]> code.delx.au - gnu-emacs/blob - lisp/international/ccl.el
Wrap around error in coreutil's ls
[gnu-emacs] / lisp / international / ccl.el
1 ;;; ccl.el --- CCL (Code Conversion Language) compiler -*- lexical-binding:t -*-
2
3 ;; Copyright (C) 1997-1998, 2001-2016 Free Software Foundation, Inc.
4 ;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
5 ;; 2005, 2006, 2007, 2008, 2009, 2010, 2011
6 ;; National Institute of Advanced Industrial Science and Technology (AIST)
7 ;; Registration Number H14PRO021
8
9 ;; Keywords: CCL, mule, multilingual, character set, coding-system
10
11 ;; This file is part of GNU Emacs.
12
13 ;; GNU Emacs is free software: you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation, either version 3 of the License, or
16 ;; (at your option) any later version.
17
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
22
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
25
26 ;;; Commentary:
27
28 ;; CCL (Code Conversion Language) is a simple programming language to
29 ;; be used for various kind of code conversion. A CCL program is
30 ;; compiled to CCL code (vector of integers) and executed by the CCL
31 ;; interpreter in Emacs.
32 ;;
33 ;; CCL is used for code conversion at process I/O and file I/O for
34 ;; non-standard coding-systems. In addition, it is used for
35 ;; calculating code points of X fonts from character codes.
36 ;; However, since CCL is designed as a powerful programming language,
37 ;; it can be used for more generic calculation. For instance,
38 ;; combination of three or more arithmetic operations can be
39 ;; calculated faster than in Emacs Lisp.
40 ;;
41 ;; The syntax and semantics of CCL programs are described in the
42 ;; documentation of `define-ccl-program'.
43
44 ;;; Code:
45
46 ;; Unused.
47 ;;; (defgroup ccl nil
48 ;;; "CCL (Code Conversion Language) compiler."
49 ;;; :prefix "ccl-"
50 ;;; :group 'i18n)
51
52 (defconst ccl-command-table
53 [if branch loop break repeat write-repeat write-read-repeat
54 read read-if read-branch write call end
55 read-multibyte-character write-multibyte-character
56 translate-character
57 iterate-multiple-map map-multiple map-single lookup-integer
58 lookup-character]
59 "Vector of CCL commands (symbols).")
60
61 ;; Put a property to each symbol of CCL commands for the compiler.
62 (let (op (i 0) (len (length ccl-command-table)))
63 (while (< i len)
64 (setq op (aref ccl-command-table i))
65 (put op 'ccl-compile-function (intern (format "ccl-compile-%s" op)))
66 (setq i (1+ i))))
67
68 (defconst ccl-code-table
69 [set-register
70 set-short-const
71 set-const
72 set-array
73 jump
74 jump-cond
75 write-register-jump
76 write-register-read-jump
77 write-const-jump
78 write-const-read-jump
79 write-string-jump
80 write-array-read-jump
81 read-jump
82 branch
83 read-register
84 write-expr-const
85 read-branch
86 write-register
87 write-expr-register
88 call
89 write-const-string
90 write-array
91 end
92 set-assign-expr-const
93 set-assign-expr-register
94 set-expr-const
95 set-expr-register
96 jump-cond-expr-const
97 jump-cond-expr-register
98 read-jump-cond-expr-const
99 read-jump-cond-expr-register
100 ex-cmd
101 ]
102 "Vector of CCL compiled codes (symbols).")
103
104 (defconst ccl-extended-code-table
105 [read-multibyte-character
106 write-multibyte-character
107 translate-character
108 translate-character-const-tbl
109 nil nil nil nil nil nil nil nil nil nil nil nil ; 0x04-0x0f
110 iterate-multiple-map
111 map-multiple
112 map-single
113 lookup-int-const-tbl
114 lookup-char-const-tbl
115 ]
116 "Vector of CCL extended compiled codes (symbols).")
117
118 ;; Put a property to each symbol of CCL codes for the disassembler.
119 (let (code (i 0) (len (length ccl-code-table)))
120 (while (< i len)
121 (setq code (aref ccl-code-table i))
122 (put code 'ccl-code i)
123 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))
124 (setq i (1+ i))))
125
126 (let (code (i 0) (len (length ccl-extended-code-table)))
127 (while (< i len)
128 (setq code (aref ccl-extended-code-table i))
129 (if code
130 (progn
131 (put code 'ccl-ex-code i)
132 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))))
133 (setq i (1+ i))))
134
135 (defconst ccl-jump-code-list
136 '(jump jump-cond write-register-jump write-register-read-jump
137 write-const-jump write-const-read-jump write-string-jump
138 write-array-read-jump read-jump))
139
140 ;; Put a property `jump-flag' to each CCL code which execute jump in
141 ;; some way.
142 (let ((l ccl-jump-code-list))
143 (while l
144 (put (car l) 'jump-flag t)
145 (setq l (cdr l))))
146
147 (defconst ccl-register-table
148 [r0 r1 r2 r3 r4 r5 r6 r7]
149 "Vector of CCL registers (symbols).")
150
151 ;; Put a property to indicate register number to each symbol of CCL.
152 ;; registers.
153 (let (reg (i 0) (len (length ccl-register-table)))
154 (while (< i len)
155 (setq reg (aref ccl-register-table i))
156 (put reg 'ccl-register-number i)
157 (setq i (1+ i))))
158
159 (defconst ccl-arith-table
160 [+ - * / % & | ^ << >> <8 >8 // nil nil nil
161 < > == <= >= != de-sjis en-sjis]
162 "Vector of CCL arithmetic/logical operators (symbols).")
163
164 ;; Put a property to each symbol of CCL operators for the compiler.
165 (let (arith (i 0) (len (length ccl-arith-table)))
166 (while (< i len)
167 (setq arith (aref ccl-arith-table i))
168 (if arith (put arith 'ccl-arith-code i))
169 (setq i (1+ i))))
170
171 (defconst ccl-assign-arith-table
172 [+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=]
173 "Vector of CCL assignment operators (symbols).")
174
175 ;; Put a property to each symbol of CCL assignment operators for the compiler.
176 (let (arith (i 0) (len (length ccl-assign-arith-table)))
177 (while (< i len)
178 (setq arith (aref ccl-assign-arith-table i))
179 (put arith 'ccl-self-arith-code i)
180 (setq i (1+ i))))
181
182 (defvar ccl-program-vector nil
183 "Working vector of CCL codes produced by CCL compiler.")
184 (defvar ccl-current-ic 0
185 "The current index for `ccl-program-vector'.")
186
187 (defun ccl-embed-data (data &optional ic)
188 "Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and
189 increment it. If IC is specified, embed DATA at IC."
190 (if ic
191 (aset ccl-program-vector ic data)
192 (let ((len (length ccl-program-vector)))
193 (if (>= ccl-current-ic len)
194 (let ((new (make-vector (* len 2) nil)))
195 (while (> len 0)
196 (setq len (1- len))
197 (aset new len (aref ccl-program-vector len)))
198 (setq ccl-program-vector new))))
199 (aset ccl-program-vector ccl-current-ic data)
200 (setq ccl-current-ic (1+ ccl-current-ic))))
201
202 (defun ccl-embed-symbol (symbol prop)
203 "Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give
204 proper index number for SYMBOL. PROP should be
205 `translation-table-id', `translation-hash-table-id'
206 `code-conversion-map-id', or `ccl-program-idx'."
207 (ccl-embed-data (cons symbol prop)))
208
209 (defun ccl-embed-string (len str)
210 "Embed string STR of length LEN in `ccl-program-vector' at
211 `ccl-current-ic'."
212 (if (> len #xFFFFF)
213 (error "CCL: String too long: %d" len))
214 (if (> (string-bytes str) len)
215 (dotimes (i len)
216 (ccl-embed-data (logior #x1000000 (aref str i))))
217 (let ((i 0))
218 (while (< i len)
219 (ccl-embed-data (logior (ash (aref str i) 16)
220 (if (< (1+ i) len)
221 (ash (aref str (1+ i)) 8)
222 0)
223 (if (< (+ i 2) len)
224 (aref str (+ i 2))
225 0)))
226 (setq i (+ i 3))))))
227
228 (defun ccl-embed-current-address (ic)
229 "Embed a relative jump address to `ccl-current-ic' in
230 `ccl-program-vector' at IC without altering the other bit field."
