]> code.delx.au - gnu-emacs/blob - src/fns.c
Merge from trunk
[gnu-emacs] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 /* Note on some machines this defines `vector' as a typedef,
27 so make sure we don't use that name in this file. */
28 #undef vector
29 #define vector *****
30
31 #include "lisp.h"
32 #include "commands.h"
33 #include "character.h"
34 #include "coding.h"
35 #include "buffer.h"
36 #include "keyboard.h"
37 #include "keymap.h"
38 #include "intervals.h"
39 #include "frame.h"
40 #include "window.h"
41 #include "blockinput.h"
42 #ifdef HAVE_MENUS
43 #if defined (HAVE_X_WINDOWS)
44 #include "xterm.h"
45 #endif
46 #endif /* HAVE_MENUS */
47
48 #ifndef NULL
49 #define NULL ((POINTER_TYPE *)0)
50 #endif
51
52 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
53 Lisp_Object Qyes_or_no_p_history;
54 Lisp_Object Qcursor_in_echo_area;
55 Lisp_Object Qwidget_type;
56 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
57
58 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
59
60 extern long get_random (void);
61 extern void seed_random (long);
62
63 #ifndef HAVE_UNISTD_H
64 extern long time ();
65 #endif
66 \f
67 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
68 doc: /* Return the argument unchanged. */)
69 (Lisp_Object arg)
70 {
71 return arg;
72 }
73
74 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
75 doc: /* Return a pseudo-random number.
76 All integers representable in Lisp are equally likely.
77 On most systems, this is 29 bits' worth.
78 With positive integer LIMIT, return random number in interval [0,LIMIT).
79 With argument t, set the random number seed from the current time and pid.
80 Other values of LIMIT are ignored. */)
81 (Lisp_Object limit)
82 {
83 EMACS_INT val;
84 Lisp_Object lispy_val;
85 unsigned long denominator;
86
87 if (EQ (limit, Qt))
88 seed_random (getpid () + time (NULL));
89 if (NATNUMP (limit) && XFASTINT (limit) != 0)
90 {
91 /* Try to take our random number from the higher bits of VAL,
92 not the lower, since (says Gentzel) the low bits of `random'
93 are less random than the higher ones. We do this by using the
94 quotient rather than the remainder. At the high end of the RNG
95 it's possible to get a quotient larger than n; discarding
96 these values eliminates the bias that would otherwise appear
97 when using a large n. */
98 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
99 do
100 val = get_random () / denominator;
101 while (val >= XFASTINT (limit));
102 }
103 else
104 val = get_random ();
105 XSETINT (lispy_val, val);
106 return lispy_val;
107 }
108 \f
109 /* Random data-structure functions */
110
111 DEFUN ("length", Flength, Slength, 1, 1, 0,
112 doc: /* Return the length of vector, list or string SEQUENCE.
113 A byte-code function object is also allowed.
114 If the string contains multibyte characters, this is not necessarily
115 the number of bytes in the string; it is the number of characters.
116 To get the number of bytes, use `string-bytes'. */)
117 (register Lisp_Object sequence)
118 {
119 register Lisp_Object val;
120 register int i;
121
122 if (STRINGP (sequence))
123 XSETFASTINT (val, SCHARS (sequence));
124 else if (VECTORP (sequence))
125 XSETFASTINT (val, ASIZE (sequence));
126 else if (CHAR_TABLE_P (sequence))
127 XSETFASTINT (val, MAX_CHAR);
128 else if (BOOL_VECTOR_P (sequence))
129 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
130 else if (FUNVECP (sequence))
131 XSETFASTINT (val, FUNVEC_SIZE (sequence));
132 else if (CONSP (sequence))
133 {
134 i = 0;
135 while (CONSP (sequence))
136 {
137 sequence = XCDR (sequence);
138 ++i;
139
140 if (!CONSP (sequence))
141 break;
142
143 sequence = XCDR (sequence);
144 ++i;
145 QUIT;
146 }
147
148 CHECK_LIST_END (sequence, sequence);
149
150 val = make_number (i);
151 }
152 else if (NILP (sequence))
153 XSETFASTINT (val, 0);
154 else
155 wrong_type_argument (Qsequencep, sequence);
156
157 return val;
158 }
159
160 /* This does not check for quits. That is safe since it must terminate. */
161
162 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
163 doc: /* Return the length of a list, but avoid error or infinite loop.
164 This function never gets an error. If LIST is not really a list,
165 it returns 0. If LIST is circular, it returns a finite value
166 which is at least the number of distinct elements. */)
167 (Lisp_Object list)
168 {
169 Lisp_Object tail, halftail, length;
170 int len = 0;
171
172 /* halftail is used to detect circular lists. */
173 halftail = list;
174 for (tail = list; CONSP (tail); tail = XCDR (tail))
175 {
176 if (EQ (tail, halftail) && len != 0)
177 break;
178 len++;
179 if ((len & 1) == 0)
180 halftail = XCDR (halftail);
181 }
182
183 XSETINT (length, len);
184 return length;
185 }
186
187 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
188 doc: /* Return the number of bytes in STRING.
189 If STRING is multibyte, this may be greater than the length of STRING. */)
190 (Lisp_Object string)
191 {
192 CHECK_STRING (string);
193 return make_number (SBYTES (string));
194 }
195
196 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
197 doc: /* Return t if two strings have identical contents.
198 Case is significant, but text properties are ignored.
199 Symbols are also allowed; their print names are used instead. */)
200 (register Lisp_Object s1, Lisp_Object s2)
201 {
202 if (SYMBOLP (s1))
203 s1 = SYMBOL_NAME (s1);
204 if (SYMBOLP (s2))
205 s2 = SYMBOL_NAME (s2);
206 CHECK_STRING (s1);
207 CHECK_STRING (s2);
208
209 if (SCHARS (s1) != SCHARS (s2)
210 || SBYTES (s1) != SBYTES (s2)
211 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
212 return Qnil;
213 return Qt;
214 }
215
216 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
217 doc: /* Compare the contents of two strings, converting to multibyte if needed.
218 In string STR1, skip the first START1 characters and stop at END1.
219 In string STR2, skip the first START2 characters and stop at END2.
220 END1 and END2 default to the full lengths of the respective strings.
221
222 Case is significant in this comparison if IGNORE-CASE is nil.
223 Unibyte strings are converted to multibyte for comparison.
224
225 The value is t if the strings (or specified portions) match.
226 If string STR1 is less, the value is a negative number N;
227 - 1 - N is the number of characters that match at the beginning.
228 If string STR1 is greater, the value is a positive number N;
229 N - 1 is the number of characters that match at the beginning. */)
230 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
231 {
232 register EMACS_INT end1_char, end2_char;
233 register EMACS_INT i1, i1_byte, i2, i2_byte;
234
235 CHECK_STRING (str1);
236 CHECK_STRING (str2);
237 if (NILP (start1))
238 start1 = make_number (0);
239 if (NILP (start2))
240 start2 = make_number (0);
241 CHECK_NATNUM (start1);
242 CHECK_NATNUM (start2);
243 if (! NILP (end1))
244 CHECK_NATNUM (end1);
245 if (! NILP (end2))
246 CHECK_NATNUM (end2);
247
248 i1 = XINT (start1);
249 i2 = XINT (start2);
250
251 i1_byte = string_char_to_byte (str1, i1);
252 i2_byte = string_char_to_byte (str2, i2);
253
254 end1_char = SCHARS (str1);
255 if (! NILP (end1) && end1_char > XINT (end1))
256 end1_char = XINT (end1);
257
258 end2_char = SCHARS (str2);
259 if (! NILP (end2) && end2_char > XINT (end2))
260 end2_char = XINT (end2);
261
262 while (i1 < end1_char && i2 < end2_char)
263 {
264 /* When we find a mismatch, we must compare the
265 characters, not just the bytes. */
266 int c1, c2;
267
268 if (STRING_MULTIBYTE (str1))
269 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
270 else
271 {
272 c1 = SREF (str1, i1++);
273 MAKE_CHAR_MULTIBYTE (c1);
274 }
275
276 if (STRING_MULTIBYTE (str2))
277 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
278 else
279 {
280 c2 = SREF (str2, i2++);
281 MAKE_CHAR_MULTIBYTE (c2);
282 }
283
284 if (c1 == c2)
285 continue;
286
287 if (! NILP (ignore_case))
288 {
289 Lisp_Object tem;
290
291 tem = Fupcase (make_number (c1));
292 c1 = XINT (tem);
293 tem = Fupcase (make_number (c2));
294 c2 = XINT (tem);
295 }
296
297 if (c1 == c2)
298 continue;
299
300 /* Note that I1 has already been incremented
301 past the character that we are comparing;
302 hence we don't add or subtract 1 here. */
303 if (c1 < c2)
304 return make_number (- i1 + XINT (start1));
305 else
306 return make_number (i1 - XINT (start1));
307 }
308
309 if (i1 < end1_char)
310 return make_number (i1 - XINT (start1) + 1);
311 if (i2 < end2_char)
312 return make_number (- i1 + XINT (start1) - 1);
313
314 return Qt;
315 }
316
317 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
318 doc: /* Return t if first arg string is less than second in lexicographic order.
319 Case is significant.
320 Symbols are also allowed; their print names are used instead. */)
321 (register Lisp_Object s1, Lisp_Object s2)
322 {
323 register EMACS_INT end;
324 register EMACS_INT i1, i1_byte, i2, i2_byte;
325
326 if (SYMBOLP (s1))
327 s1 = SYMBOL_NAME (s1);
328 if (SYMBOLP (s2))
329 s2 = SYMBOL_NAME (s2);
330 CHECK_STRING (s1);
331 CHECK_STRING (s2);
332
333 i1 = i1_byte = i2 = i2_byte = 0;
334
335 end = SCHARS (s1);
336 if (end > SCHARS (s2))
337 end = SCHARS (s2);
338
339 while (i1 < end)
340 {
341 /* When we find a mismatch, we must compare the
342 characters, not just the bytes. */
343 int c1, c2;
344
345 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
346 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
347
348 if (c1 != c2)
349 return c1 < c2 ? Qt : Qnil;
350 }
351 return i1 < SCHARS (s2) ? Qt : Qnil;
352 }
353 \f
354 static Lisp_Object concat (int nargs, Lisp_Object *args,
355 enum Lisp_Type target_type, int last_special);
356
357 /* ARGSUSED */
358 Lisp_Object
359 concat2 (Lisp_Object s1, Lisp_Object s2)
360 {
361 Lisp_Object args[2];
362 args[0] = s1;
363 args[1] = s2;
364 return concat (2, args, Lisp_String, 0);
365 }
366
367 /* ARGSUSED */
368 Lisp_Object
369 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
370 {
371 Lisp_Object args[3];
372 args[0] = s1;
373 args[1] = s2;
374 args[2] = s3;
375 return concat (3, args, Lisp_String, 0);
376 }
377
378 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
379 doc: /* Concatenate all the arguments and make the result a list.
380 The result is a list whose elements are the elements of all the arguments.
381 Each argument may be a list, vector or string.
382 The last argument is not copied, just used as the tail of the new list.
383 usage: (append &rest SEQUENCES) */)
384 (int nargs, Lisp_Object *args)
385 {
386 return concat (nargs, args, Lisp_Cons, 1);
387 }
388
389 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
390 doc: /* Concatenate all the arguments and make the result a string.
391 The result is a string whose elements are the elements of all the arguments.
392 Each argument may be a string or a list or vector of characters (integers).
393 usage: (concat &rest SEQUENCES) */)
394 (int nargs, Lisp_Object *args)
395 {
396 return concat (nargs, args, Lisp_String, 0);
397 }
398
399 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
400 doc: /* Concatenate all the arguments and make the result a vector.
401 The result is a vector whose elements are the elements of all the arguments.
402 Each argument may be a list, vector or string.
403 usage: (vconcat &rest SEQUENCES) */)
404 (int nargs, Lisp_Object *args)
405 {
406 return concat (nargs, args, Lisp_Vectorlike, 0);
407 }
408
409
410 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
411 doc: /* Return a copy of a list, vector, string or char-table.
