre-allocated 2-element vector for Fcommand_remapping to use. */
94 static Lisp_Object command_remapping_vector;
95
96 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
97 in a string key sequence is equivalent to prefixing with this
98 character. */
99 extern Lisp_Object meta_prefix_char;
100
101 extern Lisp_Object Voverriding_local_map;
102
103 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
104 static Lisp_Object where_is_cache;
105 /* Which keymaps are reverse-stored in the cache. */
106 static Lisp_Object where_is_cache_keymaps;
107
108 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
109 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
110
111 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
112 static void describe_command P_ ((Lisp_Object, Lisp_Object));
113 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
114 static void describe_map P_ ((Lisp_Object, Lisp_Object,
115 void (*) P_ ((Lisp_Object, Lisp_Object)),
116 int, Lisp_Object, Lisp_Object*, int, int));
117 static void describe_vector P_ ((Lisp_Object, Lisp_Object, Lisp_Object,
118 void (*) (Lisp_Object, Lisp_Object), int,
119 Lisp_Object, Lisp_Object, int *,
120 int, int, int));
121 static void silly_event_symbol_error P_ ((Lisp_Object));
122 \f
123 /* Keymap object support - constructors and predicates. */
124
125 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
126 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
127 CHARTABLE is a char-table that holds the bindings for all characters
128 without modifiers. All entries in it are initially nil, meaning
129 "command undefined". ALIST is an assoc-list which holds bindings for
130 function keys, mouse events, and any other things that appear in the
131 input stream. Initially, ALIST is nil.
132
133 The optional arg STRING supplies a menu name for the keymap
134 in case you use it as a menu with `x-popup-menu'. */)
135 (string)
136 Lisp_Object string;
137 {
138 Lisp_Object tail;
139 if (!NILP (string))
140 tail = Fcons (string, Qnil);
141 else
142 tail = Qnil;
143 return Fcons (Qkeymap,
144 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
145 }
146
147 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
148 doc: /* Construct and return a new sparse keymap.
149 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
150 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
151 which binds the function key or mouse event SYMBOL to DEFINITION.
152 Initially the alist is nil.
153
154 The optional arg STRING supplies a menu name for the keymap
155 in case you use it as a menu with `x-popup-menu'. */)
156 (string)
157 Lisp_Object string;
158 {
159 if (!NILP (string))
160 return Fcons (Qkeymap, Fcons (string, Qnil));
161 return Fcons (Qkeymap, Qnil);
162 }
163
164 /* This function is used for installing the standard key bindings
165 at initialization time.
166
167 For example:
168
169 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
170
171 void
172 initial_define_key (keymap, key, defname)
173 Lisp_Object keymap;
174 int key;
175 char *defname;
176 {
177 store_in_keymap (keymap, make_number (key), intern (defname));
178 }
179
180 void
181 initial_define_lispy_key (keymap, keyname, defname)
182 Lisp_Object keymap;
183 char *keyname;
184 char *defname;
185 {
186 store_in_keymap (keymap, intern (keyname), intern (defname));
187 }
188
189 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
190 doc: /* Return t if OBJECT is a keymap.
191
192 A keymap is a list (keymap . ALIST),
193 or a symbol whose function definition is itself a keymap.
194 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
195 a vector of densely packed bindings for small character codes
196 is also allowed as an element. */)
197 (object)
198 Lisp_Object object;
199 {
200 return (KEYMAPP (object) ? Qt : Qnil);
201 }
202
203 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
204 doc: /* Return the prompt-string of a keymap MAP.
205 If non-nil, the prompt is shown in the echo-area
206 when reading a key-sequence to be looked-up in this keymap. */)
207 (map)
208 Lisp_Object map;
209 {
210 map = get_keymap (map, 0, 0);
211 while (CONSP (map))
212 {
213 Lisp_Object tem = XCAR (map);
214 if (STRINGP (tem))
215 return tem;
216 map = XCDR (map);
217 }
218 return Qnil;
219 }
220
221 /* Check that OBJECT is a keymap (after dereferencing through any
222 symbols). If it is, return it.
223
224 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
225 is an autoload form, do the autoload and try again.
226 If AUTOLOAD is nonzero, callers must assume GC is possible.
227
228 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
229 is zero as well), return Qt.
230
231 ERROR controls how we respond if OBJECT isn't a keymap.
232 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
233
234 Note that most of the time, we don't want to pursue autoloads.
235 Functions like Faccessible_keymaps which scan entire keymap trees
236 shouldn't load every autoloaded keymap. I'm not sure about this,
237 but it seems to me that only read_key_sequence, Flookup_key, and
238 Fdefine_key should cause keymaps to be autoloaded.
239
240 This function can GC when AUTOLOAD is non-zero, because it calls
241 do_autoload which can GC. */
242
243 Lisp_Object
244 get_keymap (object, error, autoload)
245 Lisp_Object object;
246 int error, autoload;
247 {
248 Lisp_Object tem;
249
250 autoload_retry:
251 if (NILP (object))
252 goto end;
253 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
254 return object;
255
256 tem = indirect_function (object);
257 if (CONSP (tem))
258 {
259 if (EQ (XCAR (tem), Qkeymap))
260 return tem;
261
262 /* Should we do an autoload? Autoload forms for keymaps have
263 Qkeymap as their fifth element. */
264 if ((autoload || !error) && EQ (XCAR (tem), Qautoload)
265 && SYMBOLP (object))
266 {
267 Lisp_Object tail;
268
269 tail = Fnth (make_number (4), tem);
270 if (EQ (tail, Qkeymap))
271 {
272 if (autoload)
273 {
274 struct gcpro gcpro1, gcpro2;
275
276 GCPRO2 (tem, object);
277 do_autoload (tem, object);
278 UNGCPRO;
279
280 goto autoload_retry;
281 }
282 else
283 return Qt;
284 }
285 }
286 }
287
288 end:
289 if (error)
290 wrong_type_argument (Qkeymapp, object);
291 return Qnil;
292 }
293 \f
294 /* Return the parent map of KEYMAP, or nil if it has none.
295 We assume that KEYMAP is a valid keymap. */
296
297 Lisp_Object
298 keymap_parent (keymap, autoload)
299 Lisp_Object keymap;
300 int autoload;
301 {
302 Lisp_Object list;
303
304 keymap = get_keymap (keymap, 1, autoload);
305
306 /* Skip past the initial element `keymap'. */
307 list = XCDR (keymap);
308 for (; CONSP (list); list = XCDR (list))
309 {
310 /* See if there is another `keymap'. */
311 if (KEYMAPP (list))
312 return list;
313 }
314
315 return get_keymap (list, 0, autoload);
316 }
317
318 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
319 doc: /* Return the parent keymap of KEYMAP. */)
320 (keymap)
321 Lisp_Object keymap;
322 {
323 return keymap_parent (keymap, 1);
324 }
325
326 /* Check whether MAP is one of MAPS parents. */
327 int
328 keymap_memberp (map, maps)
329 Lisp_Object map, maps;
330 {
331 if (NILP (map)) return 0;
332 while (KEYMAPP (maps) && !EQ (map, maps))
333 maps = keymap_parent (maps, 0);
334 return (EQ (map, maps));
335 }
336
337 /* Set the parent keymap of MAP to PARENT. */
338
339 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
340 doc: /* Modify KEYMAP to set its parent map to PARENT.
341 Return PARENT. PARENT should be nil or another keymap. */)
342 (keymap, parent)
343 Lisp_Object keymap, parent;
344 {
345 Lisp_Object list, prev;
346 struct gcpro gcpro1, gcpro2;
347 int i;
348
349 /* Force a keymap flush for the next call to where-is.
350 Since this can be called from within where-is, we don't set where_is_cache
351 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
352 be changed during where-is, while where_is_cache_keymaps is only used at
353 the very beginning of where-is and can thus be changed here without any
354 adverse effect.
355 This is a very minor correctness (rather than safety) issue. */
356 where_is_cache_keymaps = Qt;
357
358 GCPRO2 (keymap, parent);
359 keymap = get_keymap (keymap, 1, 1);
360
361 if (!NILP (parent))
362 {
363 parent = get_keymap (parent, 1, 1);
364
365 /* Check for cycles. */
366 if (keymap_memberp (keymap, parent))
367 error ("Cyclic keymap inheritance");
368 }
369
370 /* Skip past the initial element `keymap'. */
371 prev = keymap;
372 while (1)
373 {
374 list = XCDR (prev);
375 /* If there is a parent keymap here, replace it.
376 If we came to the end, add the parent in PREV. */
377 if (!CONSP (list) || KEYMAPP (list))
378 {
379 /* If we already have the right parent, return now
380 so that we avoid the loops below. */
381 if (EQ (XCDR (prev), parent))
382 RETURN_UNGCPRO (parent);
383
384 XSETCDR (prev, parent);
385 break;
386 }
387 prev = list;
388 }
389
390 /* Scan through for submaps, and set their parents too. */
391
392 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
393 {
394 /* Stop the scan when we come to the parent. */
395 if (EQ (XCAR (list), Qkeymap))
396 break;
397
398 /* If this element holds a prefix map, deal with it. */
399 if (CONSP (XCAR (list))
400 && CONSP (XCDR (XCAR (list))))
401 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
402 XCDR (XCAR (list)));
403
404 if (VECTORP (XCAR (list)))
405 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
406 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
407 fix_submap_inheritance (keymap, make_number (i),
408 XVECTOR (XCAR (list))->contents[i]);
409
410 if (CHAR_TABLE_P (XCAR (list)))
411 {
412 Lisp_Object indices[3];
413
414 map_char_table (fix_submap_inheritance, Qnil,
415 XCAR (list), XCAR (list),
416 keymap, 0, indices);
417 }
418 }
419
420 RETURN_UNGCPRO (parent);
421 }
422
423 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
424 if EVENT is also a prefix in MAP's parent,
425 make sure that SUBMAP inherits that definition as its own parent. */
426
427 static void
428 fix_submap_inheritance (map, event, submap)
429 Lisp_Object map, event, submap;
430 {
431 Lisp_Object map_parent, parent_entry;
432
433 /* SUBMAP is a cons that we found as a key binding.
434 Discard the other things found in a menu key binding. */
435
436 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
437
438 /* If it isn't a keymap now, there's no work to do. */
439 if (!CONSP (submap))
440 return;
441
442 map_parent = keymap_parent (map, 0);
443 if (!NILP (map_parent))
444 parent_entry =
445 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
446 else
447 parent_entry = Qnil;
448
449 /* If MAP's parent has something other than a keymap,
450 our own submap shadows it completely. */
451 if (!CONSP (parent_entry))
452 return;
453
454 if (! EQ (parent_entry, submap))
455 {
456 Lisp_Object submap_parent;
457 submap_parent = submap;
458 while (1)
459 {
460 Lisp_Object tem;
461
462 tem = keymap_parent (submap_parent, 0);
463
464 if (KEYMAPP (tem))
465 {
466 if (keymap_memberp (tem, parent_entry))
467 /* Fset_keymap_parent could create a cycle. */
468 return;
469 submap_parent = tem;
470 }
471 else
472 break;
473 }
474 Fset_keymap_parent (submap_parent, parent_entry);
475 }
476 }
477 \f
478 /* Look up IDX in MAP. IDX may be any sort of event.
479 Note that this does only one level of lookup; IDX must be a single
480 event, not a sequence.
481
482 If T_OK is non-zero, bindings for Qt are treated as default
483 bindings; any key left unmentioned by other tables and bindings is
484 given the binding of Qt.
485
486 If T_OK is zero, bindings for Qt are not treated specially.
487
488 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
489
490 Lisp_Object
491 access_keymap (map, idx, t_ok, noinherit, autoload)
492 Lisp_Object map;
493 Lisp_Object idx;
494 int t_ok;
495 int noinherit;
496 int autoload;
497 {
498 Lisp_Object val;
499
500 /* Qunbound in VAL means we have found no binding yet. */
501 val = Qunbound;
502
503 /* If idx is a list (some sort of mouse click, perhaps?),
504 the index we want to use is the car of the list, which
505 ought to be a symbol. */
506 idx = EVENT_HEAD (idx);
507
508 /* If idx is a symbol, it might have modifiers, which need to
509 be put in the canonical order. */
510 if (SYMBOLP (idx))
511 idx = reorder_modifiers (idx);
512 else if (INTEGERP (idx))
513 /* Clobber the high bits that can be present on a machine
514 with more than 24 bits of integer. */
515 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
516
517 /* Handle the special meta -> esc mapping. */
518 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
519 {
520 /* See if there is a meta-map. If there's none, there is
521 no binding for IDX, unless a default binding exists in MAP. */
522 struct gcpro gcpro1;
523 Lisp_Object meta_map;
524 GCPRO1 (map);
525 /* A strange value in which Meta is set would cause
526 infinite recursion. Protect against that. */
527 if (XINT (meta_prefix_char) & CHAR_META)
528 meta_prefix_char = make_number (27);
529 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
530 t_ok, noinherit, autoload),
531 0, autoload);
532 UNGCPRO;
533 if (CONSP (meta_map))
534 {
535 map = meta_map;
536 idx = make_number (XUINT (idx) & ~meta_modifier);
537 }
538 else if (t_ok)
539 /* Set IDX to t, so that we only find a default binding. */
540 idx = Qt;
541 else
542 /* We know there is no binding. */
543 return Qnil;
544 }
545
546 /* t_binding is where we put a default binding that applies,
547 to use in case we do not find a binding specifically
548 for this key sequence. */
549 {
550 Lisp_Object tail;
551 Lisp_Object t_binding = Qnil;
552 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
553
554 GCPRO4 (map, tail, idx, t_binding);
555
556 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
557 If it is 1, only generic-char bindings are accepted.
558 Otherwise, neither are. */
559 t_ok = t_ok ? 2 : 0;
560
561 for (tail = XCDR (map);
562 (CONSP (tail)
563 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
564 tail = XCDR (tail))
565 {
566 Lisp_Object binding;
567
568 binding = XCAR (tail);
569 if (SYMBOLP (binding))
570 {
571 /* If NOINHERIT, stop finding prefix definitions
572 after we pass a second occurrence of the `keymap' symbol. */
573 if (noinherit && EQ (binding, Qkeymap))
574 RETURN_UNGCPRO (Qnil);
575 }
576 else if (CONSP (binding))
577 {
578 Lisp_Object key = XCAR (binding);
579
580 if (EQ (key, idx))
581 val = XCDR (binding);
582 else if (t_ok
583 && INTEGERP (idx)
584 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
585 && INTEGERP (key)
586 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
587 && !SINGLE_BYTE_CHAR_P (XINT (idx))
588 && !SINGLE_BYTE_CHAR_P (XINT (key))
589 && CHAR_VALID_P (XINT (key), 1)
590 && !CHAR_VALID_P (XINT (key), 0)
591 && (CHAR_CHARSET (XINT (key))
592 == CHAR_CHARSET (XINT (idx))))
593 {
594 /* KEY is the generic character of the charset of IDX.