231 (let ((relative (- ccl-current-ic (1+ ic))))
232 (aset ccl-program-vector ic
233 (logior (aref ccl-program-vector ic) (ash relative 8)))))
234
235 (defun ccl-embed-code (op reg data &optional reg2)
236 "Embed CCL code for the operation OP and arguments REG and DATA in
237 `ccl-program-vector' at `ccl-current-ic' in the following format.
238 |----------------- integer (28-bit) ------------------|
239 |------------ 20-bit ------------|- 3-bit --|- 5-bit -|
240 |------------- DATA -------------|-- REG ---|-- OP ---|
241 If REG2 is specified, embed a code in the following format.
242 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
243 |-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---|
244
245 If REG is a CCL register symbol (e.g. r0, r1...), the register
246 number is embedded. If OP is one of unconditional jumps, DATA is
247 changed to a relative jump address."
248 (if (and (> data 0) (get op 'jump-flag))
249 ;; DATA is an absolute jump address. Make it relative to the
250 ;; next of jump code.
251 (setq data (- data (1+ ccl-current-ic))))
252 (let ((code (logior (get op 'ccl-code)
253 (ash
254 (if (symbolp reg) (get reg 'ccl-register-number) reg) 5)
255 (if reg2
256 (logior (ash (get reg2 'ccl-register-number) 8)
257 (ash data 11))
258 (ash data 8)))))
259 (ccl-embed-data code)))
260
261 (defun ccl-embed-extended-command (ex-op reg reg2 reg3)
262 "extended ccl command format
263 |- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -|
264 |- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---|"
265 (let ((data (logior (ash (get ex-op 'ccl-ex-code) 3)
266 (if (symbolp reg3)
267 (get reg3 'ccl-register-number)
268 0))))
269 (ccl-embed-code 'ex-cmd reg data reg2)))
270
271 (defun ccl-increment-ic (inc)
272 "Just advance `ccl-current-ic' by INC."
273 (setq ccl-current-ic (+ ccl-current-ic inc)))
274
275 (defvar ccl-loop-head nil
276 "If non-nil, index of the start of the current loop.")
277 (defvar ccl-breaks nil
278 "If non-nil, list of absolute addresses of the breaking points of
279 the current loop.")
280
281 ;;;###autoload
282 (defun ccl-compile (ccl-program)
283 "Return the compiled code of CCL-PROGRAM as a vector of integers."
284 (unless (and (consp ccl-program)
285 (integerp (car ccl-program))
286 (listp (car (cdr ccl-program))))
287 (error "CCL: Invalid CCL program: %s" ccl-program))
288 (if (null (vectorp ccl-program-vector))
289 (setq ccl-program-vector (make-vector 8192 0)))
290 (setq ccl-loop-head nil ccl-breaks nil)
291 (setq ccl-current-ic 0)
292
293 ;; The first element is the buffer magnification.
294 (ccl-embed-data (car ccl-program))
295
296 ;; The second element is the address of the start CCL code for
297 ;; processing end of input buffer (we call it eof-processor). We
298 ;; set it later.
299 (ccl-increment-ic 1)
300
301 ;; Compile the main body of the CCL program.
302 (ccl-compile-1 (car (cdr ccl-program)))
303
304 ;; Embed the address of eof-processor.
305 (ccl-embed-data ccl-current-ic 1)
306
307 ;; Then compile eof-processor.
308 (if (nth 2 ccl-program)
309 (ccl-compile-1 (nth 2 ccl-program)))
310
311 ;; At last, embed termination code.
312 (ccl-embed-code 'end 0 0)
313
314 (let ((vec (make-vector ccl-current-ic 0))
315 (i 0))
316 (while (< i ccl-current-ic)
317 (aset vec i (aref ccl-program-vector i))
318 (setq i (1+ i)))
319 vec))
320
321 (defun ccl-syntax-error (cmd)
322 "Signal syntax error."
323 (error "CCL: Syntax error: %s" cmd))
324
325 (defun ccl-check-register (arg cmd)
326 "Check if ARG is a valid CCL register."
327 (if (get arg 'ccl-register-number)
328 arg
329 (error "CCL: Invalid register %s in %s" arg cmd)))
330
331 (defun ccl-check-compile-function (arg cmd)
332 "Check if ARG is a valid CCL command."
333 (or (get arg 'ccl-compile-function)
334 (error "CCL: Invalid command: %s" cmd)))
335
336 ;; In the following code, most ccl-compile-XXXX functions return t if
337 ;; they end with unconditional jump, else return nil.
338
339 (defun ccl-compile-1 (ccl-block)
340 "Compile CCL-BLOCK (see the syntax above)."
341 (let (unconditional-jump
342 cmd)
343 (if (or (integerp ccl-block)
344 (stringp ccl-block)
345 (and ccl-block (symbolp (car ccl-block))))
346 ;; This block consists of single statement.
347 (setq ccl-block (list ccl-block)))
348
349 ;; Now CCL-BLOCK is a list of statements. Compile them one by
350 ;; one.
351 (while ccl-block
352 (setq cmd (car ccl-block))
353 (setq unconditional-jump
354 (cond ((integerp cmd)
355 ;; SET statement for the register 0.
356 (ccl-compile-set (list 'r0 '= cmd)))
357
358 ((stringp cmd)
359 ;; WRITE statement of string argument.
360 (ccl-compile-write-string cmd))
361
362 ((listp cmd)
363 ;; The other statements.
364 (cond ((eq (nth 1 cmd) '=)
365 ;; SET statement of the form `(REG = EXPRESSION)'.
366 (ccl-compile-set cmd))
367
368 ((and (symbolp (nth 1 cmd))
369 (get (nth 1 cmd) 'ccl-self-arith-code))
370 ;; SET statement with an assignment operation.
371 (ccl-compile-self-set cmd))
372
373 (t
374 (funcall (ccl-check-compile-function (car cmd) cmd)
375 cmd))))
376
377 (t
378 (ccl-syntax-error cmd))))
379 (setq ccl-block (cdr ccl-block)))
380 unconditional-jump))
381
382 (defconst ccl-max-short-const (ash 1 19))
383 (defconst ccl-min-short-const (ash -1 19))
384
385 (defun ccl-compile-set (cmd)
386 "Compile SET statement."
387 (let ((rrr (ccl-check-register (car cmd) cmd))
388 (right (nth 2 cmd)))
389 (cond ((listp right)
390 ;; CMD has the form `(RRR = (XXX OP YYY))'.
391 (ccl-compile-expression rrr right))
392
393 ((integerp right)
394 ;; CMD has the form `(RRR = integer)'.
395 (if (and (<= right ccl-max-short-const)
396 (>= right ccl-min-short-const))
397 (ccl-embed-code 'set-short-const rrr right)
398 (ccl-embed-code 'set-const rrr 0)
399 (ccl-embed-data right)))
400
401 (t
402 ;; CMD has the form `(RRR = rrr [ array ])'.
403 (ccl-check-register right cmd)
404 (let ((ary (nth 3 cmd)))
405 (if (vectorp ary)
406 (let ((i 0) (len (length ary)))
407 (ccl-embed-code 'set-array rrr len right)
408 (while (< i len)
409 (ccl-embed-data (aref ary i))
410 (setq i (1+ i))))
411 (ccl-embed-code 'set-register rrr 0 right))))))
412 nil)
413
414 (defun ccl-compile-self-set (cmd)
415 "Compile SET statement with ASSIGNMENT_OPERATOR."
416 (let ((rrr (ccl-check-register (car cmd) cmd))
417 (right (nth 2 cmd)))
418 (if (listp right)
419 ;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile
420 ;; the right hand part as `(r7 = (XXX OP YYY))' (note: the
421 ;; register 7 can be used for storing temporary value).
422 (progn
423 (ccl-compile-expression 'r7 right)
424 (setq right 'r7)))
425 ;; Now CMD has the form `(RRR ASSIGN_OP ARG)'. Compile it as
426 ;; `(RRR = (RRR OP ARG))'.