412 The elements of a list or vector are not copied; they are shared
413 with the original. */)
414 (Lisp_Object arg)
415 {
416 if (NILP (arg)) return arg;
417
418 if (CHAR_TABLE_P (arg))
419 {
420 return copy_char_table (arg);
421 }
422
423 if (BOOL_VECTOR_P (arg))
424 {
425 Lisp_Object val;
426 int size_in_chars
427 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
428 / BOOL_VECTOR_BITS_PER_CHAR);
429
430 val = Fmake_bool_vector (Flength (arg), Qnil);
431 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
432 size_in_chars);
433 return val;
434 }
435
436 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
437 wrong_type_argument (Qsequencep, arg);
438
439 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
440 }
441
442 /* This structure holds information of an argument of `concat' that is
443 a string and has text properties to be copied. */
444 struct textprop_rec
445 {
446 int argnum; /* refer to ARGS (arguments of `concat') */
447 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
448 EMACS_INT to; /* refer to VAL (the target string) */
449 };
450
451 static Lisp_Object
452 concat (int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)
453 {
454 Lisp_Object val;
455 register Lisp_Object tail;
456 register Lisp_Object this;
457 EMACS_INT toindex;
458 EMACS_INT toindex_byte = 0;
459 register EMACS_INT result_len;
460 register EMACS_INT result_len_byte;
461 register int argnum;
462 Lisp_Object last_tail;
463 Lisp_Object prev;
464 int some_multibyte;
465 /* When we make a multibyte string, we can't copy text properties
466 while concatinating each string because the length of resulting
467 string can't be decided until we finish the whole concatination.
468 So, we record strings that have text properties to be copied
469 here, and copy the text properties after the concatination. */
470 struct textprop_rec *textprops = NULL;
471 /* Number of elements in textprops. */
472 int num_textprops = 0;
473 USE_SAFE_ALLOCA;
474
475 tail = Qnil;
476
477 /* In append, the last arg isn't treated like the others */
478 if (last_special && nargs > 0)
479 {
480 nargs--;
481 last_tail = args[nargs];
482 }
483 else
484 last_tail = Qnil;
485
486 /* Check each argument. */
487 for (argnum = 0; argnum < nargs; argnum++)
488 {
489 this = args[argnum];
490 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
491 || FUNVECP (this) || BOOL_VECTOR_P (this)))
492 wrong_type_argument (Qsequencep, this);
493 }
494
495 /* Compute total length in chars of arguments in RESULT_LEN.
496 If desired output is a string, also compute length in bytes
497 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
498 whether the result should be a multibyte string. */
499 result_len_byte = 0;
500 result_len = 0;
501 some_multibyte = 0;
502 for (argnum = 0; argnum < nargs; argnum++)
503 {
504 EMACS_INT len;
505 this = args[argnum];
506 len = XFASTINT (Flength (this));
507 if (target_type == Lisp_String)
508 {
509 /* We must count the number of bytes needed in the string
510 as well as the number of characters. */
511 EMACS_INT i;
512 Lisp_Object ch;
513 EMACS_INT this_len_byte;
514
515 if (VECTORP (this) || FUNVECP (this))
516 for (i = 0; i < len; i++)
517 {
518 ch = AREF (this, i);
519 CHECK_CHARACTER (ch);
520 this_len_byte = CHAR_BYTES (XINT (ch));
521 result_len_byte += this_len_byte;
522 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
523 some_multibyte = 1;
524 }
525 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
526 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
527 else if (CONSP (this))
528 for (; CONSP (this); this = XCDR (this))
529 {
530 ch = XCAR (this);
531 CHECK_CHARACTER (ch);
532 this_len_byte = CHAR_BYTES (XINT (ch));
533 result_len_byte += this_len_byte;
534 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
535 some_multibyte = 1;
536 }
537 else if (STRINGP (this))
538 {
539 if (STRING_MULTIBYTE (this))
540 {
541 some_multibyte = 1;
542 result_len_byte += SBYTES (this);
543 }
544 else
545 result_len_byte += count_size_as_multibyte (SDATA (this),
546 SCHARS (this));
547 }
548 }
549
550 result_len += len;
551 if (result_len < 0)
552 error ("String overflow");
553 }
554
555 if (! some_multibyte)
556 result_len_byte = result_len;
557
558 /* Create the output object. */
559 if (target_type == Lisp_Cons)
560 val = Fmake_list (make_number (result_len), Qnil);
561 else if (target_type == Lisp_Vectorlike)
562 val = Fmake_vector (make_number (result_len), Qnil);
563 else if (some_multibyte)
564 val = make_uninit_multibyte_string (result_len, result_len_byte);
565 else
566 val = make_uninit_string (result_len);
567
568 /* In `append', if all but last arg are nil, return last arg. */
569 if (target_type == Lisp_Cons && EQ (val, Qnil))
570 return last_tail;
571
572 /* Copy the contents of the args into the result. */
573 if (CONSP (val))
574 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
575 else
576 toindex = 0, toindex_byte = 0;
577
578 prev = Qnil;
579 if (STRINGP (val))
580 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
581
582 for (argnum = 0; argnum < nargs; argnum++)
583 {
584 Lisp_Object thislen;
585 EMACS_INT thisleni = 0;
586 register EMACS_INT thisindex = 0;
587 register EMACS_INT thisindex_byte = 0;
588
589 this = args[argnum];
590 if (!CONSP (this))
591 thislen = Flength (this), thisleni = XINT (thislen);
592
593 /* Between strings of the same kind, copy fast. */
594 if (STRINGP (this) && STRINGP (val)
595 && STRING_MULTIBYTE (this) == some_multibyte)
596 {
597 EMACS_INT thislen_byte = SBYTES (this);
598
599 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
600 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
601 {
602 textprops[num_textprops].argnum = argnum;
603 textprops[num_textprops].from = 0;
604 textprops[num_textprops++].to = toindex;
605 }
606 toindex_byte += thislen_byte;
607 toindex += thisleni;
608 }
609 /* Copy a single-byte string to a multibyte string. */
610 else if (STRINGP (this) && STRINGP (val))
611 {
612 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
613 {
614 textprops[num_textprops].argnum = argnum;
615 textprops[num_textprops].from = 0;
616 textprops[num_textprops++].to = toindex;
617 }
618 toindex_byte += copy_text (SDATA (this),
619 SDATA (val) + toindex_byte,
620 SCHARS (this), 0, 1);
621 toindex += thisleni;
622 }
623 else
624 /* Copy element by element. */
625 while (1)
626 {
627 register Lisp_Object elt;
628
629 /* Fetch next element of `this' arg into `elt', or break if
630 `this' is exhausted. */
631 if (NILP (this)) break;
632 if (CONSP (this))
633 elt = XCAR (this), this = XCDR (this);
634 else if (thisindex >= thisleni)
635 break;
636 else if (STRINGP (this))
637 {
638 int c;
639 if (STRING_MULTIBYTE (this))
640 {
641 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
642 thisindex,
643 thisindex_byte);
644 XSETFASTINT (elt, c);
645 }
646 else
647 {
648 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
649 if (some_multibyte
650 && !ASCII_CHAR_P (XINT (elt))
651 && XINT (elt) < 0400)
652 {
653 c = BYTE8_TO_CHAR (XINT (elt));
654 XSETINT (elt, c);
655 }
656 }
657 }
658 else if (BOOL_VECTOR_P (this))
659 {
660 int byte;
661 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
662 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
663 elt = Qt;
664 else
665 elt = Qnil;
666 thisindex++;
667 }
668 else
669 {
670 elt = AREF (this, thisindex);
671 thisindex++;
672 }
673
674 /* Store this element into the result. */
675 if (toindex < 0)
676 {
677 XSETCAR (tail, elt);
678 prev = tail;
679 tail = XCDR (tail);
680 }
681 else if (VECTORP (val))
682 {
683 ASET (val, toindex, elt);
684 toindex++;
685 }
686 else
687 {
688 CHECK_NUMBER (elt);
689 if (some_multibyte)
690 toindex_byte += CHAR_STRING (XINT (elt),
691 SDATA (val) + toindex_byte);
692 else
693 SSET (val, toindex_byte++, XINT (elt));
694 toindex++;
695 }
696 }
697 }
698 if (!NILP (prev))
699 XSETCDR (prev, last_tail);
700
701 if (num_textprops > 0)
702 {
703 Lisp_Object props;
704 EMACS_INT last_to_end = -1;
705
706 for (argnum = 0; argnum < num_textprops; argnum++)
707 {
708 this = args[textprops[argnum].argnum];
709 props = text_property_list (this,
710 make_number (0),
711 make_number (SCHARS (this)),
712 Qnil);
713 /* If successive arguments have properites, be sure that the
714 value of `composition' property be the copy. */
715 if (last_to_end == textprops[argnum].to)
716 make_composition_value_copy (props);
717 add_text_properties_from_list (val, props,
718 make_number (textprops[argnum].to));
719 last_to_end = textprops[argnum].to + SCHARS (this);
720 }
721 }
722
723 SAFE_FREE ();
724 return val;
725 }
726 \f
727 static Lisp_Object string_char_byte_cache_string;
728 static EMACS_INT string_char_byte_cache_charpos;
729 static EMACS_INT string_char_byte_cache_bytepos;
730
731 void
732 clear_string_char_byte_cache (void)
733 {
734 string_char_byte_cache_string = Qnil;
735 }
736
737 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
738
739 EMACS_INT
740 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
741 {
742 EMACS_INT i_byte;
743 EMACS_INT best_below, best_below_byte;
744 EMACS_INT best_above, best_above_byte;
745
746 best_below = best_below_byte = 0;
747 best_above = SCHARS (string);
748 best_above_byte = SBYTES (string);
749 if (best_above == best_above_byte)
750 return char_index;
751
752 if (EQ (string, string_char_byte_cache_string))
753 {
754 if (string_char_byte_cache_charpos < char_index)
755 {
756 best_below = string_char_byte_cache_charpos;
757 best_below_byte = string_char_byte_cache_bytepos;
758 }
759 else
760 {
761 best_above = string_char_byte_cache_charpos;
762 best_above_byte = string_char_byte_cache_bytepos;
763 }
764 }
765
766 if (char_index - best_below < best_above - char_index)
767 {
768 unsigned char *p = SDATA (string) + best_below_byte;
769
770 while (best_below < char_index)
771 {
772 p += BYTES_BY_CHAR_HEAD (*p);
773 best_below++;
774 }
775 i_byte = p - SDATA (string);
776 }
777 else
778 {
779 unsigned char *p = SDATA (string) + best_above_byte;
780
781 while (best_above > char_index)
782 {
783 p--;
784 while (!CHAR_HEAD_P (*p)) p--;
785 best_above--;
786 }
787 i_byte = p - SDATA (string);
788 }
789
790 string_char_byte_cache_bytepos = i_byte;
791 string_char_byte_cache_charpos = char_index;
792 string_char_byte_cache_string = string;
793
794 return i_byte;
795 }
796 \f
797 /* Return the character index corresponding to BYTE_INDEX in STRING. */
798
799 EMACS_INT
800 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
801 {
802 EMACS_INT i, i_byte;
803 EMACS_INT best_below, best_below_byte;
804 EMACS_INT best_above, best_above_byte;
805
806 best_below = best_below_byte = 0;
807 best_above = SCHARS (string);
808 best_above_byte = SBYTES (string);
809 if (best_above == best_above_byte)
810 return byte_index;
811
812 if (EQ (string, string_char_byte_cache_string))
813 {
814 if (string_char_byte_cache_bytepos < byte_index)
815 {
816 best_below = string_char_byte_cache_charpos;
817 best_below_byte = string_char_byte_cache_bytepos;
818 }
819 else
820 {
821 best_above = string_char_byte_cache_charpos;
822 best_above_byte = string_char_byte_cache_bytepos;
823 }
824 }
825
826 if (byte_index - best_below_byte < best_above_byte - byte_index)
827 {
828 unsigned char *p = SDATA (string) + best_below_byte;
829 unsigned char *pend = SDATA (string) + byte_index;
830
831 while (p < pend)
832 {
833 p += BYTES_BY_CHAR_HEAD (*p);
834 best_below++;
835 }
836 i = best_below;
837 i_byte = p - SDATA (string);
838 }
839 else
840 {
841 unsigned char *p = SDATA (string) + best_above_byte;
842 unsigned char *pbeg = SDATA (string) + byte_index;
843
844 while (p > pbeg)
845 {
846 p--;
847 while (!CHAR_HEAD_P (*p)) p--;
848 best_above--;
849 }
850 i = best_above;
851 i_byte = p - SDATA (string);
852 }
853
854 string_char_byte_cache_bytepos = i_byte;
855 string_char_byte_cache_charpos = i;
856 string_char_byte_cache_string = string;
857
858 return i;
859 }
860 \f
861 /* Convert STRING to a multibyte string. */
862
863 static Lisp_Object
864 string_make_multibyte (Lisp_Object string)
865 {
866 unsigned char *buf;
867 EMACS_INT nbytes;
868 Lisp_Object ret;
869 USE_SAFE_ALLOCA;
870
871 if (STRING_MULTIBYTE (string))
872 return string;
873
874 nbytes = count_size_as_multibyte (SDATA (string),
875 SCHARS (string));
876 /* If all the chars are ASCII, they won't need any more bytes
877 once converted. In that case, we can return STRING itself. */
878 if (nbytes == SBYTES (string))
879 return string;
880
881 SAFE_ALLOCA (buf, unsigned char *, nbytes);
882 copy_text (SDATA (string), buf, SBYTES (string),
883 0, 1);
884
885 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
886 SAFE_FREE ();
887
888 return ret;
889 }
890
891
892 /* Convert STRING (if unibyte) to a multibyte string without changing
893 the number of characters. Characters 0200 trough 0237 are
894 converted to eight-bit characters. */
895
896 Lisp_Object
897 string_to_multibyte (Lisp_Object string)
898 {
899 unsigned char *buf;
900 EMACS_INT nbytes;
901 Lisp_Object ret;
902 USE_SAFE_ALLOCA;
903
904 if (STRING_MULTIBYTE (string))
905 return string;
906
907 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
908 /* If all the chars are ASCII, they won't need any more bytes once
909 converted. */
910 if (nbytes == SBYTES (string))
911 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
912
913 SAFE_ALLOCA (buf, unsigned char *, nbytes);
914 memcpy (buf, SDATA (string), SBYTES (string));
915 str_to_multibyte (buf, nbytes, SBYTES (string));
916
917 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
918 SAFE_FREE ();
919
920 return ret;
921 }
922
923
924 /* Convert STRING to a single-byte string. */
925
926 Lisp_Object
927 string_make_unibyte (Lisp_Object string)
928 {
929 EMACS_INT nchars;
930 unsigned char *buf;
931 Lisp_Object ret;
932 USE_SAFE_ALLOCA;
933
934 if (! STRING_MULTIBYTE (string))
935 return string;
936
937 nchars = SCHARS (string);
938
939 SAFE_ALLOCA (buf, unsigned char *, nchars);
940 copy_text (SDATA (string), buf, SBYTES (string),
941 1, 0);
942
943 ret = make_unibyte_string ((char *) buf, nchars);
944 SAFE_FREE ();
945
946 return ret;
947 }
948
949 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
950 1, 1, 0,
951 doc: /* Return the multibyte equivalent of STRING.