595 Use KEY's binding if there isn't a binding for IDX
596 itself. */
597 t_binding = XCDR (binding);
598 t_ok = 0;
599 }
600 else if (t_ok > 1 && EQ (key, Qt))
601 {
602 t_binding = XCDR (binding);
603 t_ok = 1;
604 }
605 }
606 else if (VECTORP (binding))
607 {
608 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
609 val = AREF (binding, XFASTINT (idx));
610 }
611 else if (CHAR_TABLE_P (binding))
612 {
613 /* Character codes with modifiers
614 are not included in a char-table.
615 All character codes without modifiers are included. */
616 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
617 {
618 val = Faref (binding, idx);
619 /* `nil' has a special meaning for char-tables, so
620 we use something else to record an explicitly
621 unbound entry. */
622 if (NILP (val))
623 val = Qunbound;
624 }
625 }
626
627 /* If we found a binding, clean it up and return it. */
628 if (!EQ (val, Qunbound))
629 {
630 if (EQ (val, Qt))
631 /* A Qt binding is just like an explicit nil binding
632 (i.e. it shadows any parent binding but not bindings in
633 keymaps of lower precedence). */
634 val = Qnil;
635 val = get_keyelt (val, autoload);
636 if (KEYMAPP (val))
637 fix_submap_inheritance (map, idx, val);
638 RETURN_UNGCPRO (val);
639 }
640 QUIT;
641 }
642 UNGCPRO;
643 return get_keyelt (t_binding, autoload);
644 }
645 }
646
647 static void
648 map_keymap_item (fun, args, key, val, data)
649 map_keymap_function_t fun;
650 Lisp_Object args, key, val;
651 void *data;
652 {
653 /* We should maybe try to detect bindings shadowed by previous
654 ones and things like that. */
655 if (EQ (val, Qt))
656 val = Qnil;
657 (*fun) (key, val, args, data);
658 }
659
660 static void
661 map_keymap_char_table_item (args, key, val)
662 Lisp_Object args, key, val;
663 {
664 if (!NILP (val))
665 {
666 map_keymap_function_t fun = XSAVE_VALUE (XCAR (args))->pointer;
667 args = XCDR (args);
668 map_keymap_item (fun, XCDR (args), key, val,
669 XSAVE_VALUE (XCAR (args))->pointer);
670 }
671 }
672
673 /* Call FUN for every binding in MAP.
674 FUN is called with 4 arguments: FUN (KEY, BINDING, ARGS, DATA).
675 AUTOLOAD if non-zero means that we can autoload keymaps if necessary. */
676 void
677 map_keymap (map, fun, args, data, autoload)
678 map_keymap_function_t fun;
679 Lisp_Object map, args;
680 void *data;
681 int autoload;
682 {
683 struct gcpro gcpro1, gcpro2, gcpro3;
684 Lisp_Object tail;
685
686 GCPRO3 (map, args, tail);
687 map = get_keymap (map, 1, autoload);
688 for (tail = (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
689 CONSP (tail) || (tail = get_keymap (tail, 0, autoload), CONSP (tail));
690 tail = XCDR (tail))
691 {
692 Lisp_Object binding = XCAR (tail);
693
694 if (CONSP (binding))
695 map_keymap_item (fun, args, XCAR (binding), XCDR (binding), data);
696 else if (VECTORP (binding))
697 {
698 /* Loop over the char values represented in the vector. */
699 int len = ASIZE (binding);
700 int c;
701 for (c = 0; c < len; c++)
702 {
703 Lisp_Object character;
704 XSETFASTINT (character, c);
705 map_keymap_item (fun, args, character, AREF (binding, c), data);
706 }
707 }
708 else if (CHAR_TABLE_P (binding))
709 {
710 Lisp_Object indices[3];
711 map_char_table (map_keymap_char_table_item, Qnil, binding, binding,
712 Fcons (make_save_value (fun, 0),
713 Fcons (make_save_value (data, 0),
714 args)),
715 0, indices);
716 }
717 }
718 UNGCPRO;
719 }
720
721 static void
722 map_keymap_call (key, val, fun, dummy)
723 Lisp_Object key, val, fun;
724 void *dummy;
725 {
726 call2 (fun, key, val);
727 }
728
729 DEFUN ("map-keymap", Fmap_keymap, Smap_keymap, 2, 3, 0,
730 doc: /* Call FUNCTION for every binding in KEYMAP.
731 FUNCTION is called with two arguments: the event and its binding.
732 If KEYMAP has a parent, the parent's bindings are included as well.
733 This works recursively: if the parent has itself a parent, then the
734 grandparent's bindings are also included and so on.
735 usage: (map-keymap FUNCTION KEYMAP) */)
736 (function, keymap, sort_first)
737 Lisp_Object function, keymap, sort_first;
738 {
739 if (INTEGERP (function))
740 /* We have to stop integers early since map_keymap gives them special
741 significance. */
742 Fsignal (Qinvalid_function, Fcons (function, Qnil));
743 if (! NILP (sort_first))
744 return call3 (intern ("map-keymap-internal"), function, keymap, Qt);
745
746 map_keymap (keymap, map_keymap_call, function, NULL, 1);
747 return Qnil;
748 }
749
750 /* Given OBJECT which was found in a slot in a keymap,
751 trace indirect definitions to get the actual definition of that slot.
752 An indirect definition is a list of the form
753 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
754 and INDEX is the object to look up in KEYMAP to yield the definition.
755
756 Also if OBJECT has a menu string as the first element,
757 remove that. Also remove a menu help string as second element.
758
759 If AUTOLOAD is nonzero, load autoloadable keymaps
760 that are referred to with indirection.
761
762 This can GC because menu_item_eval_property calls Feval. */
763
764 Lisp_Object
765 get_keyelt (object, autoload)
766 Lisp_Object object;
767 int autoload;
768 {
769 while (1)
770 {
771 if (!(CONSP (object)))
772 /* This is really the value. */
773 return object;
774
775 /* If the keymap contents looks like (keymap ...) or (lambda ...)
776 then use itself. */
777 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
778 return object;
779
780 /* If the keymap contents looks like (menu-item name . DEFN)
781 or (menu-item name DEFN ...) then use DEFN.
782 This is a new format menu item. */
783 else if (EQ (XCAR (object), Qmenu_item))
784 {
785 if (CONSP (XCDR (object)))
786 {
787 Lisp_Object tem;
788
789 object = XCDR (XCDR (object));
790 tem = object;
791 if (CONSP (object))
792 object = XCAR (object);
793
794 /* If there's a `:filter FILTER', apply FILTER to the
795 menu-item's definition to get the real definition to
796 use. */
797 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
798 if (EQ (XCAR (tem), QCfilter) && autoload)
799 {
800 Lisp_Object filter;
801 filter = XCAR (XCDR (tem));
802 filter = list2 (filter, list2 (Qquote, object));
803 object = menu_item_eval_property (filter);
804 break;
805 }
806 }
807 else
808 /* Invalid keymap. */
809 return object;
810 }
811
812 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
813 Keymap alist elements like (CHAR MENUSTRING . DEFN)
814 will be used by HierarKey menus. */
815 else if (STRINGP (XCAR (object)))
816 {
817 object = XCDR (object);
818 /* Also remove a menu help string, if any,
819 following the menu item name. */
820 if (CONSP (object) && STRINGP (XCAR (object)))
821 object = XCDR (object);
822 /* Also remove the sublist that caches key equivalences, if any. */
823 if (CONSP (object) && CONSP (XCAR (object)))
824 {
825 Lisp_Object carcar;
826 carcar = XCAR (XCAR (object));
827 if (NILP (carcar) || VECTORP (carcar))
828 object = XCDR (object);
829 }
830 }
831
832 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
833 else
834 {
835 struct gcpro gcpro1;
836 Lisp_Object map;
837 GCPRO1 (object);
838 map = get_keymap (Fcar_safe (object), 0, autoload);
839 UNGCPRO;
840 return (!CONSP (map) ? object /* Invalid keymap */
841 : access_keymap (map, Fcdr (object), 0, 0, autoload));
842 }
843 }
844 }
845
846 static Lisp_Object
847 store_in_keymap (keymap, idx, def)
848 Lisp_Object keymap;
849 register Lisp_Object idx;
850 register Lisp_Object def;
851 {
852 /* Flush any reverse-map cache. */
853 where_is_cache = Qnil;
854 where_is_cache_keymaps = Qt;
855
856 /* If we are preparing to dump, and DEF is a menu element
857 with a menu item indicator, copy it to ensure it is not pure. */
858 if (CONSP (def) && PURE_P (def)
859 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
860 def = Fcons (XCAR (def), XCDR (def));
861
862 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
863 error ("attempt to define a key in a non-keymap");
864
865 /* If idx is a list (some sort of mouse click, perhaps?),
866 the index we want to use is the car of the list, which
867 ought to be a symbol. */
868 idx = EVENT_HEAD (idx);
869
870 /* If idx is a symbol, it might have modifiers, which need to
871 be put in the canonical order. */
872 if (SYMBOLP (idx))
873 idx = reorder_modifiers (idx);
874 else if (INTEGERP (idx))
875 /* Clobber the high bits that can be present on a machine
876 with more than 24 bits of integer. */
877 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
878
879 /* Scan the keymap for a binding of idx. */
880 {
881 Lisp_Object tail;
882
883 /* The cons after which we should insert new bindings. If the
884 keymap has a table element, we record its position here, so new
885 bindings will go after it; this way, the table will stay
886 towards the front of the alist and character lookups in dense
887 keymaps will remain fast. Otherwise, this just points at the
888 front of the keymap. */
889 Lisp_Object insertion_point;
890
891 insertion_point = keymap;
892 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
893 {
894 Lisp_Object elt;
895
896 elt = XCAR (tail);
897 if (VECTORP (elt))
898 {
899 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
900 {
901 ASET (elt, XFASTINT (idx), def);
902 return def;
903 }
904 insertion_point = tail;
905 }
906 else if (CHAR_TABLE_P (elt))
907 {
908 /* Character codes with modifiers
909 are not included in a char-table.
910 All character codes without modifiers are included. */
911 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
912 {
913 Faset (elt, idx,
914 /* `nil' has a special meaning for char-tables, so
915 we use something else to record an explicitly
916 unbound entry. */
917 NILP (def) ? Qt : def);
918 return def;
919 }
920 insertion_point = tail;
921 }
922 else if (CONSP (elt))
923 {
924 if (EQ (idx, XCAR (elt)))
925 {
926 XSETCDR (elt, def);
927 return def;
928 }
929 }
930 else if (EQ (elt, Qkeymap))
931 /* If we find a 'keymap' symbol in the spine of KEYMAP,
932 then we must have found the start of a second keymap
933 being used as the tail of KEYMAP, and a binding for IDX
934 should be inserted before it. */
935 goto keymap_end;
936
937 QUIT;
938 }
939
940 keymap_end:
941 /* We have scanned the entire keymap, and not found a binding for
942 IDX. Let's add one. */
943 XSETCDR (insertion_point,
944 Fcons (Fcons (idx, def), XCDR (insertion_point)));
945 }
946
947 return def;
948 }
949
950 EXFUN (Fcopy_keymap, 1);
951
952 Lisp_Object
953 copy_keymap_item (elt)
954 Lisp_Object elt;
955 {
956 Lisp_Object res, tem;
957
958 if (!CONSP (elt))
959 return elt;
960
961 res = tem = elt;
962
963 /* Is this a new format menu item. */
964 if (EQ (XCAR (tem), Qmenu_item))
965 {
966 /* Copy cell with menu-item marker. */
967 res = elt = Fcons (XCAR (tem), XCDR (tem));
968 tem = XCDR (elt);
969 if (CONSP (tem))
970 {
971 /* Copy cell with menu-item name. */
972 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
973 elt = XCDR (elt);
974 tem = XCDR (elt);
975 }
976 if (CONSP (tem))
977 {
978 /* Copy cell with binding and if the binding is a keymap,
979 copy that. */
980 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
981 elt = XCDR (elt);
982 tem = XCAR (elt);
983 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
984 XSETCAR (elt, Fcopy_keymap (tem));
985 tem = XCDR (elt);
986 if (CONSP (tem) && CONSP (XCAR (tem)))
987 /* Delete cache for key equivalences. */
988 XSETCDR (elt, XCDR (tem));
989 }
990 }
991 else
992 {
993 /* It may be an old fomat menu item.
994 Skip the optional menu string. */
995 if (STRINGP (XCAR (tem)))
996 {
997 /* Copy the cell, since copy-alist didn't go this deep. */
998 res = elt = Fcons (XCAR (tem), XCDR (tem));
999 tem = XCDR (elt);
1000 /* Also skip the optional menu help string. */
1001 if (CONSP (tem) && STRINGP (XCAR (tem)))
1002 {
1003 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1004 elt = XCDR (elt);
1005 tem = XCDR (elt);
1006 }
1007 /* There may also be a list that caches key equivalences.
1008 Just delete it for the new keymap. */
1009 if (CONSP (tem)
1010 && CONSP (XCAR (tem))
1011 && (NILP (XCAR (XCAR (tem)))
1012 || VECTORP (XCAR (XCAR (tem)))))
1013 {
1014 XSETCDR (elt, XCDR (tem));
1015 tem = XCDR (tem);
1016 }
1017 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1018 XSETCDR (elt, Fcopy_keymap (tem));
1019 }
1020 else if (EQ (XCAR (tem), Qkeymap))
1021 res = Fcopy_keymap (elt);
1022 }
1023 return res;
1024 }
1025
1026 static void
1027 copy_keymap_1 (chartable, idx, elt)
1028 Lisp_Object chartable, idx, elt;
1029 {
1030 Faset (chartable, idx, copy_keymap_item (elt));
1031 }
1032
1033 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
1034 doc: /* Return a copy of the keymap KEYMAP.
1035 The copy starts out with the same definitions of KEYMAP,
1036 but changing either the copy or KEYMAP does not affect the other.