427 (ccl-compile-expression
428 rrr
429 (list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right)))
430 nil)
431
432 (defun ccl-compile-expression (rrr expr)
433 "Compile SET statement of the form `(RRR = EXPR)'."
434 (let ((left (car expr))
435 (op (get (nth 1 expr) 'ccl-arith-code))
436 (right (nth 2 expr)))
437 (if (listp left)
438 (progn
439 ;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'. Compile
440 ;; the first term as `(r7 = (EXPR2 OP2 ARG)).'
441 (ccl-compile-expression 'r7 left)
442 (setq left 'r7)))
443
444 ;; Now EXPR has the form (LEFT OP RIGHT).
445 (if (and (eq rrr left)
446 (< op (length ccl-assign-arith-table)))
447 ;; Compile this SET statement as `(RRR OP= RIGHT)'.
448 (if (integerp right)
449 (progn
450 (ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0)
451 (ccl-embed-data right))
452 (ccl-check-register right expr)
453 (ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right))
454
455 ;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'.
456 (if (integerp right)
457 (progn
458 (ccl-embed-code 'set-expr-const rrr (ash op 3) left)
459 (ccl-embed-data right))
460 (ccl-check-register right expr)
461 (ccl-embed-code 'set-expr-register
462 rrr
463 (logior (ash op 3) (get right 'ccl-register-number))
464 left)))))
465
466 (defun ccl-compile-write-string (str)
467 "Compile WRITE statement with string argument."
468 (let ((len (length str)))
469 (ccl-embed-code 'write-const-string 1 len)
470 (ccl-embed-string len str))
471 nil)
472
473 (defun ccl-compile-if (cmd &optional read-flag)
474 "Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'.
475 If READ-FLAG is non-nil, this statement has the form
476 `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'."
477 (if (and (/= (length cmd) 3) (/= (length cmd) 4))
478 (error "CCL: Invalid number of arguments: %s" cmd))
479 (let ((condition (nth 1 cmd))
480 (true-cmds (nth 2 cmd))
481 (false-cmds (nth 3 cmd))
482 jump-cond-address)
483 (if (and (listp condition)
484 (listp (car condition)))
485 ;; If CONDITION is a nested expression, the inner expression
486 ;; should be compiled at first as SET statement, i.e.:
487 ;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements:
488 ;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'.
489 (progn
490 (ccl-compile-expression 'r7 (car condition))
491 (setq condition (cons 'r7 (cdr condition)))
492 (setq cmd (cons (car cmd)
493 (cons condition (cdr (cdr cmd)))))))
494
495 (setq jump-cond-address ccl-current-ic)
496 ;; Compile CONDITION.
497 (if (symbolp condition)
498 ;; CONDITION is a register.
499 (progn
500 (ccl-check-register condition cmd)
501 (ccl-embed-code 'jump-cond condition 0))
502 ;; CONDITION is a simple expression of the form (RRR OP ARG).
503 (let ((rrr (car condition))
504 (op (get (nth 1 condition) 'ccl-arith-code))
505 (arg (nth 2 condition)))
506 (ccl-check-register rrr cmd)
507 (or (integerp op)
508 (error "CCL: invalid operator: %s" (nth 1 condition)))
509 (if (integerp arg)
510 (progn
511 (ccl-embed-code (if read-flag 'read-jump-cond-expr-const
512 'jump-cond-expr-const)
513 rrr 0)
514 (ccl-embed-data op)
515 (ccl-embed-data arg))
516 (ccl-check-register arg cmd)
517 (ccl-embed-code (if read-flag 'read-jump-cond-expr-register
518 'jump-cond-expr-register)
519 rrr 0)
520 (ccl-embed-data op)
521 (ccl-embed-data (get arg 'ccl-register-number)))))
522
523 ;; Compile TRUE-PART.
524 (let ((unconditional-jump (ccl-compile-1 true-cmds)))
525 (if (null false-cmds)
526 ;; This is the place to jump to if condition is false.
527 (progn
528 (ccl-embed-current-address jump-cond-address)
529 (setq unconditional-jump nil))
530 (let (end-true-part-address)
531 (if (not unconditional-jump)
532 (progn
533 ;; If TRUE-PART does not end with unconditional jump, we
534 ;; have to jump to the end of FALSE-PART from here.
535 (setq end-true-part-address ccl-current-ic)
536 (ccl-embed-code 'jump 0 0)))
537 ;; This is the place to jump to if CONDITION is false.
538 (ccl-embed-current-address jump-cond-address)
539 ;; Compile FALSE-PART.
540 (setq unconditional-jump
541 (and (ccl-compile-1 false-cmds) unconditional-jump))
542 (if end-true-part-address
543 ;; This is the place to jump to after the end of TRUE-PART.
544 (ccl-embed-current-address end-true-part-address))))
545 unconditional-jump)))
546
547 (defun ccl-compile-branch (cmd)
548 "Compile BRANCH statement."
549 (if (< (length cmd) 3)
550 (error "CCL: Invalid number of arguments: %s" cmd))
551 (ccl-compile-branch-blocks 'branch
552 (ccl-compile-branch-expression (nth 1 cmd) cmd)
553 (cdr (cdr cmd))))
554
555 (defun ccl-compile-read-branch (cmd)
556 "Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'."
557 (if (< (length cmd) 3)
558 (error "CCL: Invalid number of arguments: %s" cmd))
559 (ccl-compile-branch-blocks 'read-branch
560 (ccl-compile-branch-expression (nth 1 cmd) cmd)
561 (cdr (cdr cmd))))
562
563 (defun ccl-compile-branch-expression (expr cmd)
564 "Compile EXPRESSION part of BRANCH statement and return register
565 which holds a value of the expression."
566 (if (listp expr)
567 ;; EXPR has the form `(EXPR2 OP ARG)'. Compile it as SET
568 ;; statement of the form `(r7 = (EXPR2 OP ARG))'.
569 (progn
570 (ccl-compile-expression 'r7 expr)
571 'r7)
572 (ccl-check-register expr cmd)))
573
574 (defun ccl-compile-branch-blocks (code rrr blocks)
575 "Compile BLOCKs of BRANCH statement. CODE is 'branch or 'read-branch.
576 REG is a register which holds a value of EXPRESSION part. BLOCKs
577 is a list of CCL-BLOCKs."
578 (let ((branches (length blocks))
579 branch-idx
580 jump-table-head-address
581 empty-block-indexes
582 block-tail-addresses
583 block-unconditional-jump)
584 (ccl-embed-code code rrr branches)
585 (setq jump-table-head-address ccl-current-ic)
586 ;; The size of jump table is the number of blocks plus 1 (for the
587 ;; case RRR is out of range).
588 (ccl-increment-ic (1+ branches))
589 (setq empty-block-indexes (list branches))
590 ;; Compile each block.
591 (setq branch-idx 0)
592 (while blocks
593 (if (null (car blocks))
594 ;; This block is empty.
595 (setq empty-block-indexes (cons branch-idx empty-block-indexes)
596 block-unconditional-jump t)
597 ;; This block is not empty.
598 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
599 (+ jump-table-head-address branch-idx))
600 (setq block-unconditional-jump (ccl-compile-1 (car blocks)))
601 (if (not block-unconditional-jump)
602 (progn
603 ;; Jump address of the end of branches are embedded later.
604 ;; For the moment, just remember where to embed them.
605 (setq block-tail-addresses
606 (cons ccl-current-ic block-tail-addresses))
607 (ccl-embed-code 'jump 0 0))))
608 (setq branch-idx (1+ branch-idx))
609 (setq blocks (cdr blocks)))
610 (if (not block-unconditional-jump)
611 ;; We don't need jump code at the end of the last block.
612 (setq block-tail-addresses (cdr block-tail-addresses)
613 ccl-current-ic (1- ccl-current-ic)))
614 ;; Embed jump address at the tailing jump commands of blocks.
615 (while block-tail-addresses
616 (ccl-embed-current-address (car block-tail-addresses))
617 (setq block-tail-addresses (cdr block-tail-addresses)))
618 ;; For empty blocks, make entries in the jump table point directly here.