952 If STRING is unibyte and contains non-ASCII characters, the function
953 `unibyte-char-to-multibyte' is used to convert each unibyte character
954 to a multibyte character. In this case, the returned string is a
955 newly created string with no text properties. If STRING is multibyte
956 or entirely ASCII, it is returned unchanged. In particular, when
957 STRING is unibyte and entirely ASCII, the returned string is unibyte.
958 \(When the characters are all ASCII, Emacs primitives will treat the
959 string the same way whether it is unibyte or multibyte.) */)
960 (Lisp_Object string)
961 {
962 CHECK_STRING (string);
963
964 return string_make_multibyte (string);
965 }
966
967 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
968 1, 1, 0,
969 doc: /* Return the unibyte equivalent of STRING.
970 Multibyte character codes are converted to unibyte according to
971 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
972 If the lookup in the translation table fails, this function takes just
973 the low 8 bits of each character. */)
974 (Lisp_Object string)
975 {
976 CHECK_STRING (string);
977
978 return string_make_unibyte (string);
979 }
980
981 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
982 1, 1, 0,
983 doc: /* Return a unibyte string with the same individual bytes as STRING.
984 If STRING is unibyte, the result is STRING itself.
985 Otherwise it is a newly created string, with no text properties.
986 If STRING is multibyte and contains a character of charset
987 `eight-bit', it is converted to the corresponding single byte. */)
988 (Lisp_Object string)
989 {
990 CHECK_STRING (string);
991
992 if (STRING_MULTIBYTE (string))
993 {
994 EMACS_INT bytes = SBYTES (string);
995 unsigned char *str = (unsigned char *) xmalloc (bytes);
996
997 memcpy (str, SDATA (string), bytes);
998 bytes = str_as_unibyte (str, bytes);
999 string = make_unibyte_string ((char *) str, bytes);
1000 xfree (str);
1001 }
1002 return string;
1003 }
1004
1005 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1006 1, 1, 0,
1007 doc: /* Return a multibyte string with the same individual bytes as STRING.
1008 If STRING is multibyte, the result is STRING itself.
1009 Otherwise it is a newly created string, with no text properties.
1010
1011 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1012 part of a correct utf-8 sequence), it is converted to the corresponding
1013 multibyte character of charset `eight-bit'.
1014 See also `string-to-multibyte'.
1015
1016 Beware, this often doesn't really do what you think it does.
1017 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1018 If you're not sure, whether to use `string-as-multibyte' or
1019 `string-to-multibyte', use `string-to-multibyte'. */)
1020 (Lisp_Object string)
1021 {
1022 CHECK_STRING (string);
1023
1024 if (! STRING_MULTIBYTE (string))
1025 {
1026 Lisp_Object new_string;
1027 EMACS_INT nchars, nbytes;
1028
1029 parse_str_as_multibyte (SDATA (string),
1030 SBYTES (string),
1031 &nchars, &nbytes);
1032 new_string = make_uninit_multibyte_string (nchars, nbytes);
1033 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1034 if (nbytes != SBYTES (string))
1035 str_as_multibyte (SDATA (new_string), nbytes,
1036 SBYTES (string), NULL);
1037 string = new_string;
1038 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1039 }
1040 return string;
1041 }
1042
1043 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1044 1, 1, 0,
1045 doc: /* Return a multibyte string with the same individual chars as STRING.
1046 If STRING is multibyte, the result is STRING itself.
1047 Otherwise it is a newly created string, with no text properties.
1048
1049 If STRING is unibyte and contains an 8-bit byte, it is converted to
1050 the corresponding multibyte character of charset `eight-bit'.
1051
1052 This differs from `string-as-multibyte' by converting each byte of a correct
1053 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1054 correct sequence. */)
1055 (Lisp_Object string)
1056 {
1057 CHECK_STRING (string);
1058
1059 return string_to_multibyte (string);
1060 }
1061
1062 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1063 1, 1, 0,
1064 doc: /* Return a unibyte string with the same individual chars as STRING.
1065 If STRING is unibyte, the result is STRING itself.
1066 Otherwise it is a newly created string, with no text properties,
1067 where each `eight-bit' character is converted to the corresponding byte.
1068 If STRING contains a non-ASCII, non-`eight-bit' character,
1069 an error is signaled. */)
1070 (Lisp_Object string)
1071 {
1072 CHECK_STRING (string);
1073
1074 if (STRING_MULTIBYTE (string))
1075 {
1076 EMACS_INT chars = SCHARS (string);
1077 unsigned char *str = (unsigned char *) xmalloc (chars);
1078 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1079
1080 if (converted < chars)
1081 error ("Can't convert the %dth character to unibyte", converted);
1082 string = make_unibyte_string ((char *) str, chars);
1083 xfree (str);
1084 }
1085 return string;
1086 }
1087
1088 \f
1089 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1090 doc: /* Return a copy of ALIST.
1091 This is an alist which represents the same mapping from objects to objects,
1092 but does not share the alist structure with ALIST.
1093 The objects mapped (cars and cdrs of elements of the alist)
1094 are shared, however.
1095 Elements of ALIST that are not conses are also shared. */)
1096 (Lisp_Object alist)
1097 {
1098 register Lisp_Object tem;
1099
1100 CHECK_LIST (alist);
1101 if (NILP (alist))
1102 return alist;
1103 alist = concat (1, &alist, Lisp_Cons, 0);
1104 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1105 {
1106 register Lisp_Object car;
1107 car = XCAR (tem);
1108
1109 if (CONSP (car))
1110 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1111 }
1112 return alist;
1113 }
1114
1115 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1116 doc: /* Return a new string whose contents are a substring of STRING.
1117 The returned string consists of the characters between index FROM
1118 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1119 zero-indexed: 0 means the first character of STRING. Negative values
1120 are counted from the end of STRING. If TO is nil, the substring runs
1121 to the end of STRING.
1122
1123 The STRING argument may also be a vector. In that case, the return
1124 value is a new vector that contains the elements between index FROM
1125 \(inclusive) and index TO (exclusive) of that vector argument. */)
1126 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1127 {
1128 Lisp_Object res;
1129 EMACS_INT size;
1130 EMACS_INT size_byte = 0;
1131 EMACS_INT from_char, to_char;
1132 EMACS_INT from_byte = 0, to_byte = 0;
1133
1134 CHECK_VECTOR_OR_STRING (string);
1135 CHECK_NUMBER (from);
1136
1137 if (STRINGP (string))
1138 {
1139 size = SCHARS (string);
1140 size_byte = SBYTES (string);
1141 }
1142 else
1143 size = ASIZE (string);
1144
1145 if (NILP (to))
1146 {
1147 to_char = size;
1148 to_byte = size_byte;
1149 }
1150 else
1151 {
1152 CHECK_NUMBER (to);
1153
1154 to_char = XINT (to);
1155 if (to_char < 0)
1156 to_char += size;
1157
1158 if (STRINGP (string))
1159 to_byte = string_char_to_byte (string, to_char);
1160 }
1161
1162 from_char = XINT (from);
1163 if (from_char < 0)
1164 from_char += size;
1165 if (STRINGP (string))
1166 from_byte = string_char_to_byte (string, from_char);
1167
1168 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1169 args_out_of_range_3 (string, make_number (from_char),
1170 make_number (to_char));
1171
1172 if (STRINGP (string))
1173 {
1174 res = make_specified_string (SSDATA (string) + from_byte,
1175 to_char - from_char, to_byte - from_byte,
1176 STRING_MULTIBYTE (string));
1177 copy_text_properties (make_number (from_char), make_number (to_char),
1178 string, make_number (0), res, Qnil);
1179 }
1180 else
1181 res = Fvector (to_char - from_char, &AREF (string, from_char));
1182
1183 return res;
1184 }
1185
1186
1187 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1188 doc: /* Return a substring of STRING, without text properties.
1189 It starts at index FROM and ends before TO.
1190 TO may be nil or omitted; then the substring runs to the end of STRING.
1191 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1192 If FROM or TO is negative, it counts from the end.
1193
1194 With one argument, just copy STRING without its properties. */)
1195 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1196 {
1197 EMACS_INT size, size_byte;
1198 EMACS_INT from_char, to_char;
1199 EMACS_INT from_byte, to_byte;
1200
1201 CHECK_STRING (string);
1202
1203 size = SCHARS (string);
1204 size_byte = SBYTES (string);
1205
1206 if (NILP (from))
1207 from_char = from_byte = 0;
1208 else
1209 {
1210 CHECK_NUMBER (from);
1211 from_char = XINT (from);
1212 if (from_char < 0)
1213 from_char += size;
1214
1215 from_byte = string_char_to_byte (string, from_char);
1216 }
1217
1218 if (NILP (to))
1219 {
1220 to_char = size;
1221 to_byte = size_byte;
1222 }
1223 else
1224 {
1225 CHECK_NUMBER (to);
1226
1227 to_char = XINT (to);
1228 if (to_char < 0)
1229 to_char += size;
1230
1231 to_byte = string_char_to_byte (string, to_char);
1232 }
1233
1234 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1235 args_out_of_range_3 (string, make_number (from_char),
1236 make_number (to_char));
1237
1238 return make_specified_string (SSDATA (string) + from_byte,
1239 to_char - from_char, to_byte - from_byte,
1240 STRING_MULTIBYTE (string));
1241 }
1242
1243 /* Extract a substring of STRING, giving start and end positions
1244 both in characters and in bytes. */
1245
1246 Lisp_Object
1247 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1248 EMACS_INT to, EMACS_INT to_byte)
1249 {
1250 Lisp_Object res;
1251 EMACS_INT size;
1252 EMACS_INT size_byte;
1253
1254 CHECK_VECTOR_OR_STRING (string);
1255
1256 if (STRINGP (string))
1257 {
1258 size = SCHARS (string);
1259 size_byte = SBYTES (string);
1260 }
1261 else
1262 size = ASIZE (string);
1263
1264 if (!(0 <= from && from <= to && to <= size))
1265 args_out_of_range_3 (string, make_number (from), make_number (to));
1266
1267 if (STRINGP (string))
1268 {
1269 res = make_specified_string (SSDATA (string) + from_byte,
1270 to - from, to_byte - from_byte,
1271 STRING_MULTIBYTE (string));
1272 copy_text_properties (make_number (from), make_number (to),
1273 string, make_number (0), res, Qnil);
1274 }
1275 else
1276 res = Fvector (to - from, &AREF (string, from));
1277
1278 return res;
1279 }
1280 \f
1281 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1282 doc: /* Take cdr N times on LIST, return the result. */)
1283 (Lisp_Object n, Lisp_Object list)
1284 {
1285 register int i, num;
1286 CHECK_NUMBER (n);
1287 num = XINT (n);
1288 for (i = 0; i < num && !NILP (list); i++)
1289 {
1290 QUIT;
1291 CHECK_LIST_CONS (list, list);
1292 list = XCDR (list);
1293 }
1294 return list;
1295 }
1296
1297 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1298 doc: /* Return the Nth element of LIST.