1037 Any key definitions that are subkeymaps are recursively copied.
1038 However, a key definition which is a symbol whose definition is a keymap
1039 is not copied. */)
1040 (keymap)
1041 Lisp_Object keymap;
1042 {
1043 register Lisp_Object copy, tail;
1044 keymap = get_keymap (keymap, 1, 0);
1045 copy = tail = Fcons (Qkeymap, Qnil);
1046 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
1047
1048 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
1049 {
1050 Lisp_Object elt = XCAR (keymap);
1051 if (CHAR_TABLE_P (elt))
1052 {
1053 Lisp_Object indices[3];
1054 elt = Fcopy_sequence (elt);
1055 map_char_table (copy_keymap_1, Qnil, elt, elt, elt, 0, indices);
1056 }
1057 else if (VECTORP (elt))
1058 {
1059 int i;
1060 elt = Fcopy_sequence (elt);
1061 for (i = 0; i < ASIZE (elt); i++)
1062 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
1063 }
1064 else if (CONSP (elt))
1065 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
1066 XSETCDR (tail, Fcons (elt, Qnil));
1067 tail = XCDR (tail);
1068 keymap = XCDR (keymap);
1069 }
1070 XSETCDR (tail, keymap);
1071 return copy;
1072 }
1073 \f
1074 /* Simple Keymap mutators and accessors. */
1075
1076 /* GC is possible in this function if it autoloads a keymap. */
1077
1078 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
1079 doc: /* In KEYMAP, define key sequence KEY as DEF.
1080 KEYMAP is a keymap.
1081
1082 KEY is a string or a vector of symbols and characters meaning a
1083 sequence of keystrokes and events. Non-ASCII characters with codes
1084 above 127 (such as ISO Latin-1) can be included if you use a vector.
1085 Using [t] for KEY creates a default definition, which applies to any
1086 event type that has no other definition in this keymap.
1087
1088 DEF is anything that can be a key's definition:
1089 nil (means key is undefined in this keymap),
1090 a command (a Lisp function suitable for interactive calling),
1091 a string (treated as a keyboard macro),
1092 a keymap (to define a prefix key),
1093 a symbol (when the key is looked up, the symbol will stand for its
1094 function definition, which should at that time be one of the above,
1095 or another symbol whose function definition is used, etc.),
1096 a cons (STRING . DEFN), meaning that DEFN is the definition
1097 (DEFN should be a valid definition in its own right),
1098 or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP.
1099
1100 If KEYMAP is a sparse keymap with a binding for KEY, the existing
1101 binding is altered. If there is no binding for KEY, the new pair
1102 binding KEY to DEF is added at the front of KEYMAP. */)
1103 (keymap, key, def)
1104 Lisp_Object keymap;
1105 Lisp_Object key;
1106 Lisp_Object def;
1107 {
1108 register int idx;
1109 register Lisp_Object c;
1110 register Lisp_Object cmd;
1111 int metized = 0;
1112 int meta_bit;
1113 int length;
1114 struct gcpro gcpro1, gcpro2, gcpro3;
1115
1116 GCPRO3 (keymap, key, def);
1117 keymap = get_keymap (keymap, 1, 1);
1118
1119 if (!VECTORP (key) && !STRINGP (key))
1120 key = wrong_type_argument (Qarrayp, key);
1121
1122 length = XFASTINT (Flength (key));
1123 if (length == 0)
1124 RETURN_UNGCPRO (Qnil);
1125
1126 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1127 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1128
1129 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1130
1131 idx = 0;
1132 while (1)
1133 {
1134 c = Faref (key, make_number (idx));
1135
1136 if (CONSP (c) && lucid_event_type_list_p (c))
1137 c = Fevent_convert_list (c);
1138
1139 if (SYMBOLP (c))
1140 silly_event_symbol_error (c);
1141
1142 if (INTEGERP (c)
1143 && (XINT (c) & meta_bit)
1144 && !metized)
1145 {
1146 c = meta_prefix_char;
1147 metized = 1;
1148 }
1149 else
1150 {
1151 if (INTEGERP (c))
1152 XSETINT (c, XINT (c) & ~meta_bit);
1153
1154 metized = 0;
1155 idx++;
1156 }
1157
1158 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1159 error ("Key sequence contains invalid event");
1160
1161 if (idx == length)
1162 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1163
1164 cmd = access_keymap (keymap, c, 0, 1, 1);
1165
1166 /* If this key is undefined, make it a prefix. */
1167 if (NILP (cmd))
1168 cmd = define_as_prefix (keymap, c);
1169
1170 keymap = get_keymap (cmd, 0, 1);
1171 if (!CONSP (keymap))
1172 /* We must use Fkey_description rather than just passing key to
1173 error; key might be a vector, not a string. */
1174 error ("Key sequence %s uses invalid prefix characters",
1175 SDATA (Fkey_description (key, Qnil)));
1176 }
1177 }
1178
1179 /* This function may GC (it calls Fkey_binding). */
1180
1181 DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 1, 0,
1182 doc: /* Return the remapping for command COMMAND in current keymaps.
1183 Returns nil if COMMAND is not remapped (or not a symbol). */)
1184 (command)
1185 Lisp_Object command;
1186 {
1187 if (!SYMBOLP (command))
1188 return Qnil;
1189
1190 ASET (command_remapping_vector, 1, command);
1191 return Fkey_binding (command_remapping_vector, Qnil, Qt);
1192 }
1193
1194 /* Value is number if KEY is too long; nil if valid but has no definition. */
1195 /* GC is possible in this function if it autoloads a keymap. */
1196
1197 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1198 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1199 nil means undefined. See doc of `define-key' for kinds of definitions.
1200
1201 A number as value means KEY is "too long";
1202 that is, characters or symbols in it except for the last one
1203 fail to be a valid sequence of prefix characters in KEYMAP.
1204 The number is how many characters at the front of KEY
1205 it takes to reach a non-prefix command.
1206
1207 Normally, `lookup-key' ignores bindings for t, which act as default
1208 bindings, used when nothing else in the keymap applies; this makes it
1209 usable as a general function for probing keymaps. However, if the
1210 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1211 recognize the default bindings, just as `read-key-sequence' does. */)
1212 (keymap, key, accept_default)
1213 Lisp_Object keymap;
1214 Lisp_Object key;
1215 Lisp_Object accept_default;
1216 {
1217 register int idx;
1218 register Lisp_Object cmd;
1219 register Lisp_Object c;
1220 int length;
1221 int t_ok = !NILP (accept_default);
1222 struct gcpro gcpro1, gcpro2;
1223
1224 GCPRO2 (keymap, key);
1225 keymap = get_keymap (keymap, 1, 1);
1226
1227 if (!VECTORP (key) && !STRINGP (key))
1228 key = wrong_type_argument (Qarrayp, key);
1229
1230 length = XFASTINT (Flength (key));
1231 if (length == 0)
1232 RETURN_UNGCPRO (keymap);
1233
1234 idx = 0;
1235 while (1)
1236 {
1237 c = Faref (key, make_number (idx++));
1238
1239 if (CONSP (c) && lucid_event_type_list_p (c))
1240 c = Fevent_convert_list (c);
1241
1242 /* Turn the 8th bit of string chars into a meta modifier. */
1243 if (INTEGERP (c) && XINT (c) & 0x80 && STRINGP (key))
1244 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1245
1246 /* Allow string since binding for `menu-bar-select-buffer'
1247 includes the buffer name in the key sequence. */
1248 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1249 error ("Key sequence contains invalid event");
1250
1251 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1252 if (idx == length)
1253 RETURN_UNGCPRO (cmd);
1254
1255 keymap = get_keymap (cmd, 0, 1);
1256 if (!CONSP (keymap))
1257 RETURN_UNGCPRO (make_number (idx));
1258
1259 QUIT;
1260 }
1261 }
1262
1263 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1264 Assume that currently it does not define C at all.
1265 Return the keymap. */
1266
1267 static Lisp_Object
1268 define_as_prefix (keymap, c)
1269 Lisp_Object keymap, c;
1270 {
1271 Lisp_Object cmd;
1272
1273 cmd = Fmake_sparse_keymap (Qnil);
1274 /* If this key is defined as a prefix in an inherited keymap,
1275 make it a prefix in this map, and make its definition
1276 inherit the other prefix definition. */
1277 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1278 store_in_keymap (keymap, c, cmd);
1279
1280 return cmd;
1281 }
1282
1283 /* Append a key to the end of a key sequence. We always make a vector. */
1284
1285 Lisp_Object
1286 append_key (key_sequence, key)
1287 Lisp_Object key_sequence, key;
1288 {
1289 Lisp_Object args[2];
1290
1291 args[0] = key_sequence;
1292
1293 args[1] = Fcons (key, Qnil);
1294 return Fvconcat (2, args);
1295 }
1296
1297 /* Given a event type C which is a symbol,
1298 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1299
1300 static void
1301 silly_event_symbol_error (c)
1302 Lisp_Object c;
1303 {
1304 Lisp_Object parsed, base, name, assoc;
1305 int modifiers;
1306
1307 parsed = parse_modifiers (c);
1308 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1309 base = XCAR (parsed);
1310 name = Fsymbol_name (base);
1311 /* This alist includes elements such as ("RET" . "\\r"). */
1312 assoc = Fassoc (name, exclude_keys);
1313
1314 if (! NILP (assoc))
1315 {
1316 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1317 char *p = new_mods;
1318 Lisp_Object keystring;
1319 if (modifiers & alt_modifier)
1320 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1321 if (modifiers & ctrl_modifier)
1322 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1323 if (modifiers & hyper_modifier)
1324 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1325 if (modifiers & meta_modifier)
1326 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1327 if (modifiers & shift_modifier)
1328 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1329 if (modifiers & super_modifier)
1330 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1331 *p = 0;
1332
1333 c = reorder_modifiers (c);
1334 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1335
1336 error ((modifiers & ~meta_modifier
1337 ? "To bind the key %s, use [?%s], not [%s]"
1338 : "To bind the key %s, use \"%s\", not [%s]"),
1339 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1340 SDATA (SYMBOL_NAME (c)));
1341 }
1342 }
1343 \f
1344 /* Global, local, and minor mode keymap stuff. */
1345
1346 /* We can't put these variables inside current_minor_maps, since under
1347 some systems, static gets macro-defined to be the empty string.
1348 Ickypoo. */
1349 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1350 static int cmm_size = 0;
1351
1352 /* Error handler used in current_minor_maps. */
1353 static Lisp_Object
1354 current_minor_maps_error ()
1355 {
1356 return Qnil;
1357 }
1358
1359 /* Store a pointer to an array of the keymaps of the currently active
1360 minor modes in *buf, and return the number of maps it contains.
1361
1362 This function always returns a pointer to the same buffer, and may
1363 free or reallocate it, so if you want to keep it for a long time or
1364 hand it out to lisp code, copy it. This procedure will be called
1365 for every key sequence read, so the nice lispy approach (return a
1366 new assoclist, list, what have you) for each invocation would
1367 result in a lot of consing over time.
1368
1369 If we used xrealloc/xmalloc and ran out of memory, they would throw
1370 back to the command loop, which would try to read a key sequence,
1371 which would call this function again, resulting in an infinite
1372 loop. Instead, we'll use realloc/malloc and silently truncate the
1373 list, let the key sequence be read, and hope some other piece of
1374 code signals the error. */
1375 int
1376 current_minor_maps (modeptr, mapptr)
1377 Lisp_Object **modeptr, **mapptr;
1378 {
1379 int i = 0;
1380 int list_number = 0;
1381 Lisp_Object alist, assoc, var, val;
1382 Lisp_Object emulation_alists;
1383 Lisp_Object lists[2];
1384
1385 emulation_alists = Vemulation_mode_map_alists;
1386 lists[0] = Vminor_mode_overriding_map_alist;
1387 lists[1] = Vminor_mode_map_alist;
1388
1389 for (list_number = 0; list_number < 2; list_number++)
1390 {
1391 if (CONSP (emulation_alists))
1392 {
1393 alist = XCAR (emulation_alists);
1394 emulation_alists = XCDR (emulation_alists);
1395 if (SYMBOLP (alist))
1396 alist = find_symbol_value (alist);
1397 list_number = -1;
1398 }
1399 else
1400 alist = lists[list_number];
1401
1402 for ( ; CONSP (alist); alist = XCDR (alist))
1403 if ((assoc = XCAR (alist), CONSP (assoc))
1404 && (var = XCAR (assoc), SYMBOLP (var))
1405 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1406 && !NILP (val))
1407 {
1408 Lisp_Object temp;
1409
1410 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1411 and also an entry in Vminor_mode_map_alist,
1412 ignore the latter. */
1413 if (list_number == 1)
1414 {
1415 val = assq_no_quit (var, lists[0]);
1416 if (!NILP (val))
1417 continue;
1418 }
1419
1420 if (i >= cmm_size)
1421 {
1422 int newsize, allocsize;
1423 Lisp_Object *newmodes, *newmaps;
1424
1425 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1426 allocsize = newsize * sizeof *newmodes;
1427
1428 /* Use malloc here. See the comment above this function.
1429 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1430 BLOCK_INPUT;
1431 newmodes = (Lisp_Object *) malloc (allocsize);
1432 if (newmodes)
1433 {
1434 if (cmm_modes)
1435 {
1436 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1437 free (cmm_modes);
1438 }
1439 cmm_modes = newmodes;
1440 }
1441
1442 newmaps = (Lisp_Object *) malloc (allocsize);
1443 if (newmaps)
1444 {
1445 if (cmm_maps)
1446 {
1447 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1448 free (cmm_maps);
1449 }
1450 cmm_maps = newmaps;
1451 }
1452 UNBLOCK_INPUT;
1453
1454 if (newmodes == NULL || newmaps == NULL)
1455 break;
1456 cmm_size = newsize;
1457 }
1458
1459 /* Get the keymap definition--or nil if it is not defined. */
1460 temp = internal_condition_case_1 (Findirect_function,
1461 XCDR (assoc),
1462 Qerror, current_minor_maps_error);
1463 if (!NILP (temp))
1464 {
1465 cmm_modes[i] = var;
1466 cmm_maps [i] = temp;
1467 i++;
1468 }
1469 }
1470 }
1471
1472 if (modeptr) *modeptr = cmm_modes;
1473 if (mapptr) *mapptr = cmm_maps;
1474 return i;
1475 }
1476
1477 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1478 0, 1, 0,
1479 doc: /* Return a list of the currently active keymaps.
1480 OLP if non-nil indicates that we should obey `overriding-local-map' and
1481 `overriding-terminal-local-map'. */)
1482 (olp)
1483 Lisp_Object olp;
1484 {
1485 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1486
1487 if (!NILP (olp))
1488 {
1489 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1490 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1491 /* The doc said that overriding-terminal-local-map should
1492 override overriding-local-map. The code used them both,
1493 but it seems clearer to use just one. rms, jan 2005. */
1494 else if (!NILP (Voverriding_local_map))
1495 keymaps = Fcons (Voverriding_local_map, keymaps);
1496 }
1497 if (NILP (XCDR (keymaps)))
1498 {
1499 Lisp_Object local;
1500 Lisp_Object *maps;
1501 int nmaps, i;
1502
1503 /* This usually returns the buffer's local map,
1504 but that can be overridden by a `local-map' property. */
1505 local = get_local_map (PT, current_buffer, Qlocal_map);
1506 if (!NILP (local))
1507 keymaps = Fcons (local, keymaps);
1508
1509 /* Now put all the minor mode keymaps on the list. */
1510 nmaps = current_minor_maps (0, &maps);
1511
1512 for (i = --nmaps; i >= 0; i--)
1513 if (!NILP (maps[i]))
1514 keymaps = Fcons (maps[i], keymaps);
1515
1516 /* This returns nil unless there is a `keymap' property. */
1517 local = get_local_map (PT, current_buffer, Qkeymap);
1518 if (!NILP (local))
1519 keymaps = Fcons (local, keymaps);
1520 }
1521
1522 return keymaps;
1523 }
1524
1525 /* GC is possible in this function if it autoloads a keymap. */
1526
1527 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1528 doc: /* Return the binding for command KEY in current keymaps.