619 (while empty-block-indexes
620 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
621 (+ jump-table-head-address (car empty-block-indexes)))
622 (setq empty-block-indexes (cdr empty-block-indexes))))
623 ;; Branch command ends by unconditional jump if RRR is out of range.
624 nil)
625
626 (defun ccl-compile-loop (cmd)
627 "Compile LOOP statement."
628 (if (< (length cmd) 2)
629 (error "CCL: Invalid number of arguments: %s" cmd))
630 (let* ((ccl-loop-head ccl-current-ic)
631 (ccl-breaks nil)
632 unconditional-jump)
633 (setq cmd (cdr cmd))
634 (if cmd
635 (progn
636 (setq unconditional-jump t)
637 (while cmd
638 (setq unconditional-jump
639 (and (ccl-compile-1 (car cmd)) unconditional-jump))
640 (setq cmd (cdr cmd)))
641 (if (not ccl-breaks)
642 unconditional-jump
643 ;; Embed jump address for break statements encountered in
644 ;; this loop.
645 (while ccl-breaks
646 (ccl-embed-current-address (car ccl-breaks))
647 (setq ccl-breaks (cdr ccl-breaks))))
648 nil))))
649
650 (defun ccl-compile-break (cmd)
651 "Compile BREAK statement."
652 (if (/= (length cmd) 1)
653 (error "CCL: Invalid number of arguments: %s" cmd))
654 (if (null ccl-loop-head)
655 (error "CCL: No outer loop: %s" cmd))
656 (setq ccl-breaks (cons ccl-current-ic ccl-breaks))
657 (ccl-embed-code 'jump 0 0)
658 t)
659
660 (defun ccl-compile-repeat (cmd)
661 "Compile REPEAT statement."
662 (if (/= (length cmd) 1)
663 (error "CCL: Invalid number of arguments: %s" cmd))
664 (if (null ccl-loop-head)
665 (error "CCL: No outer loop: %s" cmd))
666 (ccl-embed-code 'jump 0 ccl-loop-head)
667 t)
668
669 (defun ccl-compile-write-repeat (cmd)
670 "Compile WRITE-REPEAT statement."
671 (if (/= (length cmd) 2)
672 (error "CCL: Invalid number of arguments: %s" cmd))
673 (if (null ccl-loop-head)
674 (error "CCL: No outer loop: %s" cmd))
675 (let ((arg (nth 1 cmd)))
676 (cond ((integerp arg)
677 (ccl-embed-code 'write-const-jump 0 ccl-loop-head)
678 (ccl-embed-data arg))
679 ((stringp arg)
680 (let ((len (length arg)))
681 (ccl-embed-code 'write-string-jump 0 ccl-loop-head)
682 (ccl-embed-data len)
683 (ccl-embed-string len arg)))
684 (t
685 (ccl-check-register arg cmd)
686 (ccl-embed-code 'write-register-jump arg ccl-loop-head))))
687 t)
688
689 (defun ccl-compile-write-read-repeat (cmd)
690 "Compile WRITE-READ-REPEAT statement."
691 (if (or (< (length cmd) 2) (> (length cmd) 3))
692 (error "CCL: Invalid number of arguments: %s" cmd))
693 (if (null ccl-loop-head)
694 (error "CCL: No outer loop: %s" cmd))
695 (let ((rrr (ccl-check-register (nth 1 cmd) cmd))
696 (arg (nth 2 cmd)))
697 (cond ((null arg)
698 (ccl-embed-code 'write-register-read-jump rrr ccl-loop-head))
699 ((integerp arg)
700 (ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head))
701 ((vectorp arg)
702 (let ((len (length arg))
703 (i 0))
704 (ccl-embed-code 'write-array-read-jump rrr ccl-loop-head)
705 (ccl-embed-data len)
706 (while (< i len)
707 (ccl-embed-data (aref arg i))
708 (setq i (1+ i)))))
709 (t
710 (error "CCL: Invalid argument %s: %s" arg cmd)))
711 (ccl-embed-code 'read-jump rrr ccl-loop-head))
712 t)
713
714 (defun ccl-compile-read (cmd)
715 "Compile READ statement."
716 (if (< (length cmd) 2)
717 (error "CCL: Invalid number of arguments: %s" cmd))
718 (let* ((args (cdr cmd))
719 (i (1- (length args))))
720 (while args
721 (let ((rrr (ccl-check-register (car args) cmd)))
722 (ccl-embed-code 'read-register rrr i)
723 (setq args (cdr args) i (1- i)))))
724 nil)
725
726 (defun ccl-compile-read-if (cmd)
727 "Compile READ-IF statement."
728 (ccl-compile-if cmd 'read))
729
730 (defun ccl-compile-write (cmd)
731 "Compile WRITE statement."
732 (if (< (length cmd) 2)
733 (error "CCL: Invalid number of arguments: %s" cmd))
734 (let ((rrr (nth 1 cmd)))
735 (cond ((integerp rrr)
736 (if (> rrr #xFFFFF)
737 (ccl-compile-write-string (string rrr))
738 (ccl-embed-code 'write-const-string 0 rrr)))
739 ((stringp rrr)
740 (ccl-compile-write-string rrr))
741 ((and (symbolp rrr) (vectorp (nth 2 cmd)))
742 (ccl-check-register rrr cmd)
743 ;; CMD has the form `(write REG ARRAY)'.
744 (let* ((arg (nth 2 cmd))
745 (len (length arg))
746 (i 0))
747 (ccl-embed-code 'write-array rrr len)
748 (while (< i len)
749 (if (not (integerp (aref arg i)))
750 (error "CCL: Invalid argument %s: %s" arg cmd))
751 (ccl-embed-data (aref arg i))
752 (setq i (1+ i)))))
753
754 ((symbolp rrr)
755 ;; CMD has the form `(write REG ...)'.
756 (let* ((args (cdr cmd))
757 (i (1- (length args))))
758 (while args
759 (setq rrr (ccl-check-register (car args) cmd))
760 (ccl-embed-code 'write-register rrr i)
761 (setq args (cdr args) i (1- i)))))
762
763 ((listp rrr)
764 ;; CMD has the form `(write (LEFT OP RIGHT))'.
765 (let ((left (car rrr))
766 (op (get (nth 1 rrr) 'ccl-arith-code))
767 (right (nth 2 rrr)))
768 (if (listp left)
769 (progn
770 ;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'.
771 ;; Compile the first term as `(r7 = (EXPR OP2 ARG))'.
772 (ccl-compile-expression 'r7 left)
773 (setq left 'r7)))
774 ;; Now RRR has the form `(ARG OP RIGHT)'.
775 (if (integerp right)
776 (progn
777 (ccl-embed-code 'write-expr-const 0 (ash op 3) left)
778 (ccl-embed-data right))
779 (ccl-check-register right rrr)
780 (ccl-embed-code 'write-expr-register 0
781 (logior (ash op 3)
782 (get right 'ccl-register-number))
783 left))))
784
785 (t
786 (error "CCL: Invalid argument: %s" cmd))))
787 nil)
788
789 (defun ccl-compile-call (cmd)
790 "Compile CALL statement."
791 (if (/= (length cmd) 2)
792 (error "CCL: Invalid number of arguments: %s" cmd))
793 (if (not (symbolp (nth 1 cmd)))
794 (error "CCL: Subroutine should be a symbol: %s" cmd))
795 (ccl-embed-code 'call 1 0)
796 (ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx)
797 nil)
798
799 (defun ccl-compile-end (cmd)
800 "Compile END statement."
801 (if (/= (length cmd) 1)
802 (error "CCL: Invalid number of arguments: %s" cmd))
803 (ccl-embed-code 'end 0 0)
804 t)
805
806 (defun ccl-compile-read-multibyte-character (cmd)
807 "Compile read-multibyte-character"
808 (if (/= (length cmd) 3)
809 (error "CCL: Invalid number of arguments: %s" cmd))
810 (let ((RRR (nth 1 cmd))
811 (rrr (nth 2 cmd)))
812 (ccl-check-register rrr cmd)
813 (ccl-check-register RRR cmd)
814 (ccl-embed-extended-command 'read-multibyte-character rrr RRR 0))
815 nil)
816
817 (defun ccl-compile-write-multibyte-character (cmd)
818 "Compile write-multibyte-character"
819 (if (/= (length cmd) 3)
820 (error "CCL: Invalid number of arguments: %s" cmd))
821 (let ((RRR (nth 1 cmd))
822 (rrr (nth 2 cmd)))
823 (ccl-check-register rrr cmd)
824 (ccl-check-register RRR cmd)
825 (ccl-embed-extended-command 'write-multibyte-character rrr RRR 0))
826 nil)
827
828 (defun ccl-compile-translate-character (cmd)
829 "Compile translate-character."