1299 N counts from zero. If LIST is not that long, nil is returned. */)
1300 (Lisp_Object n, Lisp_Object list)
1301 {
1302 return Fcar (Fnthcdr (n, list));
1303 }
1304
1305 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1306 doc: /* Return element of SEQUENCE at index N. */)
1307 (register Lisp_Object sequence, Lisp_Object n)
1308 {
1309 CHECK_NUMBER (n);
1310 if (CONSP (sequence) || NILP (sequence))
1311 return Fcar (Fnthcdr (n, sequence));
1312
1313 /* Faref signals a "not array" error, so check here. */
1314 if (! FUNVECP (sequence))
1315 CHECK_ARRAY (sequence, Qsequencep);
1316
1317 return Faref (sequence, n);
1318 }
1319
1320 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1321 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1322 The value is actually the tail of LIST whose car is ELT. */)
1323 (register Lisp_Object elt, Lisp_Object list)
1324 {
1325 register Lisp_Object tail;
1326 for (tail = list; CONSP (tail); tail = XCDR (tail))
1327 {
1328 register Lisp_Object tem;
1329 CHECK_LIST_CONS (tail, list);
1330 tem = XCAR (tail);
1331 if (! NILP (Fequal (elt, tem)))
1332 return tail;
1333 QUIT;
1334 }
1335 return Qnil;
1336 }
1337
1338 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1339 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1340 The value is actually the tail of LIST whose car is ELT. */)
1341 (register Lisp_Object elt, Lisp_Object list)
1342 {
1343 while (1)
1344 {
1345 if (!CONSP (list) || EQ (XCAR (list), elt))
1346 break;
1347
1348 list = XCDR (list);
1349 if (!CONSP (list) || EQ (XCAR (list), elt))
1350 break;
1351
1352 list = XCDR (list);
1353 if (!CONSP (list) || EQ (XCAR (list), elt))
1354 break;
1355
1356 list = XCDR (list);
1357 QUIT;
1358 }
1359
1360 CHECK_LIST (list);
1361 return list;
1362 }
1363
1364 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1365 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1366 The value is actually the tail of LIST whose car is ELT. */)
1367 (register Lisp_Object elt, Lisp_Object list)
1368 {
1369 register Lisp_Object tail;
1370
1371 if (!FLOATP (elt))
1372 return Fmemq (elt, list);
1373
1374 for (tail = list; CONSP (tail); tail = XCDR (tail))
1375 {
1376 register Lisp_Object tem;
1377 CHECK_LIST_CONS (tail, list);
1378 tem = XCAR (tail);
1379 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1380 return tail;
1381 QUIT;
1382 }
1383 return Qnil;
1384 }
1385
1386 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1387 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1388 The value is actually the first element of LIST whose car is KEY.
1389 Elements of LIST that are not conses are ignored. */)
1390 (Lisp_Object key, Lisp_Object list)
1391 {
1392 while (1)
1393 {
1394 if (!CONSP (list)
1395 || (CONSP (XCAR (list))
1396 && EQ (XCAR (XCAR (list)), key)))
1397 break;
1398
1399 list = XCDR (list);
1400 if (!CONSP (list)
1401 || (CONSP (XCAR (list))
1402 && EQ (XCAR (XCAR (list)), key)))
1403 break;
1404
1405 list = XCDR (list);
1406 if (!CONSP (list)
1407 || (CONSP (XCAR (list))
1408 && EQ (XCAR (XCAR (list)), key)))
1409 break;
1410
1411 list = XCDR (list);
1412 QUIT;
1413 }
1414
1415 return CAR (list);
1416 }
1417
1418 /* Like Fassq but never report an error and do not allow quits.
1419 Use only on lists known never to be circular. */
1420
1421 Lisp_Object
1422 assq_no_quit (Lisp_Object key, Lisp_Object list)
1423 {
1424 while (CONSP (list)
1425 && (!CONSP (XCAR (list))
1426 || !EQ (XCAR (XCAR (list)), key)))
1427 list = XCDR (list);
1428
1429 return CAR_SAFE (list);
1430 }
1431
1432 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1433 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1434 The value is actually the first element of LIST whose car equals KEY. */)
1435 (Lisp_Object key, Lisp_Object list)
1436 {
1437 Lisp_Object car;
1438
1439 while (1)
1440 {
1441 if (!CONSP (list)
1442 || (CONSP (XCAR (list))
1443 && (car = XCAR (XCAR (list)),
1444 EQ (car, key) || !NILP (Fequal (car, key)))))
1445 break;
1446
1447 list = XCDR (list);
1448 if (!CONSP (list)
1449 || (CONSP (XCAR (list))
1450 && (car = XCAR (XCAR (list)),
1451 EQ (car, key) || !NILP (Fequal (car, key)))))
1452 break;
1453
1454 list = XCDR (list);
1455 if (!CONSP (list)
1456 || (CONSP (XCAR (list))
1457 && (car = XCAR (XCAR (list)),
1458 EQ (car, key) || !NILP (Fequal (car, key)))))
1459 break;
1460
1461 list = XCDR (list);
1462 QUIT;
1463 }
1464
1465 return CAR (list);
1466 }
1467
1468 /* Like Fassoc but never report an error and do not allow quits.
1469 Use only on lists known never to be circular. */
1470
1471 Lisp_Object
1472 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1473 {
1474 while (CONSP (list)
1475 && (!CONSP (XCAR (list))
1476 || (!EQ (XCAR (XCAR (list)), key)
1477 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1478 list = XCDR (list);
1479
1480 return CONSP (list) ? XCAR (list) : Qnil;
1481 }
1482
1483 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1484 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1485 The value is actually the first element of LIST whose cdr is KEY. */)
1486 (register Lisp_Object key, Lisp_Object list)
1487 {
1488 while (1)
1489 {
1490 if (!CONSP (list)
1491 || (CONSP (XCAR (list))
1492 && EQ (XCDR (XCAR (list)), key)))
1493 break;
1494
1495 list = XCDR (list);
1496 if (!CONSP (list)
1497 || (CONSP (XCAR (list))
1498 && EQ (XCDR (XCAR (list)), key)))
1499 break;
1500
1501 list = XCDR (list);
1502 if (!CONSP (list)
1503 || (CONSP (XCAR (list))
1504 && EQ (XCDR (XCAR (list)), key)))
1505 break;
1506
1507 list = XCDR (list);
1508 QUIT;
1509 }
1510
1511 return CAR (list);
1512 }
1513
1514 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1515 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1516 The value is actually the first element of LIST whose cdr equals KEY. */)
1517 (Lisp_Object key, Lisp_Object list)
1518 {
1519 Lisp_Object cdr;
1520
1521 while (1)
1522 {
1523 if (!CONSP (list)
1524 || (CONSP (XCAR (list))
1525 && (cdr = XCDR (XCAR (list)),
1526 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1527 break;
1528
1529 list = XCDR (list);
1530 if (!CONSP (list)
1531 || (CONSP (XCAR (list))
1532 && (cdr = XCDR (XCAR (list)),
1533 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1534 break;
1535
1536 list = XCDR (list);
1537 if (!CONSP (list)
1538 || (CONSP (XCAR (list))
1539 && (cdr = XCDR (XCAR (list)),
1540 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1541 break;
1542
1543 list = XCDR (list);
1544 QUIT;
1545 }
1546
1547 return CAR (list);
1548 }
1549 \f
1550 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1551 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1552 The modified LIST is returned. Comparison is done with `eq'.
1553 If the first member of LIST is ELT, there is no way to remove it by side effect;
1554 therefore, write `(setq foo (delq element foo))'
1555 to be sure of changing the value of `foo'. */)
1556 (register Lisp_Object elt, Lisp_Object list)
1557 {
1558 register Lisp_Object tail, prev;
1559 register Lisp_Object tem;
1560
1561 tail = list;
1562 prev = Qnil;
1563 while (!NILP (tail))
1564 {
1565 CHECK_LIST_CONS (tail, list);
1566 tem = XCAR (tail);
1567 if (EQ (elt, tem))
1568 {
1569 if (NILP (prev))
1570 list = XCDR (tail);
1571 else
1572 Fsetcdr (prev, XCDR (tail));
1573 }
1574 else
1575 prev = tail;
1576 tail = XCDR (tail);
1577 QUIT;
1578 }
1579 return list;
1580 }
1581
1582 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1583 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1584 SEQ must be a list, a vector, or a string.
1585 The modified SEQ is returned. Comparison is done with `equal'.
1586 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1587 is not a side effect; it is simply using a different sequence.
1588 Therefore, write `(setq foo (delete element foo))'
1589 to be sure of changing the value of `foo'. */)
1590 (Lisp_Object elt, Lisp_Object seq)
1591 {
1592 if (VECTORP (seq))
1593 {
1594 EMACS_INT i, n;
1595
1596 for (i = n = 0; i < ASIZE (seq); ++i)
1597 if (NILP (Fequal (AREF (seq, i), elt)))
1598 ++n;
1599
1600 if (n != ASIZE (seq))
1601 {
1602 struct Lisp_Vector *p = allocate_vector (n);
1603
1604 for (i = n = 0; i < ASIZE (seq); ++i)
1605 if (NILP (Fequal (AREF (seq, i), elt)))
1606 p->contents[n++] = AREF (seq, i);
1607
1608 XSETVECTOR (seq, p);
1609 }
1610 }
1611 else if (STRINGP (seq))
1612 {
1613 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1614 int c;
1615
1616 for (i = nchars = nbytes = ibyte = 0;
1617 i < SCHARS (seq);
1618 ++i, ibyte += cbytes)
1619 {
1620 if (STRING_MULTIBYTE (seq))
1621 {
1622 c = STRING_CHAR (SDATA (seq) + ibyte);
1623 cbytes = CHAR_BYTES (c);
1624 }
1625 else
1626 {
1627 c = SREF (seq, i);
1628 cbytes = 1;
1629 }
1630
1631 if (!INTEGERP (elt) || c != XINT (elt))
1632 {
1633 ++nchars;
1634 nbytes += cbytes;
1635 }
1636 }
1637
1638 if (nchars != SCHARS (seq))
1639 {
1640 Lisp_Object tem;
1641
1642 tem = make_uninit_multibyte_string (nchars, nbytes);
1643 if (!STRING_MULTIBYTE (seq))
1644 STRING_SET_UNIBYTE (tem);
1645
1646 for (i = nchars = nbytes = ibyte = 0;
1647 i < SCHARS (seq);
1648 ++i, ibyte += cbytes)
1649 {
1650 if (STRING_MULTIBYTE (seq))
1651 {
1652 c = STRING_CHAR (SDATA (seq) + ibyte);
1653 cbytes = CHAR_BYTES (c);
1654 }
1655 else
1656 {
1657 c = SREF (seq, i);
1658 cbytes = 1;
1659 }
1660
1661 if (!INTEGERP (elt) || c != XINT (elt))
1662 {
1663 unsigned char *from = SDATA (seq) + ibyte;
1664 unsigned char *to = SDATA (tem) + nbytes;
1665 EMACS_INT n;
1666
1667 ++nchars;
1668 nbytes += cbytes;
1669
1670 for (n = cbytes; n--; )
1671 *to++ = *from++;
1672 }
1673 }
1674
1675 seq = tem;
1676 }
1677 }
1678 else
1679 {
1680 Lisp_Object tail, prev;
1681
1682 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1683 {
1684 CHECK_LIST_CONS (tail, seq);
1685
1686 if (!NILP (Fequal (elt, XCAR (tail))))
1687 {
1688 if (NILP (prev))
1689 seq = XCDR (tail);
1690 else
1691 Fsetcdr (prev, XCDR (tail));
1692 }
1693 else
1694 prev = tail;
1695 QUIT;
1696 }
1697 }
1698
1699 return seq;
1700 }
1701
1702 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1703 doc: /* Reverse LIST by modifying cdr pointers.