1529 KEY is a string or vector, a sequence of keystrokes.
1530 The binding is probably a symbol with a function definition.
1531
1532 Normally, `key-binding' ignores bindings for t, which act as default
1533 bindings, used when nothing else in the keymap applies; this makes it
1534 usable as a general function for probing keymaps. However, if the
1535 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1536 recognize the default bindings, just as `read-key-sequence' does.
1537
1538 Like the normal command loop, `key-binding' will remap the command
1539 resulting from looking up KEY by looking up the command in the
1540 current keymaps. However, if the optional third argument NO-REMAP
1541 is non-nil, `key-binding' returns the unmapped command. */)
1542 (key, accept_default, no_remap)
1543 Lisp_Object key, accept_default, no_remap;
1544 {
1545 Lisp_Object *maps, value;
1546 int nmaps, i;
1547 struct gcpro gcpro1;
1548
1549 GCPRO1 (key);
1550
1551 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1552 {
1553 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1554 key, accept_default);
1555 if (! NILP (value) && !INTEGERP (value))
1556 goto done;
1557 }
1558 else if (!NILP (Voverriding_local_map))
1559 {
1560 value = Flookup_key (Voverriding_local_map, key, accept_default);
1561 if (! NILP (value) && !INTEGERP (value))
1562 goto done;
1563 }
1564 else
1565 {
1566 Lisp_Object local;
1567
1568 local = get_local_map (PT, current_buffer, Qkeymap);
1569 if (! NILP (local))
1570 {
1571 value = Flookup_key (local, key, accept_default);
1572 if (! NILP (value) && !INTEGERP (value))
1573 goto done;
1574 }
1575
1576 nmaps = current_minor_maps (0, &maps);
1577 /* Note that all these maps are GCPRO'd
1578 in the places where we found them. */
1579
1580 for (i = 0; i < nmaps; i++)
1581 if (! NILP (maps[i]))
1582 {
1583 value = Flookup_key (maps[i], key, accept_default);
1584 if (! NILP (value) && !INTEGERP (value))
1585 goto done;
1586 }
1587
1588 local = get_local_map (PT, current_buffer, Qlocal_map);
1589 if (! NILP (local))
1590 {
1591 value = Flookup_key (local, key, accept_default);
1592 if (! NILP (value) && !INTEGERP (value))
1593 goto done;
1594 }
1595 }
1596
1597 value = Flookup_key (current_global_map, key, accept_default);
1598
1599 done:
1600 UNGCPRO;
1601 if (NILP (value) || INTEGERP (value))
1602 return Qnil;
1603
1604 /* If the result of the ordinary keymap lookup is an interactive
1605 command, look for a key binding (ie. remapping) for that command. */
1606
1607 if (NILP (no_remap) && SYMBOLP (value))
1608 {
1609 Lisp_Object value1;
1610 if (value1 = Fcommand_remapping (value), !NILP (value1))
1611 value = value1;
1612 }
1613
1614 return value;
1615 }
1616
1617 /* GC is possible in this function if it autoloads a keymap. */
1618
1619 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1620 doc: /* Return the binding for command KEYS in current local keymap only.
1621 KEYS is a string or vector, a sequence of keystrokes.
1622 The binding is probably a symbol with a function definition.
1623
1624 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1625 bindings; see the description of `lookup-key' for more details about this. */)
1626 (keys, accept_default)
1627 Lisp_Object keys, accept_default;
1628 {
1629 register Lisp_Object map;
1630 map = current_buffer->keymap;
1631 if (NILP (map))
1632 return Qnil;
1633 return Flookup_key (map, keys, accept_default);
1634 }
1635
1636 /* GC is possible in this function if it autoloads a keymap. */
1637
1638 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1639 doc: /* Return the binding for command KEYS in current global keymap only.
1640 KEYS is a string or vector, a sequence of keystrokes.
1641 The binding is probably a symbol with a function definition.
1642 This function's return values are the same as those of `lookup-key'
1643 \(which see).
1644
1645 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1646 bindings; see the description of `lookup-key' for more details about this. */)
1647 (keys, accept_default)
1648 Lisp_Object keys, accept_default;
1649 {
1650 return Flookup_key (current_global_map, keys, accept_default);
1651 }
1652
1653 /* GC is possible in this function if it autoloads a keymap. */
1654
1655 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1656 doc: /* Find the visible minor mode bindings of KEY.
1657 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the
1658 the symbol which names the minor mode binding KEY, and BINDING is
1659 KEY's definition in that mode. In particular, if KEY has no
1660 minor-mode bindings, return nil. If the first binding is a
1661 non-prefix, all subsequent bindings will be omitted, since they would
1662 be ignored. Similarly, the list doesn't include non-prefix bindings
1663 that come after prefix bindings.
1664
1665 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1666 bindings; see the description of `lookup-key' for more details about this. */)
1667 (key, accept_default)
1668 Lisp_Object key, accept_default;
1669 {
1670 Lisp_Object *modes, *maps;
1671 int nmaps;
1672 Lisp_Object binding;
1673 int i, j;
1674 struct gcpro gcpro1, gcpro2;
1675
1676 nmaps = current_minor_maps (&modes, &maps);
1677 /* Note that all these maps are GCPRO'd
1678 in the places where we found them. */
1679
1680 binding = Qnil;
1681 GCPRO2 (key, binding);
1682
1683 for (i = j = 0; i < nmaps; i++)
1684 if (!NILP (maps[i])
1685 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1686 && !INTEGERP (binding))
1687 {
1688 if (KEYMAPP (binding))
1689 maps[j++] = Fcons (modes[i], binding);
1690 else if (j == 0)
1691 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1692 }
1693
1694 UNGCPRO;
1695 return Flist (j, maps);
1696 }
1697
1698 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1699 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1700 A new sparse keymap is stored as COMMAND's function definition and its value.
1701 If a second optional argument MAPVAR is given, the map is stored as
1702 its value instead of as COMMAND's value; but COMMAND is still defined
1703 as a function.
1704 The third optional argument NAME, if given, supplies a menu name
1705 string for the map. This is required to use the keymap as a menu.
1706 This function returns COMMAND. */)
1707 (command, mapvar, name)
1708 Lisp_Object command, mapvar, name;
1709 {
1710 Lisp_Object map;
1711 map = Fmake_sparse_keymap (name);
1712 Ffset (command, map);
1713 if (!NILP (mapvar))
1714 Fset (mapvar, map);
1715 else
1716 Fset (command, map);
1717 return command;
1718 }
1719
1720 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1721 doc: /* Select KEYMAP as the global keymap. */)
1722 (keymap)
1723 Lisp_Object keymap;
1724 {
1725 keymap = get_keymap (keymap, 1, 1);
1726 current_global_map = keymap;
1727
1728 return Qnil;
1729 }
1730
1731 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1732 doc: /* Select KEYMAP as the local keymap.
1733 If KEYMAP is nil, that means no local keymap. */)
1734 (keymap)
1735 Lisp_Object keymap;
1736 {
1737 if (!NILP (keymap))
1738 keymap = get_keymap (keymap, 1, 1);
1739
1740 current_buffer->keymap = keymap;
1741
1742 return Qnil;
1743 }
1744
1745 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1746 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1747 ()
1748 {
1749 return current_buffer->keymap;
1750 }
1751
1752 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1753 doc: /* Return the current global keymap. */)
1754 ()
1755 {
1756 return current_global_map;
1757 }
1758
1759 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1760 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1761 ()
1762 {
1763 Lisp_Object *maps;
1764 int nmaps = current_minor_maps (0, &maps);
1765
1766 return Flist (nmaps, maps);
1767 }
1768 \f
1769 /* Help functions for describing and documenting keymaps. */
1770
1771
1772 static void
1773 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1774 Lisp_Object maps, tail, thisseq, key, cmd;
1775 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1776 {
1777 Lisp_Object tem;
1778
1779 cmd = get_keymap (get_keyelt (cmd, 0), 0, 0);
1780 if (NILP (cmd))
1781 return;
1782
1783 /* Look for and break cycles. */
1784 while (!NILP (tem = Frassq (cmd, maps)))
1785 {
1786 Lisp_Object prefix = XCAR (tem);
1787 int lim = XINT (Flength (XCAR (tem)));
1788 if (lim <= XINT (Flength (thisseq)))
1789 { /* This keymap was already seen with a smaller prefix. */
1790 int i = 0;
1791 while (i < lim && EQ (Faref (prefix, make_number (i)),
1792 Faref (thisseq, make_number (i))))
1793 i++;
1794 if (i >= lim)
1795 /* `prefix' is a prefix of `thisseq' => there's a cycle. */
1796 return;
1797 }
1798 /* This occurrence of `cmd' in `maps' does not correspond to a cycle,
1799 but maybe `cmd' occurs again further down in `maps', so keep
1800 looking. */
1801 maps = XCDR (Fmemq (tem, maps));
1802 }
1803
1804 /* If the last key in thisseq is meta-prefix-char,
1805 turn it into a meta-ized keystroke. We know
1806 that the event we're about to append is an
1807 ascii keystroke since we're processing a
1808 keymap table. */
1809 if (is_metized)
1810 {
1811 int meta_bit = meta_modifier;
1812 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1813 tem = Fcopy_sequence (thisseq);
1814
1815 Faset (tem, last, make_number (XINT (key) | meta_bit));
1816
1817 /* This new sequence is the same length as
1818 thisseq, so stick it in the list right
1819 after this one. */
1820 XSETCDR (tail,
1821 Fcons (Fcons (tem, cmd), XCDR (tail)));
1822 }
1823 else
1824 {
1825 tem = append_key (thisseq, key);
1826 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1827 }
1828 }
1829
1830 static void
1831 accessible_keymaps_char_table (args, index, cmd)
1832 Lisp_Object args, index, cmd;
1833 {
1834 accessible_keymaps_1 (index, cmd,
1835 XCAR (XCAR (args)),
1836 XCAR (XCDR (args)),
1837 XCDR (XCDR (args)),
1838 XINT (XCDR (XCAR (args))));
1839 }
1840
1841 /* This function cannot GC. */
1842
1843 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1844 1, 2, 0,
1845 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1846 Returns a list of elements of the form (KEYS . MAP), where the sequence
1847 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1848 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1849 An optional argument PREFIX, if non-nil, should be a key sequence;
1850 then the value includes only maps for prefixes that start with PREFIX. */)
1851 (keymap, prefix)
1852 Lisp_Object keymap, prefix;
1853 {
1854 Lisp_Object maps, tail;
1855 int prefixlen = 0;
1856
1857 /* no need for gcpro because we don't autoload any keymaps. */
1858
1859 if (!NILP (prefix))
1860 prefixlen = XINT (Flength (prefix));
1861
1862 if (!NILP (prefix))
1863 {
1864 /* If a prefix was specified, start with the keymap (if any) for
1865 that prefix, so we don't waste time considering other prefixes. */
1866 Lisp_Object tem;
1867 tem = Flookup_key (keymap, prefix, Qt);
1868 /* Flookup_key may give us nil, or a number,
1869 if the prefix is not defined in this particular map.
1870 It might even give us a list that isn't a keymap. */
1871 tem = get_keymap (tem, 0, 0);
1872 if (CONSP (tem))
1873 {
1874 /* Convert PREFIX to a vector now, so that later on
1875 we don't have to deal with the possibility of a string. */
1876 if (STRINGP (prefix))
1877 {
1878 int i, i_byte, c;
1879 Lisp_Object copy;
1880
1881 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
1882 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
1883 {
1884 int i_before = i;
1885
1886 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1887 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1888 c ^= 0200 | meta_modifier;
1889 ASET (copy, i_before, make_number (c));
1890 }
1891 prefix = copy;
1892 }
1893 maps = Fcons (Fcons (prefix, tem), Qnil);
1894 }
1895 else
1896 return Qnil;
1897 }
1898 else
1899 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1900 get_keymap (keymap, 1, 0)),
1901 Qnil);
1902
1903 /* For each map in the list maps,
1904 look at any other maps it points to,
1905 and stick them at the end if they are not already in the list.
1906
1907 This is a breadth-first traversal, where tail is the queue of
1908 nodes, and maps accumulates a list of all nodes visited. */
1909
1910 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1911 {
1912 register Lisp_Object thisseq, thismap;
1913 Lisp_Object last;
1914 /* Does the current sequence end in the meta-prefix-char? */
1915 int is_metized;
1916
1917 thisseq = Fcar (Fcar (tail));
1918 thismap = Fcdr (Fcar (tail));
1919 last = make_number (XINT (Flength (thisseq)) - 1);
1920 is_metized = (XINT (last) >= 0
1921 /* Don't metize the last char of PREFIX. */
1922 && XINT (last) >= prefixlen
1923 && EQ (Faref (thisseq, last), meta_prefix_char));
1924
1925 for (; CONSP (thismap); thismap = XCDR (thismap))
1926 {
1927 Lisp_Object elt;
1928
1929 elt = XCAR (thismap);
1930
1931 QUIT;
1932
1933 if (CHAR_TABLE_P (elt))
1934 {
1935 Lisp_Object indices[3];
1936
1937 map_char_table (accessible_keymaps_char_table, Qnil, elt,
1938 elt, Fcons (Fcons (maps, make_number (is_metized)),
1939 Fcons (tail, thisseq)),
1940 0, indices);
1941 }
1942 else if (VECTORP (elt))
1943 {
1944 register int i;
1945
1946 /* Vector keymap. Scan all the elements. */
1947 for (i = 0; i < ASIZE (elt); i++)
1948 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1949 maps, tail, thisseq, is_metized);
1950
1951 }
1952 else if (CONSP (elt))
1953 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1954 maps, tail, thisseq,
1955 is_metized && INTEGERP (XCAR (elt)));
1956
1957 }
1958 }
1959
1960 return maps;
1961 }
1962 \f
1963 Lisp_Object Qsingle_key_description, Qkey_description;
1964
1965 /* This function cannot GC. */
1966
1967 DEFUN ("key-description", Fkey_description, Skey_description, 1, 2, 0,
1968 doc: /* Return a pretty description of key-sequence KEYS.