830 (if (/= (length cmd) 4)
831 (error "CCL: Invalid number of arguments: %s" cmd))
832 (let ((Rrr (nth 1 cmd))
833 (RRR (nth 2 cmd))
834 (rrr (nth 3 cmd)))
835 (ccl-check-register rrr cmd)
836 (ccl-check-register RRR cmd)
837 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
838 (ccl-embed-extended-command 'translate-character-const-tbl
839 rrr RRR 0)
840 (ccl-embed-symbol Rrr 'translation-table-id))
841 (t
842 (ccl-check-register Rrr cmd)
843 (ccl-embed-extended-command 'translate-character rrr RRR Rrr))))
844 nil)
845
846 (defun ccl-compile-lookup-integer (cmd)
847 "Compile lookup-integer."
848 (if (/= (length cmd) 4)
849 (error "CCL: Invalid number of arguments: %s" cmd))
850 (let ((Rrr (nth 1 cmd))
851 (RRR (nth 2 cmd))
852 (rrr (nth 3 cmd)))
853 (ccl-check-register RRR cmd)
854 (ccl-check-register rrr cmd)
855 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
856 (ccl-embed-extended-command 'lookup-int-const-tbl
857 rrr RRR 0)
858 (ccl-embed-symbol Rrr 'translation-hash-table-id))
859 (t
860 (error "CCL: non-constant table: %s" cmd)
861 ;; not implemented:
862 (ccl-check-register Rrr cmd)
863 (ccl-embed-extended-command 'lookup-int rrr RRR 0))))
864 nil)
865
866 (defun ccl-compile-lookup-character (cmd)
867 "Compile lookup-character."
868 (if (/= (length cmd) 4)
869 (error "CCL: Invalid number of arguments: %s" cmd))
870 (let ((Rrr (nth 1 cmd))
871 (RRR (nth 2 cmd))
872 (rrr (nth 3 cmd)))
873 (ccl-check-register RRR cmd)
874 (ccl-check-register rrr cmd)
875 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
876 (ccl-embed-extended-command 'lookup-char-const-tbl
877 rrr RRR 0)
878 (ccl-embed-symbol Rrr 'translation-hash-table-id))
879 (t
880 (error "CCL: non-constant table: %s" cmd)
881 ;; not implemented:
882 (ccl-check-register Rrr cmd)
883 (ccl-embed-extended-command 'lookup-char rrr RRR 0))))
884 nil)
885
886 (defun ccl-compile-iterate-multiple-map (cmd)
887 (ccl-compile-multiple-map-function 'iterate-multiple-map cmd)
888 nil)
889
890 (defun ccl-compile-map-multiple (cmd)
891 (if (/= (length cmd) 4)
892 (error "CCL: Invalid number of arguments: %s" cmd))
893 (let (func arg)
894 (setq func
895 (lambda (arg mp)
896 (let ((len 0) result add)
897 (while arg
898 (if (consp (car arg))
899 (setq add (funcall func (car arg) t)
900 result (append result add)
901 add (+ (- (car add)) 1))
902 (setq result
903 (append result
904 (list (car arg)))
905 add 1))
906 (setq arg (cdr arg)
907 len (+ len add)))
908 (if mp
909 (cons (- len) result)
910 result))))
911 (setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd))
912 (funcall func (nth 3 cmd) nil)))
913 (ccl-compile-multiple-map-function 'map-multiple arg))
914 nil)
915
916 (defun ccl-compile-map-single (cmd)
917 (if (/= (length cmd) 4)
918 (error "CCL: Invalid number of arguments: %s" cmd))
919 (let ((RRR (nth 1 cmd))
920 (rrr (nth 2 cmd))
921 (map (nth 3 cmd)))
922 (ccl-check-register rrr cmd)
923 (ccl-check-register RRR cmd)
924 (ccl-embed-extended-command 'map-single rrr RRR 0)
925 (cond ((symbolp map)
926 (if (get map 'code-conversion-map)
927 (ccl-embed-symbol map 'code-conversion-map-id)
928 (error "CCL: Invalid map: %s" map)))
929 (t
930 (error "CCL: Invalid type of arguments: %s" cmd))))
931 nil)
932
933 (defun ccl-compile-multiple-map-function (command cmd)
934 (if (< (length cmd) 4)
935 (error "CCL: Invalid number of arguments: %s" cmd))
936 (let ((RRR (nth 1 cmd))
937 (rrr (nth 2 cmd))
938 (args (nthcdr 3 cmd))
939 map)
940 (ccl-check-register rrr cmd)
941 (ccl-check-register RRR cmd)
942 (ccl-embed-extended-command command rrr RRR 0)
943 (ccl-embed-data (length args))
944 (while args
945 (setq map (car args))
946 (cond ((symbolp map)
947 (if (get map 'code-conversion-map)
948 (ccl-embed-symbol map 'code-conversion-map-id)
949 (error "CCL: Invalid map: %s" map)))
950 ((numberp map)
951 (ccl-embed-data map))
952 (t
953 (error "CCL: Invalid type of arguments: %s" cmd)))
954 (setq args (cdr args)))))
955
956 \f
957 ;;; CCL dump stuff
958
959 (defvar ccl-code)
960
961 ;;;###autoload
962 (defun ccl-dump (code)
963 "Disassemble compiled CCL-code CODE."
964 (let* ((ccl-code code)
965 (len (length ccl-code))
966 (buffer-mag (aref ccl-code 0)))
967 (cond ((= buffer-mag 0)
968 (insert (substitute-command-keys "Don't output anything.\n")))
969 ((= buffer-mag 1)
970 (insert "Out-buffer must be as large as in-buffer.\n"))
971 (t
972 (insert
973 (format "Out-buffer must be %d times bigger than in-buffer.\n"
974 buffer-mag))))
975 (insert "Main-body:\n")
976 (setq ccl-current-ic 2)
977 (if (> (aref ccl-code 1) 0)
978 (progn
979 (while (< ccl-current-ic (aref ccl-code 1))
980 (ccl-dump-1))
981 (insert "At EOF:\n")))
982 (while (< ccl-current-ic len)
983 (ccl-dump-1))
984 ))
985
986 (defun ccl-get-next-code ()
987 "Return a CCL code in `ccl-code' at `ccl-current-ic'."