1704 Return the reversed list. */)
1705 (Lisp_Object list)
1706 {
1707 register Lisp_Object prev, tail, next;
1708
1709 if (NILP (list)) return list;
1710 prev = Qnil;
1711 tail = list;
1712 while (!NILP (tail))
1713 {
1714 QUIT;
1715 CHECK_LIST_CONS (tail, list);
1716 next = XCDR (tail);
1717 Fsetcdr (tail, prev);
1718 prev = tail;
1719 tail = next;
1720 }
1721 return prev;
1722 }
1723
1724 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1725 doc: /* Reverse LIST, copying. Return the reversed list.
1726 See also the function `nreverse', which is used more often. */)
1727 (Lisp_Object list)
1728 {
1729 Lisp_Object new;
1730
1731 for (new = Qnil; CONSP (list); list = XCDR (list))
1732 {
1733 QUIT;
1734 new = Fcons (XCAR (list), new);
1735 }
1736 CHECK_LIST_END (list, list);
1737 return new;
1738 }
1739 \f
1740 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1741
1742 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1743 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1744 Returns the sorted list. LIST is modified by side effects.
1745 PREDICATE is called with two elements of LIST, and should return non-nil
1746 if the first element should sort before the second. */)
1747 (Lisp_Object list, Lisp_Object predicate)
1748 {
1749 Lisp_Object front, back;
1750 register Lisp_Object len, tem;
1751 struct gcpro gcpro1, gcpro2;
1752 register int length;
1753
1754 front = list;
1755 len = Flength (list);
1756 length = XINT (len);
1757 if (length < 2)
1758 return list;
1759
1760 XSETINT (len, (length / 2) - 1);
1761 tem = Fnthcdr (len, list);
1762 back = Fcdr (tem);
1763 Fsetcdr (tem, Qnil);
1764
1765 GCPRO2 (front, back);
1766 front = Fsort (front, predicate);
1767 back = Fsort (back, predicate);
1768 UNGCPRO;
1769 return merge (front, back, predicate);
1770 }
1771
1772 Lisp_Object
1773 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1774 {
1775 Lisp_Object value;
1776 register Lisp_Object tail;
1777 Lisp_Object tem;
1778 register Lisp_Object l1, l2;
1779 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1780
1781 l1 = org_l1;
1782 l2 = org_l2;
1783 tail = Qnil;
1784 value = Qnil;
1785
1786 /* It is sufficient to protect org_l1 and org_l2.
1787 When l1 and l2 are updated, we copy the new values
1788 back into the org_ vars. */
1789 GCPRO4 (org_l1, org_l2, pred, value);
1790
1791 while (1)
1792 {
1793 if (NILP (l1))
1794 {
1795 UNGCPRO;
1796 if (NILP (tail))
1797 return l2;
1798 Fsetcdr (tail, l2);
1799 return value;
1800 }
1801 if (NILP (l2))
1802 {
1803 UNGCPRO;
1804 if (NILP (tail))
1805 return l1;
1806 Fsetcdr (tail, l1);
1807 return value;
1808 }
1809 tem = call2 (pred, Fcar (l2), Fcar (l1));
1810 if (NILP (tem))
1811 {
1812 tem = l1;
1813 l1 = Fcdr (l1);
1814 org_l1 = l1;
1815 }
1816 else
1817 {
1818 tem = l2;
1819 l2 = Fcdr (l2);
1820 org_l2 = l2;
1821 }
1822 if (NILP (tail))
1823 value = tem;
1824 else
1825 Fsetcdr (tail, tem);
1826 tail = tem;
1827 }
1828 }
1829
1830 \f
1831 /* This does not check for quits. That is safe since it must terminate. */
1832
1833 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1834 doc: /* Extract a value from a property list.
1835 PLIST is a property list, which is a list of the form
1836 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1837 corresponding to the given PROP, or nil if PROP is not one of the
1838 properties on the list. This function never signals an error. */)
1839 (Lisp_Object plist, Lisp_Object prop)
1840 {
1841 Lisp_Object tail, halftail;
1842
1843 /* halftail is used to detect circular lists. */
1844 tail = halftail = plist;
1845 while (CONSP (tail) && CONSP (XCDR (tail)))
1846 {
1847 if (EQ (prop, XCAR (tail)))
1848 return XCAR (XCDR (tail));
1849
1850 tail = XCDR (XCDR (tail));
1851 halftail = XCDR (halftail);
1852 if (EQ (tail, halftail))
1853 break;
1854
1855 #if 0 /* Unsafe version. */
1856 /* This function can be called asynchronously
1857 (setup_coding_system). Don't QUIT in that case. */
1858 if (!interrupt_input_blocked)
1859 QUIT;
1860 #endif
1861 }
1862
1863 return Qnil;
1864 }
1865
1866 DEFUN ("get", Fget, Sget, 2, 2, 0,
1867 doc: /* Return the value of SYMBOL's PROPNAME property.
1868 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1869 (Lisp_Object symbol, Lisp_Object propname)
1870 {
1871 CHECK_SYMBOL (symbol);
1872 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1873 }
1874
1875 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1876 doc: /* Change value in PLIST of PROP to VAL.
1877 PLIST is a property list, which is a list of the form
1878 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1879 If PROP is already a property on the list, its value is set to VAL,
1880 otherwise the new PROP VAL pair is added. The new plist is returned;
1881 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1882 The PLIST is modified by side effects. */)
1883 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1884 {
1885 register Lisp_Object tail, prev;
1886 Lisp_Object newcell;
1887 prev = Qnil;
1888 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1889 tail = XCDR (XCDR (tail)))
1890 {
1891 if (EQ (prop, XCAR (tail)))
1892 {
1893 Fsetcar (XCDR (tail), val);
1894 return plist;
1895 }
1896
1897 prev = tail;
1898 QUIT;
1899 }
1900 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1901 if (NILP (prev))
1902 return newcell;
1903 else
1904 Fsetcdr (XCDR (prev), newcell);
1905 return plist;
1906 }
1907
1908 DEFUN ("put", Fput, Sput, 3, 3, 0,
1909 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1910 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1911 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1912 {
1913 CHECK_SYMBOL (symbol);
1914 XSYMBOL (symbol)->plist
1915 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1916 return value;
1917 }
1918 \f
1919 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1920 doc: /* Extract a value from a property list, comparing with `equal'.
1921 PLIST is a property list, which is a list of the form
1922 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1923 corresponding to the given PROP, or nil if PROP is not
1924 one of the properties on the list. */)
1925 (Lisp_Object plist, Lisp_Object prop)
1926 {
1927 Lisp_Object tail;
1928
1929 for (tail = plist;
1930 CONSP (tail) && CONSP (XCDR (tail));
1931 tail = XCDR (XCDR (tail)))
1932 {
1933 if (! NILP (Fequal (prop, XCAR (tail))))
1934 return XCAR (XCDR (tail));
1935
1936 QUIT;
1937 }
1938
1939 CHECK_LIST_END (tail, prop);
1940
1941 return Qnil;
1942 }
1943
1944 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1945 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1946 PLIST is a property list, which is a list of the form
1947 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1948 If PROP is already a property on the list, its value is set to VAL,
1949 otherwise the new PROP VAL pair is added. The new plist is returned;
1950 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1951 The PLIST is modified by side effects. */)
1952 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1953 {
1954 register Lisp_Object tail, prev;
1955 Lisp_Object newcell;
1956 prev = Qnil;
1957 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1958 tail = XCDR (XCDR (tail)))
1959 {
1960 if (! NILP (Fequal (prop, XCAR (tail))))
1961 {
1962 Fsetcar (XCDR (tail), val);
1963 return plist;
1964 }
1965
1966 prev = tail;
1967 QUIT;
1968 }
1969 newcell = Fcons (prop, Fcons (val, Qnil));
1970 if (NILP (prev))
1971 return newcell;
1972 else
1973 Fsetcdr (XCDR (prev), newcell);
1974 return plist;
1975 }
1976 \f
1977 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1978 doc: /* Return t if the two args are the same Lisp object.
1979 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1980 (Lisp_Object obj1, Lisp_Object obj2)
1981 {
1982 if (FLOATP (obj1))
1983 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1984 else
1985 return EQ (obj1, obj2) ? Qt : Qnil;
1986 }
1987
1988 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1989 doc: /* Return t if two Lisp objects have similar structure and contents.
1990 They must have the same data type.
1991 Conses are compared by comparing the cars and the cdrs.
1992 Vectors and strings are compared element by element.
1993 Numbers are compared by value, but integers cannot equal floats.
1994 (Use `=' if you want integers and floats to be able to be equal.)
1995 Symbols must match exactly. */)
1996 (register Lisp_Object o1, Lisp_Object o2)
1997 {
1998 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1999 }
2000
2001 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2002 doc: /* Return t if two Lisp objects have similar structure and contents.
2003 This is like `equal' except that it compares the text properties
2004 of strings. (`equal' ignores text properties.) */)
2005 (register Lisp_Object o1, Lisp_Object o2)
2006 {
2007 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2008 }
2009
2010 /* DEPTH is current depth of recursion. Signal an error if it
2011 gets too deep.
2012 PROPS, if non-nil, means compare string text properties too. */
2013
2014 static int
2015 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2016 {
2017 if (depth > 200)
2018 error ("Stack overflow in equal");
2019
2020 tail_recurse:
2021 QUIT;
2022 if (EQ (o1, o2))
2023 return 1;
2024 if (XTYPE (o1) != XTYPE (o2))
2025 return 0;
2026
2027 switch (XTYPE (o1))
2028 {
2029 case Lisp_Float:
2030 {
2031 double d1, d2;
2032
2033 d1 = extract_float (o1);
2034 d2 = extract_float (o2);
2035 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2036 though they are not =. */
2037 return d1 == d2 || (d1 != d1 && d2 != d2);
2038 }
2039
2040 case Lisp_Cons:
2041 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2042 return 0;
2043 o1 = XCDR (o1);
2044 o2 = XCDR (o2);
2045 goto tail_recurse;
2046
2047 case Lisp_Misc:
2048 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2049 return 0;
2050 if (OVERLAYP (o1))
2051 {
2052 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2053 depth + 1, props)
2054 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2055 depth + 1, props))
2056 return 0;
2057 o1 = XOVERLAY (o1)->plist;
2058 o2 = XOVERLAY (o2)->plist;
2059 goto tail_recurse;
2060 }
2061 if (MARKERP (o1))
2062 {
2063 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2064 && (XMARKER (o1)->buffer == 0
2065 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2066 }
2067 break;
2068
2069 case Lisp_Vectorlike:
2070 {
2071 register int i;
2072 EMACS_INT size = ASIZE (o1);
2073 /* Pseudovectors have the type encoded in the size field, so this test
2074 actually checks that the objects have the same type as well as the
2075 same size. */
2076 if (ASIZE (o2) != size)
2077 return 0;
2078 /* Boolvectors are compared much like strings. */
2079 if (BOOL_VECTOR_P (o1))
2080 {
2081 int size_in_chars
2082 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2083 / BOOL_VECTOR_BITS_PER_CHAR);
2084
2085 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2086 return 0;
2087 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2088 size_in_chars))
2089 return 0;
2090 return 1;
2091 }
2092 if (WINDOW_CONFIGURATIONP (o1))
2093 return compare_window_configurations (o1, o2, 0);
2094
2095 /* Aside from them, only true vectors, char-tables, function vectors,
2096 and fonts (font-spec, font-entity, font-ojbect) are sensible to
2097 compare, so eliminate the others now. */
2098 if (size & PSEUDOVECTOR_FLAG)
2099 {
2100 if (!(size & (PVEC_FUNVEC
2101 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE
2102 | PVEC_FONT)))
2103 return 0;
2104 size &= PSEUDOVECTOR_SIZE_MASK;
2105 }
2106 for (i = 0; i < size; i++)
2107 {
2108 Lisp_Object v1, v2;
2109 v1 = AREF (o1, i);
2110 v2 = AREF (o2, i);
2111 if (!internal_equal (v1, v2, depth + 1, props))
2112 return 0;
2113 }
2114 return 1;
2115 }
2116 break;
2117
2118 case Lisp_String:
2119 if (SCHARS (o1) != SCHARS (o2))
2120 return 0;
2121 if (SBYTES (o1) != SBYTES (o2))
2122 return 0;
2123 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2124 return 0;
2125 if (props && !compare_string_intervals (o1, o2))
2126 return 0;
2127 return 1;
2128
2129 default:
2130 break;
2131 }
2132
2133 return 0;
2134 }
2135 \f
2136
2137 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2138 doc: /* Store each element of ARRAY with ITEM.