1969 Optional arg PREFIX is the sequence of keys leading up to KEYS.
1970 Control characters turn into "C-foo" sequences, meta into "M-foo",
1971 spaces are put between sequence elements, etc. */)
1972 (keys, prefix)
1973 Lisp_Object keys, prefix;
1974 {
1975 int len = 0;
1976 int i, i_byte;
1977 Lisp_Object *args;
1978 int size = XINT (Flength (keys));
1979 Lisp_Object list;
1980 Lisp_Object sep = build_string (" ");
1981 Lisp_Object key;
1982 int add_meta = 0;
1983
1984 if (!NILP (prefix))
1985 size += XINT (Flength (prefix));
1986
1987 /* This has one extra element at the end that we don't pass to Fconcat. */
1988 args = (Lisp_Object *) alloca (size * 4 * sizeof (Lisp_Object));
1989
1990 /* In effect, this computes
1991 (mapconcat 'single-key-description keys " ")
1992 but we shouldn't use mapconcat because it can do GC. */
1993
1994 next_list:
1995 if (!NILP (prefix))
1996 list = prefix, prefix = Qnil;
1997 else if (!NILP (keys))
1998 list = keys, keys = Qnil;
1999 else
2000 {
2001 if (add_meta)
2002 {
2003 args[len] = Fsingle_key_description (meta_prefix_char, Qnil);
2004 len += 2;
2005 }
2006 else if (len == 0)
2007 return empty_string;
2008 return Fconcat (len - 1, args);
2009 }
2010
2011 if (STRINGP (list))
2012 size = SCHARS (list);
2013 else if (VECTORP (list))
2014 size = XVECTOR (list)->size;
2015 else if (CONSP (list))
2016 size = XINT (Flength (list));
2017 else
2018 wrong_type_argument (Qarrayp, list);
2019
2020 i = i_byte = 0;
2021
2022 while (i < size)
2023 {
2024 if (STRINGP (list))
2025 {
2026 int c;
2027 FETCH_STRING_CHAR_ADVANCE (c, list, i, i_byte);
2028 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
2029 c ^= 0200 | meta_modifier;
2030 XSETFASTINT (key, c);
2031 }
2032 else if (VECTORP (list))
2033 {
2034 key = AREF (list, i++);
2035 }
2036 else
2037 {
2038 key = XCAR (list);
2039 list = XCDR (list);
2040 i++;
2041 }
2042
2043 if (add_meta)
2044 {
2045 if (!INTEGERP (key)
2046 || EQ (key, meta_prefix_char)
2047 || (XINT (key) & meta_modifier))
2048 {
2049 args[len++] = Fsingle_key_description (meta_prefix_char, Qnil);
2050 args[len++] = sep;
2051 if (EQ (key, meta_prefix_char))
2052 continue;
2053 }
2054 else
2055 XSETINT (key, (XINT (key) | meta_modifier) & ~0x80);
2056 add_meta = 0;
2057 }
2058 else if (EQ (key, meta_prefix_char))
2059 {
2060 add_meta = 1;
2061 continue;
2062 }
2063 args[len++] = Fsingle_key_description (key, Qnil);
2064 args[len++] = sep;
2065 }
2066 goto next_list;
2067 }
2068
2069
2070 char *
2071 push_key_description (c, p, force_multibyte)
2072 register unsigned int c;
2073 register char *p;
2074 int force_multibyte;
2075 {
2076 unsigned c2;
2077
2078 /* Clear all the meaningless bits above the meta bit. */
2079 c &= meta_modifier | ~ - meta_modifier;
2080 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
2081 | meta_modifier | shift_modifier | super_modifier);
2082
2083 if (c & alt_modifier)
2084 {
2085 *p++ = 'A';
2086 *p++ = '-';
2087 c -= alt_modifier;
2088 }
2089 if ((c & ctrl_modifier) != 0
2090 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
2091 {
2092 *p++ = 'C';
2093 *p++ = '-';
2094 c &= ~ctrl_modifier;
2095 }
2096 if (c & hyper_modifier)
2097 {
2098 *p++ = 'H';
2099 *p++ = '-';
2100 c -= hyper_modifier;
2101 }
2102 if (c & meta_modifier)
2103 {
2104 *p++ = 'M';
2105 *p++ = '-';
2106 c -= meta_modifier;
2107 }
2108 if (c & shift_modifier)
2109 {
2110 *p++ = 'S';
2111 *p++ = '-';
2112 c -= shift_modifier;
2113 }
2114 if (c & super_modifier)
2115 {
2116 *p++ = 's';
2117 *p++ = '-';
2118 c -= super_modifier;
2119 }
2120 if (c < 040)
2121 {
2122 if (c == 033)
2123 {
2124 *p++ = 'E';
2125 *p++ = 'S';
2126 *p++ = 'C';
2127 }
2128 else if (c == '\t')
2129 {
2130 *p++ = 'T';
2131 *p++ = 'A';
2132 *p++ = 'B';
2133 }
2134 else if (c == Ctl ('M'))
2135 {
2136 *p++ = 'R';
2137 *p++ = 'E';
2138 *p++ = 'T';
2139 }
2140 else
2141 {
2142 /* `C-' already added above. */
2143 if (c > 0 && c <= Ctl ('Z'))
2144 *p++ = c + 0140;
2145 else
2146 *p++ = c + 0100;
2147 }
2148 }
2149 else if (c == 0177)
2150 {
2151 *p++ = 'D';
2152 *p++ = 'E';
2153 *p++ = 'L';
2154 }
2155 else if (c == ' ')
2156 {
2157 *p++ = 'S';
2158 *p++ = 'P';
2159 *p++ = 'C';
2160 }
2161 else if (c < 128
2162 || (NILP (current_buffer->enable_multibyte_characters)
2163 && SINGLE_BYTE_CHAR_P (c)
2164 && !force_multibyte))
2165 {
2166 *p++ = c;
2167 }
2168 else
2169 {
2170 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2171
2172 if (force_multibyte && valid_p)
2173 {
2174 if (SINGLE_BYTE_CHAR_P (c))
2175 c = unibyte_char_to_multibyte (c);
2176 p += CHAR_STRING (c, p);
2177 }
2178 else if (NILP (current_buffer->enable_multibyte_characters)
2179 || valid_p)
2180 {
2181 int bit_offset;
2182 *p++ = '\\';
2183 /* The biggest character code uses 19 bits. */
2184 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2185 {
2186 if (c >= (1 << bit_offset))
2187 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2188 }
2189 }
2190 else
2191 p += CHAR_STRING (c, p);
2192 }
2193
2194 return p;
2195 }
2196
2197 /* This function cannot GC. */
2198
2199 DEFUN ("single-key-description", Fsingle_key_description,
2200 Ssingle_key_description, 1, 2, 0,
2201 doc: /* Return a pretty description of command character KEY.
2202 Control characters turn into C-whatever, etc.
2203 Optional argument NO-ANGLES non-nil means don't put angle brackets
2204 around function keys and event symbols. */)
2205 (key, no_angles)
2206 Lisp_Object key, no_angles;
2207 {
2208 if (CONSP (key) && lucid_event_type_list_p (key))
2209 key = Fevent_convert_list (key);
2210
2211 key = EVENT_HEAD (key);
2212
2213 if (INTEGERP (key)) /* Normal character */
2214 {
2215 unsigned int charset, c1, c2;
2216 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2217
2218 if (SINGLE_BYTE_CHAR_P (without_bits))
2219 charset = 0;
2220 else
2221 SPLIT_CHAR (without_bits, charset, c1, c2);
2222
2223 if (charset
2224 && CHARSET_DEFINED_P (charset)
2225 && ((c1 >= 0 && c1 < 32)
2226 || (c2 >= 0 && c2 < 32)))
2227 {
2228 /* Handle a generic character. */
2229 Lisp_Object name;
2230 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2231 CHECK_STRING (name);
2232 return concat2 (build_string ("Character set "), name);
2233 }
2234 else
2235 {
2236 char tem[KEY_DESCRIPTION_SIZE], *end;
2237 int nbytes, nchars;
2238 Lisp_Object string;
2239
2240 end = push_key_description (XUINT (key), tem, 1);
2241 nbytes = end - tem;
2242 nchars = multibyte_chars_in_text (tem, nbytes);
2243 if (nchars == nbytes)
2244 {
2245 *end = '\0';
2246 string = build_string (tem);
2247 }
2248 else
2249 string = make_multibyte_string (tem, nchars, nbytes);
2250 return string;
2251 }
2252 }
2253 else if (SYMBOLP (key)) /* Function key or event-symbol */
2254 {
2255 if (NILP (no_angles))
2256 {
2257 char *buffer
2258 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2259 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2260 return build_string (buffer);
2261 }
2262 else
2263 return Fsymbol_name (key);
2264 }
2265 else if (STRINGP (key)) /* Buffer names in the menubar. */
2266 return Fcopy_sequence (key);
2267 else
2268 error ("KEY must be an integer, cons, symbol, or string");
2269 return Qnil;
2270 }
2271
2272 char *
2273 push_text_char_description (c, p)
2274 register unsigned int c;
2275 register char *p;
2276 {
2277 if (c >= 0200)
2278 {
2279 *p++ = 'M';
2280 *p++ = '-';
2281 c -= 0200;
2282 }
2283 if (c < 040)
2284 {
2285 *p++ = '^';
2286 *p++ = c + 64; /* 'A' - 1 */
2287 }
2288 else if (c == 0177)
2289 {
2290 *p++ = '^';
2291 *p++ = '?';
2292 }
2293 else
2294 *p++ = c;
2295 return p;
2296 }
2297
2298 /* This function cannot GC. */
2299
2300 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2301 doc: /* Return a pretty description of file-character CHARACTER.
2302 Control characters turn into "^char", etc. This differs from
2303 `single-key-description' which turns them into "C-char".
2304 Also, this function recognizes the 2**7 bit as the Meta character,
2305 whereas `single-key-description' uses the 2**27 bit for Meta.
2306 See Info node `(elisp)Describing Characters' for examples. */)
2307 (character)
2308 Lisp_Object character;
2309 {
2310 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2311 unsigned char str[6];
2312 int c;
2313
2314 CHECK_NUMBER (character);
2315
2316 c = XINT (character);
2317 if (!SINGLE_BYTE_CHAR_P (c))
2318 {
2319 int len = CHAR_STRING (c, str);
2320
2321 return make_multibyte_string (str, 1, len);
2322 }
2323
2324 *push_text_char_description (c & 0377, str) = 0;
2325
2326 return build_string (str);
2327 }
2328
2329 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2330 a meta bit. */
2331 static int
2332 ascii_sequence_p (seq)
2333 Lisp_Object seq;
2334 {
2335 int i;
2336 int len = XINT (Flength (seq));
2337
2338 for (i = 0; i < len; i++)
2339 {
2340 Lisp_Object ii, elt;
2341
2342 XSETFASTINT (ii, i);
2343 elt = Faref (seq, ii);
2344
2345 if (!INTEGERP (elt)
2346 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2347 return 0;
2348 }
2349
2350 return 1;
2351 }
2352
2353 \f
2354 /* where-is - finding a command in a set of keymaps. */
2355
2356 static Lisp_Object where_is_internal ();
2357 static Lisp_Object where_is_internal_1 ();
2358 static void where_is_internal_2 ();
2359
2360 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2361 Returns the first non-nil binding found in any of those maps. */
2362
2363 static Lisp_Object
2364 shadow_lookup (shadow, key, flag)
2365 Lisp_Object shadow, key, flag;
2366 {
2367 Lisp_Object tail, value;
2368
2369 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2370 {
2371 value = Flookup_key (XCAR (tail), key, flag);
2372 if (!NILP (value) && !NATNUMP (value))
2373 return value;
2374 }
2375 return Qnil;
2376 }
2377
2378 static Lisp_Object Vmouse_events;
2379
2380 /* This function can GC if Flookup_key autoloads any keymaps. */
2381
2382 static Lisp_Object
2383 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2384 Lisp_Object definition, keymaps;
2385 Lisp_Object firstonly, noindirect, no_remap;
2386 {
2387 Lisp_Object maps = Qnil;
2388 Lisp_Object found, sequences;
2389 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2390 /* 1 means ignore all menu bindings entirely. */
2391 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2392
2393 /* If this command is remapped, then it has no key bindings
2394 of its own. */
2395 if (NILP (no_remap) && SYMBOLP (definition))
2396 {
2397 Lisp_Object tem;
2398 if (tem = Fcommand_remapping (definition), !NILP (tem))
2399 return Qnil;
2400 }
2401
2402 found = keymaps;
2403 while (CONSP (found))
2404 {
2405 maps =
2406 nconc2 (maps,
2407 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2408 found = XCDR (found);
2409 }
2410
2411 GCPRO5 (definition, keymaps, maps, found, sequences);
2412 found = Qnil;
2413 sequences = Qnil;
2414
2415 for (; !NILP (maps); maps = Fcdr (maps))
2416 {
2417 /* Key sequence to reach map, and the map that it reaches */
2418 register Lisp_Object this, map, tem;
2419
2420 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2421 [M-CHAR] sequences, check if last character of the sequence
2422 is the meta-prefix char. */
2423 Lisp_Object last;
2424 int last_is_meta;
2425
2426 this = Fcar (Fcar (maps));
2427 map = Fcdr (Fcar (maps));
2428 last = make_number (XINT (Flength (this)) - 1);
2429 last_is_meta = (XINT (last) >= 0
2430 && EQ (Faref (this, last), meta_prefix_char));
2431
2432 /* if (nomenus && !ascii_sequence_p (this)) */
2433 if (nomenus && XINT (last) >= 0
2434 && SYMBOLP (tem = Faref (this, make_number (0)))
2435 && !NILP (Fmemq (XCAR (parse_modifiers (tem)), Vmouse_events)))
2436 /* If no menu entries should be returned, skip over the
2437 keymaps bound to `menu-bar' and `tool-bar' and other
2438 non-ascii prefixes like `C-down-mouse-2'. */
2439 continue;
2440
2441 QUIT;
2442
2443 while (CONSP (map))
2444 {
2445 /* Because the code we want to run on each binding is rather
2446 large, we don't want to have two separate loop bodies for
2447 sparse keymap bindings and tables; we want to iterate one
2448 loop body over both keymap and vector bindings.