988 (prog1
989 (aref ccl-code ccl-current-ic)
990 (setq ccl-current-ic (1+ ccl-current-ic))))
991
992 (defun ccl-dump-1 ()
993 (let* ((code (ccl-get-next-code))
994 (cmd (aref ccl-code-table (logand code 31)))
995 (rrr (ash (logand code 255) -5))
996 (cc (ash code -8)))
997 (insert (format "%5d:[%s] " (1- ccl-current-ic) cmd))
998 (funcall (get cmd 'ccl-dump-function) rrr cc)))
999
1000 (defun ccl-dump-set-register (rrr cc)
1001 (insert (format "r%d = r%d\n" rrr cc)))
1002
1003 (defun ccl-dump-set-short-const (rrr cc)
1004 (insert (format "r%d = %d\n" rrr cc)))
1005
1006 (defun ccl-dump-set-const (rrr _ignore)
1007 (insert (format "r%d = %d\n" rrr (ccl-get-next-code))))
1008
1009 (defun ccl-dump-set-array (rrr cc)
1010 (let ((rrr2 (logand cc 7))
1011 (len (ash cc -3))
1012 (i 0))
1013 (insert (format "r%d = array[r%d] of length %d\n\t"
1014 rrr rrr2 len))
1015 (while (< i len)
1016 (insert (format "%d " (ccl-get-next-code)))
1017 (setq i (1+ i)))
1018 (insert "\n")))
1019
1020 (defun ccl-dump-jump (_ignore cc &optional address)
1021 (insert (format "jump to %d(" (+ (or address ccl-current-ic) cc)))
1022 (if (>= cc 0)
1023 (insert "+"))
1024 (insert (format "%d)\n" (1+ cc))))
1025
1026 (defun ccl-dump-jump-cond (rrr cc)
1027 (insert (format "if (r%d == 0), " rrr))
1028 (ccl-dump-jump nil cc))
1029
1030 (defun ccl-dump-write-register-jump (rrr cc)
1031 (insert (format "write r%d, " rrr))
1032 (ccl-dump-jump nil cc))
1033
1034 (defun ccl-dump-write-register-read-jump (rrr cc)
1035 (insert (format "write r%d, read r%d, " rrr rrr))
1036 (ccl-dump-jump nil cc)
1037 (ccl-get-next-code) ; Skip dummy READ-JUMP
1038 )
1039
1040 (defun ccl-extract-arith-op (cc)
1041 (aref ccl-arith-table (ash cc -6)))
1042
1043 (defun ccl-dump-write-expr-const (_ignore cc)
1044 (insert (format "write (r%d %s %d)\n"
1045 (logand cc 7)
1046 (ccl-extract-arith-op cc)
1047 (ccl-get-next-code))))
1048
1049 (defun ccl-dump-write-expr-register (_ignore cc)
1050 (insert (format "write (r%d %s r%d)\n"
1051 (logand cc 7)
1052 (ccl-extract-arith-op cc)
1053 (logand (ash cc -3) 7))))
1054
1055 (defun ccl-dump-insert-char (cc)
1056 (cond ((= cc ?\t) (insert " \"^I\""))
1057 ((= cc ?\n) (insert " \"^J\""))
1058 (t (insert (format " \"%c\"" cc)))))
1059
1060 (defun ccl-dump-write-const-jump (_ignore cc)
1061 (let ((address ccl-current-ic))
1062 (insert "write char")
1063 (ccl-dump-insert-char (ccl-get-next-code))
1064 (insert ", ")
1065 (ccl-dump-jump nil cc address)))
1066
1067 (defun ccl-dump-write-const-read-jump (rrr cc)
1068 (let ((address ccl-current-ic))
1069 (insert "write char")
1070 (ccl-dump-insert-char (ccl-get-next-code))
1071 (insert (format ", read r%d, " rrr))
1072 (ccl-dump-jump cc address)
1073 (ccl-get-next-code) ; Skip dummy READ-JUMP
1074 ))
1075
1076 (defun ccl-dump-write-string-jump (_ignore cc)
1077 (let ((address ccl-current-ic)
1078 (len (ccl-get-next-code))
1079 (i 0))
1080 (insert "write \"")
1081 (while (< i len)
1082 (let ((code (ccl-get-next-code)))
1083 (insert (ash code -16))
1084 (if (< (1+ i) len) (insert (logand (ash code -8) 255)))
1085 (if (< (+ i 2) len) (insert (logand code 255))))
1086 (setq i (+ i 3)))
1087 (insert "\", ")
1088 (ccl-dump-jump nil cc address)))
1089
1090 (defun ccl-dump-write-array-read-jump (rrr cc)
1091 (let ((address ccl-current-ic)
1092 (len (ccl-get-next-code))
1093 (i 0))
1094 (insert (format "write array[r%d] of length %d,\n\t" rrr len))
1095 (while (< i len)
1096 (ccl-dump-insert-char (ccl-get-next-code))
1097 (setq i (1+ i)))
1098 (insert (format "\n\tthen read r%d, " rrr))
1099 (ccl-dump-jump nil cc address)
1100 (ccl-get-next-code) ; Skip dummy READ-JUMP.
1101 ))
1102
1103 (defun ccl-dump-read-jump (rrr cc)
1104 (insert (format "read r%d, " rrr))
1105 (ccl-dump-jump nil cc))
1106
1107 (defun ccl-dump-branch (rrr len)
1108 (let ((jump-table-head ccl-current-ic)
1109 (i 0))
1110 (insert (format "jump to array[r%d] of length %d\n\t" rrr len))
1111 (while (<= i len)
1112 (insert (format "%d " (+ jump-table-head (ccl-get-next-code))))
1113 (setq i (1+ i)))
1114 (insert "\n")))
1115
1116 (defun ccl-dump-read-register (rrr cc)
1117 (insert (format "read r%d (%d remaining)\n" rrr cc)))
1118
1119 (defun ccl-dump-read-branch (rrr len)
1120 (insert (format "read r%d, " rrr))
1121 (ccl-dump-branch rrr len))
1122
1123 (defun ccl-dump-write-register (rrr cc)
1124 (insert (format "write r%d (%d remaining)\n" rrr cc)))
1125
1126 (defun ccl-dump-call (_ignore _cc)
1127 (let ((subroutine (car (ccl-get-next-code))))
1128 (insert (format-message "call subroutine `%s'\n" subroutine))))
1129
1130 (defun ccl-dump-write-const-string (rrr cc)
1131 (if (= rrr 0)
1132 (progn
1133 (insert "write char")
1134 (ccl-dump-insert-char cc)
1135 (newline))
1136 (let ((len cc)
1137 (i 0))
1138 (insert "write \"")
1139 (while (< i len)
1140 (let ((code (ccl-get-next-code)))
1141 (if (/= (logand code #x1000000) 0)
1142 (progn
1143 (insert (logand code #xFFFFFF))
1144 (setq i (1+ i)))
1145 (insert (format "%c" (lsh code -16)))
1146 (if (< (1+ i) len)
1147 (insert (format "%c" (logand (lsh code -8) 255))))
1148 (if (< (+ i 2) len)
1149 (insert (format "%c" (logand code 255))))
1150 (setq i (+ i 3)))))
1151 (insert "\"\n"))))
1152
1153 (defun ccl-dump-write-array (rrr cc)
1154 (let ((i 0))
1155 (insert (format "write array[r%d] of length %d\n\t" rrr cc))
1156 (while (< i cc)
1157 (ccl-dump-insert-char (ccl-get-next-code))
1158 (setq i (1+ i)))
1159 (insert "\n")))
1160
1161 (defun ccl-dump-end (&rest _ignore)
1162 (insert "end\n"))
1163
1164 (defun ccl-dump-set-assign-expr-const (rrr cc)
1165 (insert (format "r%d %s= %d\n"
1166 rrr
1167 (ccl-extract-arith-op cc)
1168 (ccl-get-next-code))))
1169
1170 (defun ccl-dump-set-assign-expr-register (rrr cc)
1171 (insert (format "r%d %s= r%d\n"
1172 rrr
1173 (ccl-extract-arith-op cc)
1174 (logand cc 7))))
1175
1176 (defun ccl-dump-set-expr-const (rrr cc)
1177 (insert (format "r%d = r%d %s %d\n"
1178 rrr
1179 (logand cc 7)
1180 (ccl-extract-arith-op cc)
1181 (ccl-get-next-code))))
1182
1183 (defun ccl-dump-set-expr-register (rrr cc)
1184 (insert (format "r%d = r%d %s r%d\n"
1185 rrr
1186 (logand cc 7)
1187 (ccl-extract-arith-op cc)
1188 (logand (ash cc -3) 7))))
1189
1190 (defun ccl-dump-jump-cond-expr-const (rrr cc)
1191 (let ((address ccl-current-ic))
1192 (insert (format "if !(r%d %s %d), "
1193 rrr
1194 (aref ccl-arith-table (ccl-get-next-code))
1195 (ccl-get-next-code)))
1196 (ccl-dump-jump nil cc address)))
1197
1198 (defun ccl-dump-jump-cond-expr-register (rrr cc)
1199 (let ((address ccl-current-ic))
1200 (insert (format "if !(r%d %s r%d), "
1201 rrr
1202 (aref ccl-arith-table (ccl-get-next-code))
1203 (ccl-get-next-code)))
1204 (ccl-dump-jump nil cc address)))
1205
1206 (defun ccl-dump-read-jump-cond-expr-const (rrr cc)
1207 (insert (format "read r%d, " rrr))
1208 (ccl-dump-jump-cond-expr-const rrr cc))
1209
1210 (defun ccl-dump-read-jump-cond-expr-register (rrr cc)
1211 (insert (format "read r%d, " rrr))
1212 (ccl-dump-jump-cond-expr-register rrr cc))
1213