2139 ARRAY is a vector, string, char-table, or bool-vector. */)
2140 (Lisp_Object array, Lisp_Object item)
2141 {
2142 register EMACS_INT size, index;
2143 int charval;
2144
2145 if (VECTORP (array))
2146 {
2147 register Lisp_Object *p = XVECTOR (array)->contents;
2148 size = ASIZE (array);
2149 for (index = 0; index < size; index++)
2150 p[index] = item;
2151 }
2152 else if (CHAR_TABLE_P (array))
2153 {
2154 int i;
2155
2156 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2157 XCHAR_TABLE (array)->contents[i] = item;
2158 XCHAR_TABLE (array)->defalt = item;
2159 }
2160 else if (STRINGP (array))
2161 {
2162 register unsigned char *p = SDATA (array);
2163 CHECK_NUMBER (item);
2164 charval = XINT (item);
2165 size = SCHARS (array);
2166 if (STRING_MULTIBYTE (array))
2167 {
2168 unsigned char str[MAX_MULTIBYTE_LENGTH];
2169 int len = CHAR_STRING (charval, str);
2170 EMACS_INT size_byte = SBYTES (array);
2171 unsigned char *p1 = p, *endp = p + size_byte;
2172 int i;
2173
2174 if (size != size_byte)
2175 while (p1 < endp)
2176 {
2177 int this_len = BYTES_BY_CHAR_HEAD (*p1);
2178 if (len != this_len)
2179 error ("Attempt to change byte length of a string");
2180 p1 += this_len;
2181 }
2182 for (i = 0; i < size_byte; i++)
2183 *p++ = str[i % len];
2184 }
2185 else
2186 for (index = 0; index < size; index++)
2187 p[index] = charval;
2188 }
2189 else if (BOOL_VECTOR_P (array))
2190 {
2191 register unsigned char *p = XBOOL_VECTOR (array)->data;
2192 int size_in_chars
2193 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2194 / BOOL_VECTOR_BITS_PER_CHAR);
2195
2196 charval = (! NILP (item) ? -1 : 0);
2197 for (index = 0; index < size_in_chars - 1; index++)
2198 p[index] = charval;
2199 if (index < size_in_chars)
2200 {
2201 /* Mask out bits beyond the vector size. */
2202 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2203 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2204 p[index] = charval;
2205 }
2206 }
2207 else
2208 wrong_type_argument (Qarrayp, array);
2209 return array;
2210 }
2211
2212 DEFUN ("clear-string", Fclear_string, Sclear_string,
2213 1, 1, 0,
2214 doc: /* Clear the contents of STRING.
2215 This makes STRING unibyte and may change its length. */)
2216 (Lisp_Object string)
2217 {
2218 EMACS_INT len;
2219 CHECK_STRING (string);
2220 len = SBYTES (string);
2221 memset (SDATA (string), 0, len);
2222 STRING_SET_CHARS (string, len);
2223 STRING_SET_UNIBYTE (string);
2224 return Qnil;
2225 }
2226 \f
2227 /* ARGSUSED */
2228 Lisp_Object
2229 nconc2 (Lisp_Object s1, Lisp_Object s2)
2230 {
2231 Lisp_Object args[2];
2232 args[0] = s1;
2233 args[1] = s2;
2234 return Fnconc (2, args);
2235 }
2236
2237 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2238 doc: /* Concatenate any number of lists by altering them.
2239 Only the last argument is not altered, and need not be a list.
2240 usage: (nconc &rest LISTS) */)
2241 (int nargs, Lisp_Object *args)
2242 {
2243 register int argnum;
2244 register Lisp_Object tail, tem, val;
2245
2246 val = tail = Qnil;
2247
2248 for (argnum = 0; argnum < nargs; argnum++)
2249 {
2250 tem = args[argnum];
2251 if (NILP (tem)) continue;
2252
2253 if (NILP (val))
2254 val = tem;
2255
2256 if (argnum + 1 == nargs) break;
2257
2258 CHECK_LIST_CONS (tem, tem);
2259
2260 while (CONSP (tem))
2261 {
2262 tail = tem;
2263 tem = XCDR (tail);
2264 QUIT;
2265 }
2266
2267 tem = args[argnum + 1];
2268 Fsetcdr (tail, tem);
2269 if (NILP (tem))
2270 args[argnum + 1] = tail;
2271 }
2272
2273 return val;
2274 }
2275 \f
2276 /* This is the guts of all mapping functions.
2277 Apply FN to each element of SEQ, one by one,
2278 storing the results into elements of VALS, a C vector of Lisp_Objects.
2279 LENI is the length of VALS, which should also be the length of SEQ. */
2280
2281 static void
2282 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2283 {
2284 register Lisp_Object tail;
2285 Lisp_Object dummy;
2286 register EMACS_INT i;
2287 struct gcpro gcpro1, gcpro2, gcpro3;
2288
2289 if (vals)
2290 {
2291 /* Don't let vals contain any garbage when GC happens. */
2292 for (i = 0; i < leni; i++)
2293 vals[i] = Qnil;
2294
2295 GCPRO3 (dummy, fn, seq);
2296 gcpro1.var = vals;
2297 gcpro1.nvars = leni;
2298 }
2299 else
2300 GCPRO2 (fn, seq);
2301 /* We need not explicitly protect `tail' because it is used only on lists, and
2302 1) lists are not relocated and 2) the list is marked via `seq' so will not
2303 be freed */
2304
2305 if (VECTORP (seq) || FUNVECP (seq))
2306 {
2307 for (i = 0; i < leni; i++)
2308 {
2309 dummy = call1 (fn, AREF (seq, i));
2310 if (vals)
2311 vals[i] = dummy;
2312 }
2313 }
2314 else if (BOOL_VECTOR_P (seq))
2315 {
2316 for (i = 0; i < leni; i++)
2317 {
2318 int byte;
2319 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2320 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2321 dummy = call1 (fn, dummy);
2322 if (vals)
2323 vals[i] = dummy;
2324 }
2325 }
2326 else if (STRINGP (seq))
2327 {
2328 EMACS_INT i_byte;
2329
2330 for (i = 0, i_byte = 0; i < leni;)
2331 {
2332 int c;
2333 EMACS_INT i_before = i;
2334
2335 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2336 XSETFASTINT (dummy, c);
2337 dummy = call1 (fn, dummy);
2338 if (vals)
2339 vals[i_before] = dummy;
2340 }
2341 }
2342 else /* Must be a list, since Flength did not get an error */
2343 {
2344 tail = seq;
2345 for (i = 0; i < leni && CONSP (tail); i++)
2346 {
2347 dummy = call1 (fn, XCAR (tail));
2348 if (vals)
2349 vals[i] = dummy;
2350 tail = XCDR (tail);
2351 }
2352 }
2353
2354 UNGCPRO;
2355 }
2356
2357 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2358 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2359 In between each pair of results, stick in SEPARATOR. Thus, " " as
2360 SEPARATOR results in spaces between the values returned by FUNCTION.
2361 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2362 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2363 {
2364 Lisp_Object len;
2365 register EMACS_INT leni;
2366 int nargs;
2367 register Lisp_Object *args;
2368 register EMACS_INT i;
2369 struct gcpro gcpro1;
2370 Lisp_Object ret;
2371 USE_SAFE_ALLOCA;
2372
2373 len = Flength (sequence);
2374 if (CHAR_TABLE_P (sequence))
2375 wrong_type_argument (Qlistp, sequence);
2376 leni = XINT (len);
2377 nargs = leni + leni - 1;
2378 if (nargs < 0) return empty_unibyte_string;
2379
2380 SAFE_ALLOCA_LISP (args, nargs);
2381
2382 GCPRO1 (separator);
2383 mapcar1 (leni, args, function, sequence);
2384 UNGCPRO;
2385
2386 for (i = leni - 1; i > 0; i--)
2387 args[i + i] = args[i];
2388
2389 for (i = 1; i < nargs; i += 2)
2390 args[i] = separator;
2391
2392 ret = Fconcat (nargs, args);
2393 SAFE_FREE ();
2394
2395 return ret;
2396 }
2397
2398 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2399 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2400 The result is a list just as long as SEQUENCE.
2401 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2402 (Lisp_Object function, Lisp_Object sequence)
2403 {
2404 register Lisp_Object len;
2405 register EMACS_INT leni;
2406 register Lisp_Object *args;
2407 Lisp_Object ret;
2408 USE_SAFE_ALLOCA;
2409
2410 len = Flength (sequence);
2411 if (CHAR_TABLE_P (sequence))
2412 wrong_type_argument (Qlistp, sequence);
2413 leni = XFASTINT (len);
2414
2415 SAFE_ALLOCA_LISP (args, leni);
2416
2417 mapcar1 (leni, args, function, sequence);
2418
2419 ret = Flist (leni, args);
2420 SAFE_FREE ();
2421
2422 return ret;
2423 }
2424
2425 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2426 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2427 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2428 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2429 (Lisp_Object function, Lisp_Object sequence)
2430 {
2431 register EMACS_INT leni;
2432
2433 leni = XFASTINT (Flength (sequence));
2434 if (CHAR_TABLE_P (sequence))
2435 wrong_type_argument (Qlistp, sequence);
2436 mapcar1 (leni, 0, function, sequence);
2437
2438 return sequence;
2439 }
2440 \f
2441 /* This is how C code calls `yes-or-no-p' and allows the user
2442 to redefined it.
2443
2444 Anything that calls this function must protect from GC! */
2445
2446 Lisp_Object
2447 do_yes_or_no_p (Lisp_Object prompt)
2448 {
2449 return call1 (intern ("yes-or-no-p"), prompt);
2450 }
2451
2452 /* Anything that calls this function must protect from GC! */
2453
2454 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2455 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2456 PROMPT is the string to display to ask the question. It should end in
2457 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2458
2459 The user must confirm the answer with RET, and can edit it until it
2460 has been confirmed.
2461
2462 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2463 is nil, and `use-dialog-box' is non-nil. */)
2464 (Lisp_Object prompt)
2465 {
2466 register Lisp_Object ans;
2467 Lisp_Object args[2];
2468 struct gcpro gcpro1;
2469
2470 CHECK_STRING (prompt);
2471
2472 #ifdef HAVE_MENUS
2473 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2474 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2475 && use_dialog_box
2476 && have_menus_p ())
2477 {
2478 Lisp_Object pane, menu, obj;
2479 redisplay_preserve_echo_area (4);
2480 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2481 Fcons (Fcons (build_string ("No"), Qnil),
2482 Qnil));
2483 GCPRO1 (pane);
2484 menu = Fcons (prompt, pane);
2485 obj = Fx_popup_dialog (Qt, menu, Qnil);
2486 UNGCPRO;
2487 return obj;
2488 }
2489 #endif /* HAVE_MENUS */
2490
2491 args[0] = prompt;
2492 args[1] = build_string ("(yes or no) ");
2493 prompt = Fconcat (2, args);
2494
2495 GCPRO1 (prompt);
2496
2497 while (1)
2498 {
2499 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2500 Qyes_or_no_p_history, Qnil,
2501 Qnil));
2502 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2503 {
2504 UNGCPRO;
2505 return Qt;
2506 }
2507 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2508 {
2509 UNGCPRO;
2510 return Qnil;
2511 }
2512
2513 Fding (Qnil);
2514 Fdiscard_input ();
2515 message ("Please answer yes or no.");
2516 Fsleep_for (make_number (2), Qnil);
2517 }
2518 }
2519 \f
2520 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2521 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2522
2523 Each of the three load averages is multiplied by 100, then converted
2524 to integer.
2525
2526 When USE-FLOATS is non-nil, floats will be used instead of integers.
2527 These floats are not multiplied by 100.
2528
2529 If the 5-minute or 15-minute load averages are not available, return a
2530 shortened list, containing only those averages which are available.
2531
2532 An error is thrown if the load average can't be obtained. In some
2533 cases making it work would require Emacs being installed setuid or
2534 setgid so that it can read kernel information, and that usually isn't
2535 advisable. */)
2536 (Lisp_Object use_floats)
2537 {
2538 double load_ave[3];
2539 int loads = getloadavg (load_ave, 3);
2540 Lisp_Object ret = Qnil;
2541
2542 if (loads < 0)
2543 error ("load-average not implemented for this operating system");
2544
2545 while (loads-- > 0)
2546 {
2547 Lisp_Object load = (NILP (use_floats) ?
2548 make_number ((int) (100.0 * load_ave[loads]))
2549 : make_float (load_ave[loads]));
2550 ret = Fcons (load, ret);
2551 }
2552
2553 return ret;
2554 }
2555 \f
2556 Lisp_Object Qsubfeatures;
2557
2558 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2559 doc: /* Return t if FEATURE is present in this Emacs.