2449
2450 For this reason, if Fcar (map) is a vector, we don't
2451 advance map to the next element until i indicates that we
2452 have finished off the vector. */
2453 Lisp_Object elt, key, binding;
2454 elt = XCAR (map);
2455 map = XCDR (map);
2456
2457 sequences = Qnil;
2458
2459 QUIT;
2460
2461 /* Set key and binding to the current key and binding, and
2462 advance map and i to the next binding. */
2463 if (VECTORP (elt))
2464 {
2465 Lisp_Object sequence;
2466 int i;
2467 /* In a vector, look at each element. */
2468 for (i = 0; i < XVECTOR (elt)->size; i++)
2469 {
2470 binding = AREF (elt, i);
2471 XSETFASTINT (key, i);
2472 sequence = where_is_internal_1 (binding, key, definition,
2473 noindirect, this,
2474 last, nomenus, last_is_meta);
2475 if (!NILP (sequence))
2476 sequences = Fcons (sequence, sequences);
2477 }
2478 }
2479 else if (CHAR_TABLE_P (elt))
2480 {
2481 Lisp_Object indices[3];
2482 Lisp_Object args;
2483
2484 args = Fcons (Fcons (Fcons (definition, noindirect),
2485 Qnil), /* Result accumulator. */
2486 Fcons (Fcons (this, last),
2487 Fcons (make_number (nomenus),
2488 make_number (last_is_meta))));
2489 map_char_table (where_is_internal_2, Qnil, elt, elt, args,
2490 0, indices);
2491 sequences = XCDR (XCAR (args));
2492 }
2493 else if (CONSP (elt))
2494 {
2495 Lisp_Object sequence;
2496
2497 key = XCAR (elt);
2498 binding = XCDR (elt);
2499
2500 sequence = where_is_internal_1 (binding, key, definition,
2501 noindirect, this,
2502 last, nomenus, last_is_meta);
2503 if (!NILP (sequence))
2504 sequences = Fcons (sequence, sequences);
2505 }
2506
2507
2508 while (!NILP (sequences))
2509 {
2510 Lisp_Object sequence, remapped, function;
2511
2512 sequence = XCAR (sequences);
2513 sequences = XCDR (sequences);
2514
2515 /* If the current sequence is a command remapping with
2516 format [remap COMMAND], find the key sequences
2517 which run COMMAND, and use those sequences instead. */
2518 remapped = Qnil;
2519 if (NILP (no_remap)
2520 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2521 && EQ (AREF (sequence, 0), Qremap)
2522 && (function = AREF (sequence, 1), SYMBOLP (function)))
2523 {
2524 Lisp_Object remapped1;
2525
2526 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2527 if (CONSP (remapped1))
2528 {
2529 /* Verify that this key binding actually maps to the
2530 remapped command (see below). */
2531 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2532 continue;
2533 sequence = XCAR (remapped1);
2534 remapped = XCDR (remapped1);
2535 goto record_sequence;
2536 }
2537 }
2538
2539 /* Verify that this key binding is not shadowed by another
2540 binding for the same key, before we say it exists.
2541
2542 Mechanism: look for local definition of this key and if
2543 it is defined and does not match what we found then
2544 ignore this key.
2545
2546 Either nil or number as value from Flookup_key
2547 means undefined. */
2548 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2549 continue;
2550
2551 record_sequence:
2552 /* Don't annoy user with strings from a menu such as
2553 Select Paste. Change them all to "(any string)",
2554 so that there seems to be only one menu item
2555 to report. */
2556 if (! NILP (sequence))
2557 {
2558 Lisp_Object tem;
2559 tem = Faref (sequence, make_number (XVECTOR (sequence)->size - 1));
2560 if (STRINGP (tem))
2561 Faset (sequence, make_number (XVECTOR (sequence)->size - 1),
2562 build_string ("(any string)"));
2563 }
2564
2565 /* It is a true unshadowed match. Record it, unless it's already
2566 been seen (as could happen when inheriting keymaps). */
2567 if (NILP (Fmember (sequence, found)))
2568 found = Fcons (sequence, found);
2569
2570 /* If firstonly is Qnon_ascii, then we can return the first
2571 binding we find. If firstonly is not Qnon_ascii but not
2572 nil, then we should return the first ascii-only binding
2573 we find. */
2574 if (EQ (firstonly, Qnon_ascii))
2575 RETURN_UNGCPRO (sequence);
2576 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2577 RETURN_UNGCPRO (sequence);
2578
2579 if (CONSP (remapped))
2580 {
2581 sequence = XCAR (remapped);
2582 remapped = XCDR (remapped);
2583 goto record_sequence;
2584 }
2585 }
2586 }
2587 }
2588
2589 UNGCPRO;
2590
2591 found = Fnreverse (found);
2592
2593 /* firstonly may have been t, but we may have gone all the way through
2594 the keymaps without finding an all-ASCII key sequence. So just
2595 return the best we could find. */
2596 if (!NILP (firstonly))
2597 return Fcar (found);
2598
2599 return found;
2600 }
2601
2602 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2603 doc: /* Return list of keys that invoke DEFINITION.
2604 If KEYMAP is a keymap, search only KEYMAP and the global keymap.
2605 If KEYMAP is nil, search all the currently active keymaps.
2606 If KEYMAP is a list of keymaps, search only those keymaps.
2607
2608 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2609 rather than a list of all possible key sequences.
2610 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2611 no matter what it is.
2612 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters
2613 \(or their meta variants) and entirely reject menu bindings.
2614
2615 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2616 to other keymaps or slots. This makes it possible to search for an
2617 indirect definition itself.
2618
2619 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2620 that invoke a command which is remapped to DEFINITION, but include the
2621 remapped command in the returned list. */)
2622 (definition, keymap, firstonly, noindirect, no_remap)
2623 Lisp_Object definition, keymap;
2624 Lisp_Object firstonly, noindirect, no_remap;
2625 {
2626 Lisp_Object sequences, keymaps;
2627 /* 1 means ignore all menu bindings entirely. */
2628 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2629 Lisp_Object result;
2630
2631 /* Find the relevant keymaps. */
2632 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2633 keymaps = keymap;
2634 else if (!NILP (keymap))
2635 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2636 else
2637 keymaps = Fcurrent_active_maps (Qnil);
2638
2639 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2640 We don't really need to check `keymap'. */
2641 if (nomenus && NILP (noindirect) && NILP (keymap))
2642 {
2643 Lisp_Object *defns;
2644 int i, j, n;
2645 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2646
2647 /* Check heuristic-consistency of the cache. */
2648 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2649 where_is_cache = Qnil;
2650
2651 if (NILP (where_is_cache))
2652 {
2653 /* We need to create the cache. */
2654 Lisp_Object args[2];
2655 where_is_cache = Fmake_hash_table (0, args);
2656 where_is_cache_keymaps = Qt;
2657
2658 /* Fill in the cache. */
2659 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2660 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2661 UNGCPRO;
2662
2663 where_is_cache_keymaps = keymaps;
2664 }
2665
2666 /* We want to process definitions from the last to the first.
2667 Instead of consing, copy definitions to a vector and step
2668 over that vector. */
2669 sequences = Fgethash (definition, where_is_cache, Qnil);
2670 n = XINT (Flength (sequences));
2671 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2672 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2673 defns[i++] = XCAR (sequences);
2674
2675 /* Verify that the key bindings are not shadowed. Note that
2676 the following can GC. */
2677 GCPRO2 (definition, keymaps);
2678 result = Qnil;
2679 j = -1;
2680 for (i = n - 1; i >= 0; --i)
2681 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2682 {
2683 if (ascii_sequence_p (defns[i]))
2684 break;
2685 else if (j < 0)
2686 j = i;
2687 }
2688
2689 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2690 UNGCPRO;
2691 }
2692 else
2693 {
2694 /* Kill the cache so that where_is_internal_1 doesn't think
2695 we're filling it up. */
2696 where_is_cache = Qnil;
2697 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2698 }
2699
2700 return result;
2701 }
2702
2703 /* This is the function that Fwhere_is_internal calls using map_char_table.
2704 ARGS has the form
2705 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2706 .
2707 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2708 Since map_char_table doesn't really use the return value from this function,
2709 we the result append to RESULT, the slot in ARGS.
2710
2711 This function can GC because it calls where_is_internal_1 which can
2712 GC. */
2713
2714 static void
2715 where_is_internal_2 (args, key, binding)
2716 Lisp_Object args, key, binding;
2717 {
2718 Lisp_Object definition, noindirect, this, last;
2719 Lisp_Object result, sequence;
2720 int nomenus, last_is_meta;
2721 struct gcpro gcpro1, gcpro2, gcpro3;
2722
2723 GCPRO3 (args, key, binding);
2724 result = XCDR (XCAR (args));
2725 definition = XCAR (XCAR (XCAR (args)));
2726 noindirect = XCDR (XCAR (XCAR (args)));
2727 this = XCAR (XCAR (XCDR (args)));
2728 last = XCDR (XCAR (XCDR (args)));
2729 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2730 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2731
2732 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2733 this, last, nomenus, last_is_meta);
2734
2735 if (!NILP (sequence))
2736 XSETCDR (XCAR (args), Fcons (sequence, result));
2737
2738 UNGCPRO;
2739 }
2740
2741
2742 /* This function can GC because get_keyelt can. */
2743
2744 static Lisp_Object
2745 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2746 nomenus, last_is_meta)
2747 Lisp_Object binding, key, definition, noindirect, this, last;
2748 int nomenus, last_is_meta;
2749 {
2750 Lisp_Object sequence;
2751
2752 /* Search through indirections unless that's not wanted. */
2753 if (NILP (noindirect))
2754 binding = get_keyelt (binding, 0);
2755
2756 /* End this iteration if this element does not match
2757 the target. */
2758
2759 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2760 || EQ (binding, definition)
2761 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2762 /* Doesn't match. */
2763 return Qnil;
2764
2765 /* We have found a match. Construct the key sequence where we found it. */
2766 if (INTEGERP (key) && last_is_meta)
2767 {
2768 sequence = Fcopy_sequence (this);
2769 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2770 }
2771 else
2772 sequence = append_key (this, key);
2773
2774 if (!NILP (where_is_cache))
2775 {
2776 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2777 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2778 return Qnil;
2779 }
2780 else
2781 return sequence;
2782 }
2783 \f
2784 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2785
2786 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2787 doc: /* Insert the list of all defined keys and their definitions.
2788 The list is inserted in the current buffer, while the bindings are
2789 looked up in BUFFER.
2790 The optional argument PREFIX, if non-nil, should be a key sequence;
2791 then we display only bindings that start with that prefix.
2792 The optional argument MENUS, if non-nil, says to mention menu bindings.
2793 \(Ordinarily these are omitted from the output.) */)
2794 (buffer, prefix, menus)
2795 Lisp_Object buffer, prefix, menus;
2796 {
2797 Lisp_Object outbuf, shadow;
2798 int nomenu = NILP (menus);
2799 register Lisp_Object start1;
2800 struct gcpro gcpro1;
2801
2802 char *alternate_heading
2803 = "\
2804 Keyboard translations:\n\n\
2805 You type Translation\n\
2806 -------- -----------\n";
2807
2808 shadow = Qnil;
2809 GCPRO1 (shadow);
2810
2811 outbuf = Fcurrent_buffer ();
2812
2813 /* Report on alternates for keys. */
2814 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2815 {
2816 int c;
2817 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
2818 int translate_len = SCHARS (Vkeyboard_translate_table);
2819
2820 for (c = 0; c < translate_len; c++)
2821 if (translate[c] != c)
2822 {
2823 char buf[KEY_DESCRIPTION_SIZE];
2824 char *bufend;
2825
2826 if (alternate_heading)
2827 {
2828 insert_string (alternate_heading);
2829 alternate_heading = 0;
2830 }
2831
2832 bufend = push_key_description (translate[c], buf, 1);
2833 insert (buf, bufend - buf);
2834 Findent_to (make_number (16), make_number (1));
2835 bufend = push_key_description (c, buf, 1);
2836 insert (buf, bufend - buf);
2837
2838 insert ("\n", 1);
2839 }
2840
2841 insert ("\n", 1);
2842 }
2843
2844 if (!NILP (current_kboard->Vkey_translation_map))
2845 describe_map_tree (current_kboard->Vkey_translation_map, 0, Qnil, prefix,
2846 "Key translations", nomenu, 1, 0, 0);
2847
2848
2849 /* Print the (major mode) local map. */
2850 start1 = Qnil;
2851 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2852 start1 = current_kboard->Voverriding_terminal_local_map;
2853 else if (!NILP (Voverriding_local_map))
2854 start1 = Voverriding_local_map;
2855
2856 if (!NILP (start1))
2857 {
2858 describe_map_tree (start1, 1, shadow, prefix,
2859 "\f\nOverriding Bindings", nomenu, 0, 0, 0);
2860 shadow = Fcons (start1, shadow);
2861 }
2862 else
2863 {
2864 /* Print the minor mode and major mode keymaps. */
2865 int i, nmaps;
2866 Lisp_Object *modes, *maps;
2867
2868 /* Temporarily switch to `buffer', so that we can get that buffer's
2869 minor modes correctly. */
2870 Fset_buffer (buffer);
2871
2872 nmaps = current_minor_maps (&modes, &maps);
2873 Fset_buffer (outbuf);
2874
2875 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2876 XBUFFER (buffer), Qkeymap);
2877 if (!NILP (start1))
2878 {
2879 describe_map_tree (start1, 1, shadow, prefix,
2880 "\f\n`keymap' Property Bindings", nomenu,
2881 0, 0, 0);
2882 shadow = Fcons (start1, shadow);
2883 }
2884
2885 /* Print the minor mode maps. */
2886 for (i = 0; i < nmaps; i++)
2887 {
2888 /* The title for a minor mode keymap
2889 is constructed at run time.
2890 We let describe_map_tree do the actual insertion
2891 because it takes care of other features when doing so. */
2892 char *title, *p;
2893
2894 if (!SYMBOLP (modes[i]))
2895 abort();
2896
2897 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
2898 *p++ = '\f';
2899 *p++ = '\n';
2900 *p++ = '`';
2901 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
2902 SCHARS (SYMBOL_NAME (modes[i])));
2903 p += SCHARS (SYMBOL_NAME (modes[i]));
2904 *p++ = '\'';
2905 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2906 p += sizeof (" Minor Mode Bindings") - 1;
2907 *p = 0;
2908
2909 describe_map_tree (maps[i], 1, shadow, prefix,
2910 title, nomenu, 0, 0, 0);
2911 shadow = Fcons (maps[i], shadow);
2912 }
2913
2914 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2915 XBUFFER (buffer), Qlocal_map);
2916 if (!NILP (start1))
2917 {
2918 if (EQ (start1, XBUFFER (buffer)->keymap))
2919 describe_map_tree (start1, 1, shadow, prefix,
2920 "\f\nMajor Mode Bindings", nomenu, 0, 0, 0);
2921 else
2922 describe_map_tree (start1, 1, shadow, prefix,
2923 "\f\n`local-map' Property Bindings",
2924 nomenu, 0, 0, 0);
2925
2926 shadow = Fcons (start1, shadow);
2927 }
2928 }
2929
2930 describe_map_tree (current_global_map, 1, shadow, prefix,
2931 "\f\nGlobal Bindings", nomenu, 0, 1, 0);
2932
2933 /* Print the function-key-map translations under this prefix. */
2934 if (!NILP (current_kboard->Vfunction_key_map))
2935 describe_map_tree (current_kboard->Vfunction_key_map, 0, Qnil, prefix,
2936 "\f\nFunction key map translations", nomenu, 1, 0, 0);
2937
2938 UNGCPRO;
2939 return Qnil;
2940 }
2941
2942 /* Insert a description of the key bindings in STARTMAP,
2943 followed by those of all maps reachable through STARTMAP.