1214 (defun ccl-dump-binary (code)
1215 (let* ((ccl-code code)
1216 (len (length ccl-code))
1217 (i 2))
1218 (while (< i len)
1219 (let ((code (aref ccl-code i))
1220 (j 27))
1221 (while (>= j 0)
1222 (insert (if (= (logand code (ash 1 j)) 0) ?0 ?1))
1223 (setq j (1- j)))
1224 (setq code (logand code 31))
1225 (if (< code (length ccl-code-table))
1226 (insert (format ":%s" (aref ccl-code-table code))))
1227 (insert "\n"))
1228 (setq i (1+ i)))))
1229
1230 (defun ccl-dump-ex-cmd (rrr cc)
1231 (let* ((RRR (logand cc ?\x7))
1232 (Rrr (logand (ash cc -3) ?\x7))
1233 (ex-op (aref ccl-extended-code-table (logand (ash cc -6) ?\x3fff))))
1234 (insert (format "<%s> " ex-op))
1235 (funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr)))
1236
1237 (defun ccl-dump-read-multibyte-character (rrr RRR _Rrr)
1238 (insert (format "read-multibyte-character r%d r%d\n" RRR rrr)))
1239
1240 (defun ccl-dump-write-multibyte-character (rrr RRR _Rrr)
1241 (insert (format "write-multibyte-character r%d r%d\n" RRR rrr)))
1242
1243 (defun ccl-dump-translate-character (rrr RRR Rrr)
1244 (insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr)))
1245
1246 (defun ccl-dump-translate-character-const-tbl (rrr RRR _Rrr)
1247 (let ((tbl (ccl-get-next-code)))
1248 (insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr))))
1249
1250 (defun ccl-dump-lookup-int-const-tbl (rrr RRR _Rrr)
1251 (let ((tbl (ccl-get-next-code)))
1252 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
1253
1254 (defun ccl-dump-lookup-char-const-tbl (rrr RRR _Rrr)
1255 (let ((tbl (ccl-get-next-code)))
1256 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
1257
1258 (defun ccl-dump-iterate-multiple-map (rrr RRR _Rrr)
1259 (let ((notbl (ccl-get-next-code))
1260 (i 0) id)
1261 (insert (format "iterate-multiple-map r%d r%d\n" RRR rrr))
1262 (insert (format "\tnumber of maps is %d .\n\t [" notbl))
1263 (while (< i notbl)
1264 (setq id (ccl-get-next-code))
1265 (insert (format "%S" id))
1266 (setq i (1+ i)))
1267 (insert "]\n")))
1268
1269 (defun ccl-dump-map-multiple (rrr RRR _Rrr)
1270 (let ((notbl (ccl-get-next-code))
1271 (i 0) id)
1272 (insert (format "map-multiple r%d r%d\n" RRR rrr))
1273 (insert (format "\tnumber of maps and separators is %d\n\t [" notbl))
1274 (while (< i notbl)
1275 (setq id (ccl-get-next-code))
1276 (if (= id -1)
1277 (insert "]\n\t [")
1278 (insert (format "%S " id)))
1279 (setq i (1+ i)))
1280 (insert "]\n")))
1281
1282 (defun ccl-dump-map-single (rrr RRR _Rrr)
1283 (let ((id (ccl-get-next-code)))
1284 (insert (format "map-single r%d r%d map(%S)\n" RRR rrr id))))
1285
1286 \f
1287 ;; CCL emulation staffs
1288
1289 ;; Not yet implemented.
1290 \f
1291 ;; Auto-loaded functions.
1292
1293 ;;;###autoload
1294 (defmacro declare-ccl-program (name &optional vector)
1295 "Declare NAME as a name of CCL program.
1296
1297 This macro exists for backward compatibility. In the old version of
1298 Emacs, to compile a CCL program which calls another CCL program not
1299 yet defined, it must be declared as a CCL program in advance. But,
1300 now CCL program names are resolved not at compile time but before
1301 execution.
1302
1303 Optional arg VECTOR is a compiled CCL code of the CCL program."
1304 `(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector)))
1305
1306 ;;;###autoload
1307 (defmacro define-ccl-program (name ccl-program &optional doc)
1308 "Set NAME the compiled code of CCL-PROGRAM.
1309
1310 CCL-PROGRAM has this form:
1311 (BUFFER_MAGNIFICATION
1312 CCL_MAIN_CODE
1313 [ CCL_EOF_CODE ])
1314
1315 BUFFER_MAGNIFICATION is an integer value specifying the approximate
1316 output buffer magnification size compared with the bytes of input data
1317 text. It is assured that the actual output buffer has 256 bytes
1318 more than the size calculated by BUFFER_MAGNIFICATION.
1319 If the value is zero, the CCL program can't execute `read' and
1320 `write' commands.
1321
1322 CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes. CCL_MAIN_CODE
1323 executed at first. If there's no more input data when `read' command
1324 is executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed. If
1325 CCL_MAIN_CODE is terminated, CCL_EOF_CODE is not executed.
1326
1327 Here's the syntax of CCL program code in BNF notation. The lines
1328 starting by two semicolons (and optional leading spaces) describe the
1329 semantics.
1330
1331 CCL_MAIN_CODE := CCL_BLOCK
1332
1333 CCL_EOF_CODE := CCL_BLOCK
1334
1335 CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
1336
1337 STATEMENT :=
1338 SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
1339 | TRANSLATE | MAP | LOOKUP | END
1340
1341 SET := (REG = EXPRESSION)
1342 | (REG ASSIGNMENT_OPERATOR EXPRESSION)
1343 ;; The following form is the same as (r0 = integer).
1344 | integer
1345
1346 EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
1347
1348 ;; Evaluate EXPRESSION. If the result is nonzero, execute
1349 ;; CCL_BLOCK_0. Otherwise, execute CCL_BLOCK_1.
1350 IF := (if EXPRESSION CCL_BLOCK_0 CCL_BLOCK_1)
1351
1352 ;; Evaluate EXPRESSION. Provided that the result is N, execute
1353 ;; CCL_BLOCK_N.
1354 BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...])
1355
1356 ;; Execute STATEMENTs until (break) or (end) is executed.
1357
1358 ;; Create a block of STATEMENTs for repeating. The STATEMENTs
1359 ;; are executed sequentially until REPEAT or BREAK is executed.
1360 ;; If REPEAT statement is executed, STATEMENTs are executed from the
1361 ;; start again. If BREAK statements is executed, the execution
1362 ;; exits from the block. If neither REPEAT nor BREAK is
1363 ;; executed, the execution exits from the block after executing the
1364 ;; last STATEMENT.
1365 LOOP := (loop STATEMENT [STATEMENT ...])
1366
1367 ;; Terminate the most inner loop.
1368 BREAK := (break)
1369
1370 REPEAT :=
1371 ;; Jump to the head of the most inner loop.
1372 (repeat)
1373 ;; Same as: ((write [REG | integer | string])
1374 ;; (repeat))
1375 | (write-repeat [REG | integer | string])
1376 ;; Same as: ((write REG [ARRAY])
1377 ;; (read REG)
1378 ;; (repeat))
1379 | (write-read-repeat REG [ARRAY])
1380 ;; Same as: ((write integer)
1381 ;; (read REG)
1382 ;; (repeat))
1383 | (write-read-repeat REG integer)
1384
1385 READ := ;; Set REG_0 to a byte read from the input text, set REG_1
1386 ;; to the next byte read, and so on.
1387 (read REG_0 [REG_1 ...])
1388 ;; Same as: ((read REG)
1389 ;; (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1))
1390 | (read-if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1)
1391 ;; Same as: ((read REG)
1392 ;; (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]))
1393 | (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])
1394 ;; Read a character from the input text while parsing
1395 ;; multibyte representation, set REG_0 to the charset ID of
1396 ;; the character, set REG_1 to the code point of the
1397 ;; character. If the dimension of charset is two, set REG_1
1398 ;; to ((CODE0 << 7) | CODE1), where CODE0 is the first code
1399 ;; point and CODE1 is the second code point.