2560
2561 Use this to conditionalize execution of lisp code based on the
2562 presence or absence of Emacs or environment extensions.
2563 Use `provide' to declare that a feature is available. This function
2564 looks at the value of the variable `features'. The optional argument
2565 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2566 (Lisp_Object feature, Lisp_Object subfeature)
2567 {
2568 register Lisp_Object tem;
2569 CHECK_SYMBOL (feature);
2570 tem = Fmemq (feature, Vfeatures);
2571 if (!NILP (tem) && !NILP (subfeature))
2572 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2573 return (NILP (tem)) ? Qnil : Qt;
2574 }
2575
2576 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2577 doc: /* Announce that FEATURE is a feature of the current Emacs.
2578 The optional argument SUBFEATURES should be a list of symbols listing
2579 particular subfeatures supported in this version of FEATURE. */)
2580 (Lisp_Object feature, Lisp_Object subfeatures)
2581 {
2582 register Lisp_Object tem;
2583 CHECK_SYMBOL (feature);
2584 CHECK_LIST (subfeatures);
2585 if (!NILP (Vautoload_queue))
2586 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2587 Vautoload_queue);
2588 tem = Fmemq (feature, Vfeatures);
2589 if (NILP (tem))
2590 Vfeatures = Fcons (feature, Vfeatures);
2591 if (!NILP (subfeatures))
2592 Fput (feature, Qsubfeatures, subfeatures);
2593 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2594
2595 /* Run any load-hooks for this file. */
2596 tem = Fassq (feature, Vafter_load_alist);
2597 if (CONSP (tem))
2598 Fprogn (XCDR (tem));
2599
2600 return feature;
2601 }
2602 \f
2603 /* `require' and its subroutines. */
2604
2605 /* List of features currently being require'd, innermost first. */
2606
2607 Lisp_Object require_nesting_list;
2608
2609 Lisp_Object
2610 require_unwind (Lisp_Object old_value)
2611 {
2612 return require_nesting_list = old_value;
2613 }
2614
2615 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2616 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2617 If FEATURE is not a member of the list `features', then the feature
2618 is not loaded; so load the file FILENAME.
2619 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2620 and `load' will try to load this name appended with the suffix `.elc' or
2621 `.el', in that order. The name without appended suffix will not be used.
2622 If the optional third argument NOERROR is non-nil,
2623 then return nil if the file is not found instead of signaling an error.
2624 Normally the return value is FEATURE.
2625 The normal messages at start and end of loading FILENAME are suppressed. */)
2626 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2627 {
2628 register Lisp_Object tem;
2629 struct gcpro gcpro1, gcpro2;
2630 int from_file = load_in_progress;
2631
2632 CHECK_SYMBOL (feature);
2633
2634 /* Record the presence of `require' in this file
2635 even if the feature specified is already loaded.
2636 But not more than once in any file,
2637 and not when we aren't loading or reading from a file. */
2638 if (!from_file)
2639 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2640 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2641 from_file = 1;
2642
2643 if (from_file)
2644 {
2645 tem = Fcons (Qrequire, feature);
2646 if (NILP (Fmember (tem, Vcurrent_load_list)))
2647 LOADHIST_ATTACH (tem);
2648 }
2649 tem = Fmemq (feature, Vfeatures);
2650
2651 if (NILP (tem))
2652 {
2653 int count = SPECPDL_INDEX ();
2654 int nesting = 0;
2655
2656 /* This is to make sure that loadup.el gives a clear picture
2657 of what files are preloaded and when. */
2658 if (! NILP (Vpurify_flag))
2659 error ("(require %s) while preparing to dump",
2660 SDATA (SYMBOL_NAME (feature)));
2661
2662 /* A certain amount of recursive `require' is legitimate,
2663 but if we require the same feature recursively 3 times,
2664 signal an error. */
2665 tem = require_nesting_list;
2666 while (! NILP (tem))
2667 {
2668 if (! NILP (Fequal (feature, XCAR (tem))))
2669 nesting++;
2670 tem = XCDR (tem);
2671 }
2672 if (nesting > 3)
2673 error ("Recursive `require' for feature `%s'",
2674 SDATA (SYMBOL_NAME (feature)));
2675
2676 /* Update the list for any nested `require's that occur. */
2677 record_unwind_protect (require_unwind, require_nesting_list);
2678 require_nesting_list = Fcons (feature, require_nesting_list);
2679
2680 /* Value saved here is to be restored into Vautoload_queue */
2681 record_unwind_protect (un_autoload, Vautoload_queue);
2682 Vautoload_queue = Qt;
2683
2684 /* Load the file. */
2685 GCPRO2 (feature, filename);
2686 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2687 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2688 UNGCPRO;
2689
2690 /* If load failed entirely, return nil. */
2691 if (NILP (tem))
2692 return unbind_to (count, Qnil);
2693
2694 tem = Fmemq (feature, Vfeatures);
2695 if (NILP (tem))
2696 error ("Required feature `%s' was not provided",
2697 SDATA (SYMBOL_NAME (feature)));
2698
2699 /* Once loading finishes, don't undo it. */
2700 Vautoload_queue = Qt;
2701 feature = unbind_to (count, feature);
2702 }
2703
2704 return feature;
2705 }
2706 \f
2707 /* Primitives for work of the "widget" library.
2708 In an ideal world, this section would not have been necessary.
2709 However, lisp function calls being as slow as they are, it turns
2710 out that some functions in the widget library (wid-edit.el) are the
2711 bottleneck of Widget operation. Here is their translation to C,
2712 for the sole reason of efficiency. */
2713
2714 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2715 doc: /* Return non-nil if PLIST has the property PROP.
2716 PLIST is a property list, which is a list of the form
2717 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2718 Unlike `plist-get', this allows you to distinguish between a missing
2719 property and a property with the value nil.
2720 The value is actually the tail of PLIST whose car is PROP. */)
2721 (Lisp_Object plist, Lisp_Object prop)
2722 {
2723 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2724 {
2725 QUIT;
2726 plist = XCDR (plist);
2727 plist = CDR (plist);
2728 }
2729 return plist;
2730 }
2731
2732 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2733 doc: /* In WIDGET, set PROPERTY to VALUE.
2734 The value can later be retrieved with `widget-get'. */)
2735 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2736 {
2737 CHECK_CONS (widget);
2738 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2739 return value;
2740 }
2741
2742 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2743 doc: /* In WIDGET, get the value of PROPERTY.
2744 The value could either be specified when the widget was created, or
2745 later with `widget-put'. */)
2746 (Lisp_Object widget, Lisp_Object property)
2747 {
2748 Lisp_Object tmp;
2749
2750 while (1)
2751 {
2752 if (NILP (widget))
2753 return Qnil;
2754 CHECK_CONS (widget);
2755 tmp = Fplist_member (XCDR (widget), property);
2756 if (CONSP (tmp))
2757 {
2758 tmp = XCDR (tmp);
2759 return CAR (tmp);
2760 }
2761 tmp = XCAR (widget);
2762 if (NILP (tmp))
2763 return Qnil;
2764 widget = Fget (tmp, Qwidget_type);
2765 }
2766 }
2767
2768 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2769 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2770 ARGS are passed as extra arguments to the function.
2771 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2772 (int nargs, Lisp_Object *args)
2773 {
2774 /* This function can GC. */
2775 Lisp_Object newargs[3];
2776 struct gcpro gcpro1, gcpro2;
2777 Lisp_Object result;
2778
2779 newargs[0] = Fwidget_get (args[0], args[1]);
2780 newargs[1] = args[0];
2781 newargs[2] = Flist (nargs - 2, args + 2);
2782 GCPRO2 (newargs[0], newargs[2]);
2783 result = Fapply (3, newargs);
2784 UNGCPRO;
2785 return result;
2786 }
2787
2788 #ifdef HAVE_LANGINFO_CODESET
2789 #include <langinfo.h>
2790 #endif
2791
2792 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2793 doc: /* Access locale data ITEM for the current C locale, if available.
2794 ITEM should be one of the following:
2795
2796 `codeset', returning the character set as a string (locale item CODESET);
2797
2798 `days', returning a 7-element vector of day names (locale items DAY_n);
2799
2800 `months', returning a 12-element vector of month names (locale items MON_n);
2801
2802 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2803 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2804
2805 If the system can't provide such information through a call to
2806 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2807
2808 See also Info node `(libc)Locales'.
2809
2810 The data read from the system are decoded using `locale-coding-system'. */)
2811 (Lisp_Object item)
2812 {
2813 char *str = NULL;
2814 #ifdef HAVE_LANGINFO_CODESET
2815 Lisp_Object val;
2816 if (EQ (item, Qcodeset))
2817 {
2818 str = nl_langinfo (CODESET);
2819 return build_string (str);
2820 }
2821 #ifdef DAY_1
2822 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2823 {
2824 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2825 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2826 int i;
2827 struct gcpro gcpro1;
2828 GCPRO1 (v);
2829 synchronize_system_time_locale ();
2830 for (i = 0; i < 7; i++)
2831 {
2832 str = nl_langinfo (days[i]);
2833 val = make_unibyte_string (str, strlen (str));
2834 /* Fixme: Is this coding system necessarily right, even if
2835 it is consistent with CODESET? If not, what to do? */
2836 Faset (v, make_number (i),
2837 code_convert_string_norecord (val, Vlocale_coding_system,
2838 0));
2839 }
2840 UNGCPRO;
2841 return v;
2842 }
2843 #endif /* DAY_1 */
2844 #ifdef MON_1
2845 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2846 {
2847 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2848 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2849 MON_8, MON_9, MON_10, MON_11, MON_12};
2850 int i;
2851 struct gcpro gcpro1;
2852 GCPRO1 (v);
2853 synchronize_system_time_locale ();
2854 for (i = 0; i < 12; i++)
2855 {
2856 str = nl_langinfo (months[i]);
2857 val = make_unibyte_string (str, strlen (str));
2858 Faset (v, make_number (i),
2859 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2860 }
2861 UNGCPRO;
2862 return v;
2863 }
2864 #endif /* MON_1 */
2865 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2866 but is in the locale files. This could be used by ps-print. */
2867 #ifdef PAPER_WIDTH
2868 else if (EQ (item, Qpaper))
2869 {
2870 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2871 make_number (nl_langinfo (PAPER_HEIGHT)));
2872 }
2873 #endif /* PAPER_WIDTH */
2874 #endif /* HAVE_LANGINFO_CODESET*/
2875 return Qnil;
2876 }
2877 \f
2878 /* base64 encode/decode functions (RFC 2045).
2879 Based on code from GNU recode. */
2880
2881 #define MIME_LINE_LENGTH 76
2882
2883 #define IS_ASCII(Character) \
2884 ((Character) < 128)
2885 #define IS_BASE64(Character) \
2886 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2887 #define IS_BASE64_IGNORABLE(Character) \
2888 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2889 || (Character) == '\f' || (Character) == '\r')
2890
2891 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2892 character or return retval if there are no characters left to
2893 process. */
2894 #define READ_QUADRUPLET_BYTE(retval) \
2895 do \
2896 { \
2897 if (i == length) \
2898 { \
2899 if (nchars_return) \
2900 *nchars_return = nchars; \
2901 return (retval); \
2902 } \
2903 c = from[i++]; \
2904 } \
2905 while (IS_BASE64_IGNORABLE (c))
2906
2907 /* Table of characters coding the 64 values. */
2908 static const char base64_value_to_char[64] =
2909 {
2910 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2911 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2912 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2913 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2914 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2915 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2916 '8', '9', '+', '/' /* 60-63 */
2917 };
2918
2919 /* Table of base64 values for first 128 characters. */
2920 static const short base64_char_to_value[128] =
2921 {
2922 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2923 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2924 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2925 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2926 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2927 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2928 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2929 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2930 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2931 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2932 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2933 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2934 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2935 };
2936
2937 /* The following diagram shows the logical steps by which three octets
2938 get transformed into four base64 characters.
2939
2940 .--------. .--------. .--------.
2941 |aaaaaabb| |bbbbcccc| |ccdddddd|
2942 `--------' `--------' `--------'
2943 6 2 4 4 2 6
2944 .--------+--------+--------+--------.