2944 If PARTIAL is nonzero, omit certain "uninteresting" commands
2945 (such as `undefined').
2946 If SHADOW is non-nil, it is a list of maps;
2947 don't mention keys which would be shadowed by any of them.
2948 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2949 TITLE, if not 0, is a string to insert at the beginning.
2950 TITLE should not end with a colon or a newline; we supply that.
2951 If NOMENU is not 0, then omit menu-bar commands.
2952
2953 If TRANSL is nonzero, the definitions are actually key translations
2954 so print strings and vectors differently.
2955
2956 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2957 to look through.
2958
2959 If MENTION_SHADOW is nonzero, then when something is shadowed by SHADOW,
2960 don't omit it; instead, mention it but say it is shadowed. */
2961
2962 void
2963 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2964 always_title, mention_shadow)
2965 Lisp_Object startmap, shadow, prefix;
2966 int partial;
2967 char *title;
2968 int nomenu;
2969 int transl;
2970 int always_title;
2971 int mention_shadow;
2972 {
2973 Lisp_Object maps, orig_maps, seen, sub_shadows;
2974 struct gcpro gcpro1, gcpro2, gcpro3;
2975 int something = 0;
2976 char *key_heading
2977 = "\
2978 key binding\n\
2979 --- -------\n";
2980
2981 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2982 seen = Qnil;
2983 sub_shadows = Qnil;
2984 GCPRO3 (maps, seen, sub_shadows);
2985
2986 if (nomenu)
2987 {
2988 Lisp_Object list;
2989
2990 /* Delete from MAPS each element that is for the menu bar. */
2991 for (list = maps; !NILP (list); list = XCDR (list))
2992 {
2993 Lisp_Object elt, prefix, tem;
2994
2995 elt = Fcar (list);
2996 prefix = Fcar (elt);
2997 if (XVECTOR (prefix)->size >= 1)
2998 {
2999 tem = Faref (prefix, make_number (0));
3000 if (EQ (tem, Qmenu_bar))
3001 maps = Fdelq (elt, maps);
3002 }
3003 }
3004 }
3005
3006 if (!NILP (maps) || always_title)
3007 {
3008 if (title)
3009 {
3010 insert_string (title);
3011 if (!NILP (prefix))
3012 {
3013 insert_string (" Starting With ");
3014 insert1 (Fkey_description (prefix, Qnil));
3015 }
3016 insert_string (":\n");
3017 }
3018 insert_string (key_heading);
3019 something = 1;
3020 }
3021
3022 for (; !NILP (maps); maps = Fcdr (maps))
3023 {
3024 register Lisp_Object elt, prefix, tail;
3025
3026 elt = Fcar (maps);
3027 prefix = Fcar (elt);
3028
3029 sub_shadows = Qnil;
3030
3031 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
3032 {
3033 Lisp_Object shmap;
3034
3035 shmap = XCAR (tail);
3036
3037 /* If the sequence by which we reach this keymap is zero-length,
3038 then the shadow map for this keymap is just SHADOW. */
3039 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
3040 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
3041 ;
3042 /* If the sequence by which we reach this keymap actually has
3043 some elements, then the sequence's definition in SHADOW is
3044 what we should use. */
3045 else
3046 {
3047 shmap = Flookup_key (shmap, Fcar (elt), Qt);
3048 if (INTEGERP (shmap))
3049 shmap = Qnil;
3050 }
3051
3052 /* If shmap is not nil and not a keymap,
3053 it completely shadows this map, so don't
3054 describe this map at all. */
3055 if (!NILP (shmap) && !KEYMAPP (shmap))
3056 goto skip;
3057
3058 if (!NILP (shmap))
3059 sub_shadows = Fcons (shmap, sub_shadows);
3060 }
3061
3062 /* Maps we have already listed in this loop shadow this map. */
3063 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
3064 {
3065 Lisp_Object tem;
3066 tem = Fequal (Fcar (XCAR (tail)), prefix);
3067 if (!NILP (tem))
3068 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
3069 }
3070
3071 describe_map (Fcdr (elt), prefix,
3072 transl ? describe_translation : describe_command,
3073 partial, sub_shadows, &seen, nomenu, mention_shadow);
3074
3075 skip: ;
3076 }
3077
3078 if (something)
3079 insert_string ("\n");
3080
3081 UNGCPRO;
3082 }
3083
3084 static int previous_description_column;
3085
3086 static void
3087 describe_command (definition, args)
3088 Lisp_Object definition, args;
3089 {
3090 register Lisp_Object tem1;
3091 int column = (int) current_column (); /* iftc */
3092 int description_column;
3093
3094 /* If column 16 is no good, go to col 32;
3095 but don't push beyond that--go to next line instead. */
3096 if (column > 30)
3097 {
3098 insert_char ('\n');
3099 description_column = 32;
3100 }
3101 else if (column > 14 || (column > 10 && previous_description_column == 32))
3102 description_column = 32;
3103 else
3104 description_column = 16;
3105
3106 Findent_to (make_number (description_column), make_number (1));
3107 previous_description_column = description_column;
3108
3109 if (SYMBOLP (definition))
3110 {
3111 tem1 = SYMBOL_NAME (definition);
3112 insert1 (tem1);
3113 insert_string ("\n");
3114 }
3115 else if (STRINGP (definition) || VECTORP (definition))
3116 insert_string ("Keyboard Macro\n");
3117 else if (KEYMAPP (definition))
3118 insert_string ("Prefix Command\n");
3119 else
3120 insert_string ("??\n");
3121 }
3122
3123 static void
3124 describe_translation (definition, args)
3125 Lisp_Object definition, args;
3126 {
3127 register Lisp_Object tem1;
3128
3129 Findent_to (make_number (16), make_number (1));
3130
3131 if (SYMBOLP (definition))
3132 {
3133 tem1 = SYMBOL_NAME (definition);
3134 insert1 (tem1);
3135 insert_string ("\n");
3136 }
3137 else if (STRINGP (definition) || VECTORP (definition))
3138 {
3139 insert1 (Fkey_description (definition, Qnil));
3140 insert_string ("\n");
3141 }
3142 else if (KEYMAPP (definition))
3143 insert_string ("Prefix Command\n");
3144 else
3145 insert_string ("??\n");
3146 }
3147
3148 /* Describe the contents of map MAP, assuming that this map itself is
3149 reached by the sequence of prefix keys PREFIX (a string or vector).
3150 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
3151
3152 static void
3153 describe_map (map, prefix, elt_describer, partial, shadow,
3154 seen, nomenu, mention_shadow)
3155 register Lisp_Object map;
3156 Lisp_Object prefix;
3157 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3158 int partial;
3159 Lisp_Object shadow;
3160 Lisp_Object *seen;
3161 int nomenu;
3162 int mention_shadow;
3163 {
3164 Lisp_Object tail, definition, event;
3165 Lisp_Object tem;
3166 Lisp_Object suppress;
3167 Lisp_Object kludge;
3168 int first = 1;
3169 struct gcpro gcpro1, gcpro2, gcpro3;
3170
3171 suppress = Qnil;
3172
3173 if (partial)
3174 suppress = intern ("suppress-keymap");
3175
3176 /* This vector gets used to present single keys to Flookup_key. Since
3177 that is done once per keymap element, we don't want to cons up a
3178 fresh vector every time. */
3179 kludge = Fmake_vector (make_number (1), Qnil);
3180 definition = Qnil;
3181
3182 GCPRO3 (prefix, definition, kludge);
3183
3184 for (tail = map; CONSP (tail); tail = XCDR (tail))
3185 {
3186 QUIT;
3187
3188 if (VECTORP (XCAR (tail))
3189 || CHAR_TABLE_P (XCAR (tail)))
3190 describe_vector (XCAR (tail),
3191 prefix, Qnil, elt_describer, partial, shadow, map,
3192 (int *)0, 0, 1, mention_shadow);
3193 else if (CONSP (XCAR (tail)))
3194 {
3195 int this_shadowed = 0;
3196 event = XCAR (XCAR (tail));
3197
3198 /* Ignore bindings whose "prefix" are not really valid events.
3199 (We get these in the frames and buffers menu.) */
3200 if (!(SYMBOLP (event) || INTEGERP (event)))
3201 continue;
3202
3203 if (nomenu && EQ (event, Qmenu_bar))
3204 continue;
3205
3206 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3207
3208 /* Don't show undefined commands or suppressed commands. */
3209 if (NILP (definition)) continue;
3210 if (SYMBOLP (definition) && partial)
3211 {
3212 tem = Fget (definition, suppress);
3213 if (!NILP (tem))
3214 continue;
3215 }
3216
3217 /* Don't show a command that isn't really visible
3218 because a local definition of the same key shadows it. */
3219
3220 ASET (kludge, 0, event);
3221 if (!NILP (shadow))
3222 {
3223 tem = shadow_lookup (shadow, kludge, Qt);
3224 if (!NILP (tem))
3225 {
3226 if (mention_shadow)
3227 this_shadowed = 1;
3228 else
3229 continue;
3230 }
3231 }
3232
3233 tem = Flookup_key (map, kludge, Qt);
3234 if (!EQ (tem, definition)) continue;
3235
3236 if (first)
3237 {
3238 previous_description_column = 0;
3239 insert ("\n", 1);
3240 first = 0;
3241 }
3242
3243 /* THIS gets the string to describe the character EVENT. */
3244 insert1 (Fkey_description (kludge, prefix));
3245
3246 /* Print a description of the definition of this character.
3247 elt_describer will take care of spacing out far enough
3248 for alignment purposes. */
3249 (*elt_describer) (definition, Qnil);
3250
3251 if (this_shadowed)
3252 {
3253 SET_PT (PT - 1);
3254 insert_string (" (binding currently shadowed)");
3255 SET_PT (PT + 1);
3256 }
3257 }
3258 else if (EQ (XCAR (tail), Qkeymap))
3259 {
3260 /* The same keymap might be in the structure twice, if we're
3261 using an inherited keymap. So skip anything we've already
3262 encountered. */
3263 tem = Fassq (tail, *seen);
3264 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), prefix)))
3265 break;
3266 *seen = Fcons (Fcons (tail, prefix), *seen);
3267 }
3268 }
3269
3270 UNGCPRO;
3271 }
3272
3273 static void
3274 describe_vector_princ (elt, fun)
3275 Lisp_Object elt, fun;
3276 {
3277 Findent_to (make_number (16), make_number (1));
3278 call1 (fun, elt);
3279 Fterpri (Qnil);
3280 }
3281
3282 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3283 doc: /* Insert a description of contents of VECTOR.
3284 This is text showing the elements of vector matched against indices.
3285 DESCRIBER is the output function used; nil means use `princ'. */)
3286 (vector, describer)
3287 Lisp_Object vector, describer;
3288 {
3289 int count = SPECPDL_INDEX ();
3290 if (NILP (describer))
3291 describer = intern ("princ");
3292 specbind (Qstandard_output, Fcurrent_buffer ());
3293 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3294 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3295 Qnil, Qnil, (int *)0, 0, 0, 0);
3296
3297 return unbind_to (count, Qnil);
3298 }
3299
3300 /* Insert in the current buffer a description of the contents of VECTOR.
3301 We call ELT_DESCRIBER to insert the description of one value found
3302 in VECTOR.
3303
3304 ELT_PREFIX describes what "comes before" the keys or indices defined
3305 by this vector. This is a human-readable string whose size
3306 is not necessarily related to the situation.
3307
3308 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3309 leads to this keymap.
3310
3311 If the vector is a chartable, ELT_PREFIX is the vector
3312 of bytes that lead to the character set or portion of a character
3313 set described by this chartable.
3314
3315 If PARTIAL is nonzero, it means do not mention suppressed commands
3316 (that assumes the vector is in a keymap).
3317
3318 SHADOW is a list of keymaps that shadow this map.
3319 If it is non-nil, then we look up the key in those maps
3320 and we don't mention it now if it is defined by any of them.
3321
3322 ENTIRE_MAP is the keymap in which this vector appears.
3323 If the definition in effect in the whole map does not match
3324 the one in this vector, we ignore this one.
3325
3326 When describing a sub-char-table, INDICES is a list of
3327 indices at higher levels in this char-table,
3328 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3329
3330 KEYMAP_P is 1 if vector is known to be a keymap, so map ESC to M-.
3331
3332 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3333
3334 static void
3335 describe_vector (vector, prefix, args, elt_describer,
3336 partial, shadow, entire_map,
3337 indices, char_table_depth, keymap_p,
3338 mention_shadow)
3339 register Lisp_Object vector;
3340 Lisp_Object prefix, args;
3341 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3342 int partial;
3343 Lisp_Object shadow;
3344 Lisp_Object entire_map;
3345 int *indices;
3346 int char_table_depth;
3347 int keymap_p;
3348 int mention_shadow;
3349 {
3350 Lisp_Object definition;
3351 Lisp_Object tem2;
3352 Lisp_Object elt_prefix = Qnil;
3353 register int i;
3354 Lisp_Object suppress;
3355 Lisp_Object kludge;
3356 int first = 1;
3357 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
3358 /* Range of elements to be handled. */
3359 int from, to;
3360 /* A flag to tell if a leaf in this level of char-table is not a
3361 generic character (i.e. a complete multibyte character). */
3362 int complete_char;
3363 int character;
3364 int starting_i;
3365
3366 suppress = Qnil;
3367
3368 if (indices == 0)
3369 indices = (int *) alloca (3 * sizeof (int));
3370
3371 definition = Qnil;
3372
3373 if (!keymap_p)
3374 {
3375 /* Call Fkey_description first, to avoid GC bug for the other string. */
3376 if (!NILP (prefix) && XFASTINT (Flength (prefix)) > 0)
3377 {
3378 Lisp_Object tem;
3379 tem = Fkey_description (prefix, Qnil);
3380 elt_prefix = concat2 (tem, build_string (" "));
3381 }
3382 prefix = Qnil;
3383 }
3384
3385 /* This vector gets used to present single keys to Flookup_key. Since
3386 that is done once per vector element, we don't want to cons up a
3387 fresh vector every time. */
3388 kludge = Fmake_vector (make_number (1), Qnil);
3389 GCPRO4 (elt_prefix, prefix, definition, kludge);
3390
3391 if (partial)
3392 suppress = intern ("suppress-keymap");
3393
3394 if (CHAR_TABLE_P (vector))
3395 {
3396 if (char_table_depth == 0)
3397 {
3398 /* VECTOR is a top level char-table. */
3399 complete_char = 1;
3400 from = 0;
3401 to = CHAR_TABLE_ORDINARY_SLOTS;
3402 }
3403 else
3404 {
3405 /* VECTOR is a sub char-table. */
3406 if (char_table_depth >= 3)
3407 /* A char-table is never that deep. */
3408 error ("Too deep char table");
3409
3410 complete_char
3411 = (CHARSET_VALID_P (indices[0])
3412 && ((CHARSET_DIMENSION (indices[0]) == 1
3413 && char_table_depth == 1)
3414 || char_table_depth == 2));
3415
3416 /* Meaningful elements are from 32th to 127th. */
3417 from = 32;
3418 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3419 }
3420 }
3421 else
3422 {
3423 /* This does the right thing for ordinary vectors. */
3424
3425 complete_char = 1;
3426 from = 0;
3427 to = XVECTOR (vector)->size;
3428 }
3429
3430 for (i = from; i < to; i++)
3431 {
3432 int this_shadowed = 0;
3433 QUIT;
3434
3435 if (CHAR_TABLE_P (vector))
3436 {
3437 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3438 complete_char = 0;
3439
3440 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3441 && !CHARSET_DEFINED_P (i - 128))
3442 continue;
3443
3444 definition
3445 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3446 }
3447 else
3448 definition = get_keyelt (AREF (vector, i), 0);
3449
3450 if (NILP (definition)) continue;
3451
3452 /* Don't mention suppressed commands. */
3453 if (SYMBOLP (definition) && partial)
3454 {
3455 Lisp_Object tem;
3456
3457 tem = Fget (definition, suppress);
3458
3459 if (!NILP (tem)) continue;
3460 }
3461
3462 /* Set CHARACTER to the character this entry describes, if any.