1400 | (read-multibyte-character REG_0 REG_1)
1401
1402 WRITE :=
1403 ;; Write REG_0, REG_1, ... to the output buffer. If REG_N is
1404 ;; a multibyte character, write the corresponding multibyte
1405 ;; representation.
1406 (write REG_0 [REG_1 ...])
1407 ;; Same as: ((r7 = EXPRESSION)
1408 ;; (write r7))
1409 | (write EXPRESSION)
1410 ;; Write the value of `integer' to the output buffer. If it
1411 ;; is a multibyte character, write the corresponding multibyte
1412 ;; representation.
1413 | (write integer)
1414 ;; Write the byte sequence of `string' as is to the output
1415 ;; buffer.
1416 | (write string)
1417 ;; Same as: (write string)
1418 | string
1419 ;; Provided that the value of REG is N, write Nth element of
1420 ;; ARRAY to the output buffer. If it is a multibyte
1421 ;; character, write the corresponding multibyte
1422 ;; representation.
1423 | (write REG ARRAY)
1424 ;; Write a multibyte representation of a character whose
1425 ;; charset ID is REG_0 and code point is REG_1. If the
1426 ;; dimension of the charset is two, REG_1 should be ((CODE0 <<
1427 ;; 7) | CODE1), where CODE0 is the first code point and CODE1
1428 ;; is the second code point of the character.
1429 | (write-multibyte-character REG_0 REG_1)
1430
1431 ;; Call CCL program whose name is ccl-program-name.
1432 CALL := (call ccl-program-name)
1433
1434 ;; Terminate the CCL program.
1435 END := (end)
1436
1437 ;; CCL registers that can contain any integer value. As r7 is also
1438 ;; used by CCL interpreter, its value is changed unexpectedly.
1439 REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
1440
1441 ARG := REG | integer
1442
1443 OPERATOR :=
1444 ;; Normal arithmetic operators (same meaning as C code).
1445 + | - | * | / | %
1446
1447 ;; Bitwise operators (same meaning as C code)
1448 | & | `|' | ^
1449
1450 ;; Shifting operators (same meaning as C code)
1451 | << | >>
1452
1453 ;; (REG = ARG_0 <8 ARG_1) means:
1454 ;; (REG = ((ARG_0 << 8) | ARG_1))
1455 | <8
1456
1457 ;; (REG = ARG_0 >8 ARG_1) means:
1458 ;; ((REG = (ARG_0 >> 8))
1459 ;; (r7 = (ARG_0 & 255)))
1460 | >8
1461
1462 ;; (REG = ARG_0 // ARG_1) means:
1463 ;; ((REG = (ARG_0 / ARG_1))
1464 ;; (r7 = (ARG_0 % ARG_1)))
1465 | //
1466
1467 ;; Normal comparing operators (same meaning as C code)
1468 | < | > | == | <= | >= | !=
1469
1470 ;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS
1471 ;; code, and CHAR is the corresponding JISX0208 character,
1472 ;; (REG = ARG_0 de-sjis ARG_1) means:
1473 ;; ((REG = CODE0)
1474 ;; (r7 = CODE1))
1475 ;; where CODE0 is the first code point of CHAR, CODE1 is the
1476 ;; second code point of CHAR.
1477 | de-sjis
1478
1479 ;; If ARG_0 and ARG_1 are the first and second code point of
1480 ;; JISX0208 character CHAR, and SJIS is the corresponding
1481 ;; Shift-JIS code,
1482 ;; (REG = ARG_0 en-sjis ARG_1) means:
1483 ;; ((REG = HIGH)
1484 ;; (r7 = LOW))
1485 ;; where HIGH is the higher byte of SJIS, LOW is the lower
1486 ;; byte of SJIS.
1487 | en-sjis
1488
1489 ASSIGNMENT_OPERATOR :=
1490 ;; Same meaning as C code
1491 += | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>=
1492
1493 ;; (REG <8= ARG) is the same as:
1494 ;; ((REG <<= 8)
1495 ;; (REG |= ARG))
1496 | <8=
1497
1498 ;; (REG >8= ARG) is the same as:
1499 ;; ((r7 = (REG & 255))
1500 ;; (REG >>= 8))
1501
1502 ;; (REG //= ARG) is the same as:
1503 ;; ((r7 = (REG % ARG))
1504 ;; (REG /= ARG))
1505 | //=
1506
1507 ARRAY := `[' integer ... `]'
1508
1509
1510 TRANSLATE :=
1511 ;; Decode character SRC, translate it by translate table
1512 ;; TABLE, and encode it back to DST. TABLE is specified
1513 ;; by its id number in REG_0, SRC is specified by its
1514 ;; charset id number and codepoint in REG_1 and REG_2
1515 ;; respectively.
1516 ;; On encoding, the charset of highest priority is selected.
1517 ;; After the execution, DST is specified by its charset
1518 ;; id number and codepoint in REG_1 and REG_2 respectively.
1519 (translate-character REG_0 REG_1 REG_2)
1520
1521 ;; Same as above except for SYMBOL specifying the name of
1522 ;; the translate table defined by `define-translation-table'.
1523 | (translate-character SYMBOL REG_1 REG_2)
1524
1525 LOOKUP :=
1526 ;; Look up character SRC in hash table TABLE. TABLE is
1527 ;; specified by its name in SYMBOL, and SRC is specified by
1528 ;; its charset id number and codepoint in REG_1 and REG_2
1529 ;; respectively.
1530 ;; If its associated value is an integer, set REG_1 to that
1531 ;; value, and set r7 to 1. Otherwise, set r7 to 0.
1532 (lookup-character SYMBOL REG_1 REG_2)
1533
1534 ;; Look up integer value N in hash table TABLE. TABLE is
1535 ;; specified by its name in SYMBOL and N is specified in
1536 ;; REG.
1537 ;; If its associated value is a character, set REG to that
1538 ;; value, and set r7 to 1. Otherwise, set r7 to 0.
1539 | (lookup-integer SYMBOL REG(integer))
1540
1541 MAP :=
1542 ;; The following statements are for internal use only.
1543 (iterate-multiple-map REG REG MAP-IDs)
1544 | (map-multiple REG REG (MAP-SET))
1545 | (map-single REG REG MAP-ID)
1546
1547 MAP-IDs := MAP-ID ...
1548 MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET
1549 MAP-ID := integer
1550 "
1551 (declare (doc-string 3))
1552 `(let ((prog ,(unwind-protect
1553 (progn
1554 ;; To make ,(charset-id CHARSET) works well.
1555 (fset 'charset-id 'charset-id-internal)
1556 (ccl-compile (eval ccl-program)))
1557 (fmakunbound 'charset-id))))
1558 (defconst ,name prog ,doc)
1559 (put ',name 'ccl-program-idx (register-ccl-program ',name prog))
1560 nil))
1561
1562 ;;;###autoload
1563 (defmacro check-ccl-program (ccl-program &optional name)
1564 "Check validity of CCL-PROGRAM.
1565 If CCL-PROGRAM is a symbol denoting a CCL program, return
1566 CCL-PROGRAM, else return nil.
1567 If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied,
1568 register CCL-PROGRAM by name NAME, and return NAME."
1569 `(if (ccl-program-p ,ccl-program)
1570 (if (vectorp ,ccl-program)
1571 (progn
1572 (register-ccl-program ,name ,ccl-program)
1573 ,name)
1574 ,ccl-program)))
1575
1576 ;;;###autoload
1577 (defun ccl-execute-with-args (ccl-prog &rest args)
1578 "Execute CCL-PROGRAM with registers initialized by the remaining args.
1579 The return value is a vector of resulting CCL registers.
1580
1581 See the documentation of `define-ccl-program' for the detail of CCL program."
1582 (let ((reg (make-vector 8 0))
1583 (i 0))
1584 (while (and args (< i 8))
1585 (if (not (integerp (car args)))
1586 (error "Arguments should be integer"))
1587 (aset reg i (car args))
1588 (setq args (cdr args) i (1+ i)))
1589 (ccl-execute ccl-prog reg)
1590 reg))
1591
1592 (provide 'ccl)
1593
1594 ;;; ccl.el ends here