3463 Also update *INDICES. */
3464 if (CHAR_TABLE_P (vector))
3465 {
3466 indices[char_table_depth] = i;
3467
3468 if (char_table_depth == 0)
3469 {
3470 character = i;
3471 indices[0] = i - 128;
3472 }
3473 else if (complete_char)
3474 {
3475 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3476 }
3477 else
3478 character = 0;
3479 }
3480 else
3481 character = i;
3482
3483 ASET (kludge, 0, make_number (character));
3484
3485 /* If this binding is shadowed by some other map, ignore it. */
3486 if (!NILP (shadow) && complete_char)
3487 {
3488 Lisp_Object tem;
3489
3490 tem = shadow_lookup (shadow, kludge, Qt);
3491
3492 if (!NILP (tem))
3493 {
3494 if (mention_shadow)
3495 this_shadowed = 1;
3496 else
3497 continue;
3498 }
3499 }
3500
3501 /* Ignore this definition if it is shadowed by an earlier
3502 one in the same keymap. */
3503 if (!NILP (entire_map) && complete_char)
3504 {
3505 Lisp_Object tem;
3506
3507 tem = Flookup_key (entire_map, kludge, Qt);
3508
3509 if (!EQ (tem, definition))
3510 continue;
3511 }
3512
3513 if (first)
3514 {
3515 if (char_table_depth == 0)
3516 insert ("\n", 1);
3517 first = 0;
3518 }
3519
3520 /* For a sub char-table, show the depth by indentation.
3521 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3522 if (char_table_depth > 0)
3523 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3524
3525 /* Output the prefix that applies to every entry in this map. */
3526 if (!NILP (elt_prefix))
3527 insert1 (elt_prefix);
3528
3529 /* Insert or describe the character this slot is for,
3530 or a description of what it is for. */
3531 if (SUB_CHAR_TABLE_P (vector))
3532 {
3533 if (complete_char)
3534 insert_char (character);
3535 else
3536 {
3537 /* We need an octal representation for this block of
3538 characters. */
3539 char work[16];
3540 sprintf (work, "(row %d)", i);
3541 insert (work, strlen (work));
3542 }
3543 }
3544 else if (CHAR_TABLE_P (vector))
3545 {
3546 if (complete_char)
3547 insert1 (Fkey_description (kludge, prefix));
3548 else
3549 {
3550 /* Print the information for this character set. */
3551 insert_string ("<");
3552 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3553 if (STRINGP (tem2))
3554 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3555 SBYTES (tem2), 0);
3556 else
3557 insert ("?", 1);
3558 insert (">", 1);
3559 }
3560 }
3561 else
3562 {
3563 insert1 (Fkey_description (kludge, prefix));
3564 }
3565
3566 /* If we find a sub char-table within a char-table,
3567 scan it recursively; it defines the details for
3568 a character set or a portion of a character set. */
3569 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3570 {
3571 insert ("\n", 1);
3572 describe_vector (definition, prefix, args, elt_describer,
3573 partial, shadow, entire_map,
3574 indices, char_table_depth + 1, keymap_p,
3575 mention_shadow);
3576 continue;
3577 }
3578
3579 starting_i = i;
3580
3581 /* Find all consecutive characters or rows that have the same
3582 definition. But, for elements of a top level char table, if
3583 they are for charsets, we had better describe one by one even
3584 if they have the same definition. */
3585 if (CHAR_TABLE_P (vector))
3586 {
3587 int limit = to;
3588
3589 if (char_table_depth == 0)
3590 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3591
3592 while (i + 1 < limit
3593 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3594 !NILP (tem2))
3595 && !NILP (Fequal (tem2, definition)))
3596 i++;
3597 }
3598 else
3599 while (i + 1 < to
3600 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3601 !NILP (tem2))
3602 && !NILP (Fequal (tem2, definition)))
3603 i++;
3604
3605
3606 /* If we have a range of more than one character,
3607 print where the range reaches to. */
3608
3609 if (i != starting_i)
3610 {
3611 insert (" .. ", 4);
3612
3613 ASET (kludge, 0, make_number (i));
3614
3615 if (!NILP (elt_prefix))
3616 insert1 (elt_prefix);
3617
3618 if (CHAR_TABLE_P (vector))
3619 {
3620 if (char_table_depth == 0)
3621 {
3622 insert1 (Fkey_description (kludge, prefix));
3623 }
3624 else if (complete_char)
3625 {
3626 indices[char_table_depth] = i;
3627 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3628 insert_char (character);
3629 }
3630 else
3631 {
3632 /* We need an octal representation for this block of
3633 characters. */
3634 char work[16];
3635 sprintf (work, "(row %d)", i);
3636 insert (work, strlen (work));
3637 }
3638 }
3639 else
3640 {
3641 insert1 (Fkey_description (kludge, prefix));
3642 }
3643 }
3644
3645 /* Print a description of the definition of this character.
3646 elt_describer will take care of spacing out far enough
3647 for alignment purposes. */
3648 (*elt_describer) (definition, args);
3649
3650 if (this_shadowed)
3651 {
3652 SET_PT (PT - 1);
3653 insert_string (" (binding currently shadowed)");
3654 SET_PT (PT + 1);
3655 }
3656 }
3657
3658 /* For (sub) char-table, print `defalt' slot at last. */
3659 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3660 {
3661 insert (" ", char_table_depth * 2);
3662 insert_string ("<<default>>");
3663 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3664 }
3665
3666 UNGCPRO;
3667 }
3668 \f
3669 /* Apropos - finding all symbols whose names match a regexp. */
3670 static Lisp_Object apropos_predicate;
3671 static Lisp_Object apropos_accumulate;
3672
3673 static void
3674 apropos_accum (symbol, string)
3675 Lisp_Object symbol, string;
3676 {
3677 register Lisp_Object tem;
3678
3679 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3680 if (!NILP (tem) && !NILP (apropos_predicate))
3681 tem = call1 (apropos_predicate, symbol);
3682 if (!NILP (tem))
3683 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3684 }
3685
3686 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3687 doc: /* Show all symbols whose names contain match for REGEXP.
3688 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3689 for each symbol and a symbol is mentioned only if that returns non-nil.
3690 Return list of symbols found. */)
3691 (regexp, predicate)
3692 Lisp_Object regexp, predicate;
3693 {
3694 Lisp_Object tem;
3695 CHECK_STRING (regexp);
3696 apropos_predicate = predicate;
3697 apropos_accumulate = Qnil;
3698 map_obarray (Vobarray, apropos_accum, regexp);
3699 tem = Fsort (apropos_accumulate, Qstring_lessp);
3700 apropos_accumulate = Qnil;
3701 apropos_predicate = Qnil;
3702 return tem;
3703 }
3704 \f
3705 void
3706 syms_of_keymap ()
3707 {
3708 Qkeymap = intern ("keymap");
3709 staticpro (&Qkeymap);
3710 staticpro (&apropos_predicate);
3711 staticpro (&apropos_accumulate);
3712 apropos_predicate = Qnil;
3713 apropos_accumulate = Qnil;
3714
3715 /* Now we are ready to set up this property, so we can
3716 create char tables. */
3717 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3718
3719 /* Initialize the keymaps standardly used.
3720 Each one is the value of a Lisp variable, and is also
3721 pointed to by a C variable */
3722
3723 global_map = Fmake_keymap (Qnil);
3724 Fset (intern ("global-map"), global_map);
3725
3726 current_global_map = global_map;
3727 staticpro (&global_map);
3728 staticpro (&current_global_map);
3729
3730 meta_map = Fmake_keymap (Qnil);
3731 Fset (intern ("esc-map"), meta_map);
3732 Ffset (intern ("ESC-prefix"), meta_map);
3733
3734 control_x_map = Fmake_keymap (Qnil);
3735 Fset (intern ("ctl-x-map"), control_x_map);
3736 Ffset (intern ("Control-X-prefix"), control_x_map);
3737
3738 exclude_keys
3739 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3740 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3741 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3742 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3743 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3744 Qnil)))));
3745 staticpro (&exclude_keys);
3746
3747 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3748 doc: /* List of commands given new key bindings recently.
3749 This is used for internal purposes during Emacs startup;
3750 don't alter it yourself. */);
3751 Vdefine_key_rebound_commands = Qt;
3752
3753 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3754 doc: /* Default keymap to use when reading from the minibuffer. */);
3755 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3756
3757 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3758 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3759 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3760 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3761
3762 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3763 doc: /* Local keymap for minibuffer input with completion. */);
3764 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3765 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3766
3767 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3768 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3769 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3770 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3771 Vminibuffer_local_completion_map);
3772
3773 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3774 doc: /* Alist of keymaps to use for minor modes.
3775 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3776 key sequences and look up bindings iff VARIABLE's value is non-nil.
3777 If two active keymaps bind the same key, the keymap appearing earlier
3778 in the list takes precedence. */);
3779 Vminor_mode_map_alist = Qnil;
3780
3781 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3782 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3783 This variable is an alist just like `minor-mode-map-alist', and it is
3784 used the same way (and before `minor-mode-map-alist'); however,
3785 it is provided for major modes to bind locally. */);
3786 Vminor_mode_overriding_map_alist = Qnil;
3787
3788 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3789 doc: /* List of keymap alists to use for emulations modes.
3790 It is intended for modes or packages using multiple minor-mode keymaps.
3791 Each element is a keymap alist just like `minor-mode-map-alist', or a
3792 symbol with a variable binding which is a keymap alist, and it is used
3793 the same way. The "active" keymaps in each alist are used before
3794 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3795 Vemulation_mode_map_alists = Qnil;
3796
3797 staticpro (&Vmouse_events);
3798 Vmouse_events = Fcons (intern ("menu-bar"),
3799 Fcons (intern ("tool-bar"),
3800 Fcons (intern ("header-line"),
3801 Fcons (intern ("mode-line"),
3802 Fcons (intern ("mouse-1"),
3803 Fcons (intern ("mouse-2"),
3804 Fcons (intern ("mouse-3"),
3805 Fcons (intern ("mouse-4"),
3806 Fcons (intern ("mouse-5"),
3807 Qnil)))))))));
3808
3809
3810 Qsingle_key_description = intern ("single-key-description");
3811 staticpro (&Qsingle_key_description);
3812
3813 Qkey_description = intern ("key-description");
3814 staticpro (&Qkey_description);
3815
3816 Qkeymapp = intern ("keymapp");
3817 staticpro (&Qkeymapp);
3818
3819 Qnon_ascii = intern ("non-ascii");
3820 staticpro (&Qnon_ascii);
3821
3822 Qmenu_item = intern ("menu-item");
3823 staticpro (&Qmenu_item);
3824
3825 Qremap = intern ("remap");
3826 staticpro (&Qremap);
3827
3828 command_remapping_vector = Fmake_vector (make_number (2), Qremap);
3829 staticpro (&command_remapping_vector);
3830
3831 where_is_cache_keymaps = Qt;
3832 where_is_cache = Qnil;
3833 staticpro (&where_is_cache);
3834 staticpro (&where_is_cache_keymaps);
3835
3836 defsubr (&Skeymapp);
3837 defsubr (&Skeymap_parent);
3838 defsubr (&Skeymap_prompt);
3839 defsubr (&Sset_keymap_parent);
3840 defsubr (&Smake_keymap);
3841 defsubr (&Smake_sparse_keymap);
3842 defsubr (&Smap_keymap);
3843 defsubr (&Scopy_keymap);
3844 defsubr (&Scommand_remapping);
3845 defsubr (&Skey_binding);
3846 defsubr (&Slocal_key_binding);
3847 defsubr (&Sglobal_key_binding);
3848 defsubr (&Sminor_mode_key_binding);
3849 defsubr (&Sdefine_key);
3850 defsubr (&Slookup_key);
3851 defsubr (&Sdefine_prefix_command);
3852 defsubr (&Suse_global_map);
3853 defsubr (&Suse_local_map);
3854 defsubr (&Scurrent_local_map);
3855 defsubr (&Scurrent_global_map);
3856 defsubr (&Scurrent_minor_mode_maps);
3857 defsubr (&Scurrent_active_maps);
3858 defsubr (&Saccessible_keymaps);
3859 defsubr (&Skey_description);
3860 defsubr (&Sdescribe_vector);
3861 defsubr (&Ssingle_key_description);
3862 defsubr (&Stext_char_description);
3863 defsubr (&Swhere_is_internal);
3864 defsubr (&Sdescribe_buffer_bindings);
3865 defsubr (&Sapropos_internal);
3866 }
3867
3868 void
3869 keys_of_keymap ()
3870 {
3871 initial_define_key (global_map, 033, "ESC-prefix");
3872 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3873 }
3874
3875 /* arch-tag: 6dd15c26-7cf1-41c4-b904-f42f7ddda463
3876 (do not change this comment) */