2945 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2946 `--------+--------+--------+--------'
2947
2948 .--------+--------+--------+--------.
2949 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2950 `--------+--------+--------+--------'
2951
2952 The octets are divided into 6 bit chunks, which are then encoded into
2953 base64 characters. */
2954
2955
2956 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2957 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2958 EMACS_INT *);
2959
2960 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2961 2, 3, "r",
2962 doc: /* Base64-encode the region between BEG and END.
2963 Return the length of the encoded text.
2964 Optional third argument NO-LINE-BREAK means do not break long lines
2965 into shorter lines. */)
2966 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2967 {
2968 char *encoded;
2969 EMACS_INT allength, length;
2970 EMACS_INT ibeg, iend, encoded_length;
2971 EMACS_INT old_pos = PT;
2972 USE_SAFE_ALLOCA;
2973
2974 validate_region (&beg, &end);
2975
2976 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2977 iend = CHAR_TO_BYTE (XFASTINT (end));
2978 move_gap_both (XFASTINT (beg), ibeg);
2979
2980 /* We need to allocate enough room for encoding the text.
2981 We need 33 1/3% more space, plus a newline every 76
2982 characters, and then we round up. */
2983 length = iend - ibeg;
2984 allength = length + length/3 + 1;
2985 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2986
2987 SAFE_ALLOCA (encoded, char *, allength);
2988 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2989 encoded, length, NILP (no_line_break),
2990 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2991 if (encoded_length > allength)
2992 abort ();
2993
2994 if (encoded_length < 0)
2995 {
2996 /* The encoding wasn't possible. */
2997 SAFE_FREE ();
2998 error ("Multibyte character in data for base64 encoding");
2999 }
3000
3001 /* Now we have encoded the region, so we insert the new contents
3002 and delete the old. (Insert first in order to preserve markers.) */
3003 SET_PT_BOTH (XFASTINT (beg), ibeg);
3004 insert (encoded, encoded_length);
3005 SAFE_FREE ();
3006 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3007
3008 /* If point was outside of the region, restore it exactly; else just
3009 move to the beginning of the region. */
3010 if (old_pos >= XFASTINT (end))
3011 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3012 else if (old_pos > XFASTINT (beg))
3013 old_pos = XFASTINT (beg);
3014 SET_PT (old_pos);
3015
3016 /* We return the length of the encoded text. */
3017 return make_number (encoded_length);
3018 }
3019
3020 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3021 1, 2, 0,
3022 doc: /* Base64-encode STRING and return the result.
3023 Optional second argument NO-LINE-BREAK means do not break long lines
3024 into shorter lines. */)
3025 (Lisp_Object string, Lisp_Object no_line_break)
3026 {
3027 EMACS_INT allength, length, encoded_length;
3028 char *encoded;
3029 Lisp_Object encoded_string;
3030 USE_SAFE_ALLOCA;
3031
3032 CHECK_STRING (string);
3033
3034 /* We need to allocate enough room for encoding the text.
3035 We need 33 1/3% more space, plus a newline every 76
3036 characters, and then we round up. */
3037 length = SBYTES (string);
3038 allength = length + length/3 + 1;
3039 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3040
3041 /* We need to allocate enough room for decoding the text. */
3042 SAFE_ALLOCA (encoded, char *, allength);
3043
3044 encoded_length = base64_encode_1 (SSDATA (string),
3045 encoded, length, NILP (no_line_break),
3046 STRING_MULTIBYTE (string));
3047 if (encoded_length > allength)
3048 abort ();
3049
3050 if (encoded_length < 0)
3051 {
3052 /* The encoding wasn't possible. */
3053 SAFE_FREE ();
3054 error ("Multibyte character in data for base64 encoding");
3055 }
3056
3057 encoded_string = make_unibyte_string (encoded, encoded_length);
3058 SAFE_FREE ();
3059
3060 return encoded_string;
3061 }
3062
3063 static EMACS_INT
3064 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3065 int line_break, int multibyte)
3066 {
3067 int counter = 0;
3068 EMACS_INT i = 0;
3069 char *e = to;
3070 int c;
3071 unsigned int value;
3072 int bytes;
3073
3074 while (i < length)
3075 {
3076 if (multibyte)
3077 {
3078 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3079 if (CHAR_BYTE8_P (c))
3080 c = CHAR_TO_BYTE8 (c);
3081 else if (c >= 256)
3082 return -1;
3083 i += bytes;
3084 }
3085 else
3086 c = from[i++];
3087
3088 /* Wrap line every 76 characters. */
3089
3090 if (line_break)
3091 {
3092 if (counter < MIME_LINE_LENGTH / 4)
3093 counter++;
3094 else
3095 {
3096 *e++ = '\n';
3097 counter = 1;
3098 }
3099 }
3100
3101 /* Process first byte of a triplet. */
3102
3103 *e++ = base64_value_to_char[0x3f & c >> 2];
3104 value = (0x03 & c) << 4;
3105
3106 /* Process second byte of a triplet. */
3107
3108 if (i == length)
3109 {
3110 *e++ = base64_value_to_char[value];
3111 *e++ = '=';
3112 *e++ = '=';
3113 break;
3114 }
3115
3116 if (multibyte)
3117 {
3118 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3119 if (CHAR_BYTE8_P (c))
3120 c = CHAR_TO_BYTE8 (c);
3121 else if (c >= 256)
3122 return -1;
3123 i += bytes;
3124 }
3125 else
3126 c = from[i++];
3127
3128 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3129 value = (0x0f & c) << 2;
3130
3131 /* Process third byte of a triplet. */
3132
3133 if (i == length)
3134 {
3135 *e++ = base64_value_to_char[value];
3136 *e++ = '=';
3137 break;
3138 }
3139
3140 if (multibyte)
3141 {
3142 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3143 if (CHAR_BYTE8_P (c))
3144 c = CHAR_TO_BYTE8 (c);
3145 else if (c >= 256)
3146 return -1;
3147 i += bytes;
3148 }
3149 else
3150 c = from[i++];
3151
3152 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3153 *e++ = base64_value_to_char[0x3f & c];
3154 }
3155
3156 return e - to;
3157 }
3158
3159
3160 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3161 2, 2, "r",
3162 doc: /* Base64-decode the region between BEG and END.
3163 Return the length of the decoded text.
3164 If the region can't be decoded, signal an error and don't modify the buffer. */)
3165 (Lisp_Object beg, Lisp_Object end)
3166 {
3167 EMACS_INT ibeg, iend, length, allength;
3168 char *decoded;
3169 EMACS_INT old_pos = PT;
3170 EMACS_INT decoded_length;
3171 EMACS_INT inserted_chars;
3172 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3173 USE_SAFE_ALLOCA;
3174
3175 validate_region (&beg, &end);
3176
3177 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3178 iend = CHAR_TO_BYTE (XFASTINT (end));
3179
3180 length = iend - ibeg;
3181
3182 /* We need to allocate enough room for decoding the text. If we are
3183 working on a multibyte buffer, each decoded code may occupy at
3184 most two bytes. */
3185 allength = multibyte ? length * 2 : length;
3186 SAFE_ALLOCA (decoded, char *, allength);
3187
3188 move_gap_both (XFASTINT (beg), ibeg);
3189 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3190 decoded, length,
3191 multibyte, &inserted_chars);
3192 if (decoded_length > allength)
3193 abort ();
3194
3195 if (decoded_length < 0)
3196 {
3197 /* The decoding wasn't possible. */
3198 SAFE_FREE ();
3199 error ("Invalid base64 data");
3200 }
3201
3202 /* Now we have decoded the region, so we insert the new contents
3203 and delete the old. (Insert first in order to preserve markers.) */
3204 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3205 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3206 SAFE_FREE ();
3207
3208 /* Delete the original text. */
3209 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3210 iend + decoded_length, 1);
3211
3212 /* If point was outside of the region, restore it exactly; else just
3213 move to the beginning of the region. */
3214 if (old_pos >= XFASTINT (end))
3215 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3216 else if (old_pos > XFASTINT (beg))
3217 old_pos = XFASTINT (beg);
3218 SET_PT (old_pos > ZV ? ZV : old_pos);
3219
3220 return make_number (inserted_chars);
3221 }
3222
3223 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3224 1, 1, 0,
3225 doc: /* Base64-decode STRING and return the result. */)
3226 (Lisp_Object string)
3227 {
3228 char *decoded;
3229 EMACS_INT length, decoded_length;
3230 Lisp_Object decoded_string;
3231 USE_SAFE_ALLOCA;
3232
3233 CHECK_STRING (string);
3234
3235 length = SBYTES (string);
3236 /* We need to allocate enough room for decoding the text. */
3237 SAFE_ALLOCA (decoded, char *, length);
3238
3239 /* The decoded result should be unibyte. */
3240 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3241 0, NULL);
3242 if (decoded_length > length)
3243 abort ();
3244 else if (decoded_length >= 0)
3245 decoded_string = make_unibyte_string (decoded, decoded_length);
3246 else
3247 decoded_string = Qnil;
3248
3249 SAFE_FREE ();
3250 if (!STRINGP (decoded_string))
3251 error ("Invalid base64 data");
3252
3253 return decoded_string;
3254 }
3255
3256 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3257 MULTIBYTE is nonzero, the decoded result should be in multibyte
3258 form. If NCHARS_RETRUN is not NULL, store the number of produced
3259 characters in *NCHARS_RETURN. */
3260
3261 static EMACS_INT
3262 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3263 int multibyte, EMACS_INT *nchars_return)
3264 {
3265 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3266 char *e = to;
3267 unsigned char c;
3268 unsigned long value;
3269 EMACS_INT nchars = 0;
3270
3271 while (1)
3272 {
3273 /* Process first byte of a quadruplet. */
3274
3275 READ_QUADRUPLET_BYTE (e-to);
3276
3277 if (!IS_BASE64 (c))
3278 return -1;
3279 value = base64_char_to_value[c] << 18;
3280
3281 /* Process second byte of a quadruplet. */
3282
3283 READ_QUADRUPLET_BYTE (-1);
3284
3285 if (!IS_BASE64 (c))
3286 return -1;
3287 value |= base64_char_to_value[c] << 12;
3288
3289 c = (unsigned char) (value >> 16);
3290 if (multibyte && c >= 128)
3291 e += BYTE8_STRING (c, e);
3292 else
3293 *e++ = c;
3294 nchars++;
3295
3296 /* Process third byte of a quadruplet. */
3297
3298 READ_QUADRUPLET_BYTE (-1);
3299
3300 if (c == '=')
3301 {
3302 READ_QUADRUPLET_BYTE (-1);
3303
3304 if (c != '=')
3305 return -1;
3306 continue;
3307 }
3308
3309 if (!IS_BASE64 (c))
3310 return -1;
3311 value |= base64_char_to_value[c] << 6;
3312
3313 c = (unsigned char) (0xff & value >> 8);
3314 if (multibyte && c >= 128)
3315 e += BYTE8_STRING (c, e);
3316 else
3317 *e++ = c;
3318 nchars++;
3319
3320 /* Process fourth byte of a quadruplet. */
3321
3322 READ_QUADRUPLET_BYTE (-1);
3323
3324 if (c == '=')
3325 continue;
3326
3327 if (!IS_BASE64 (c))
3328 return -1;
3329 value |= base64_char_to_value[c];
3330
3331 c = (unsigned char) (0xff & value);
3332 if (multibyte && c >= 128)
3333 e += BYTE8_STRING (c, e);
3334 else
3335 *e++ = c;
3336 nchars++;
3337 }
3338 }
3339
3340
3341 \f
3342 /***********************************************************************
3343 ***** *****
3344 ***** Hash Tables *****
3345 ***** *****
3346 ***********************************************************************/
3347
3348 /* Implemented by gerd@gnu.org. This hash table implementation was
3349 inspired by CMUCL hash tables. */
3350
3351 /* Ideas:
3352
3353 1. For small tables, association lists are probably faster than
3354 hash tables because they have lower overhead.
3355
3356 For uses of hash tables where the O(1) behavior of table
3357 operations is not a requirement, it might therefore be a good idea
3358 not to hash. Instead, we could just do a linear search in the
3359 key_and_value vector of the hash table. This could be done
3360 if a `:linear-search t' argument is given to make-hash-table. */
3361
3362
3363 /* The list of all weak hash tables. Don't staticpro this one. */
3364
3365 struct Lisp_Hash_Table *weak_hash_tables;
3366
3367 /* Various symbols. */
3368
3369 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3370 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3371 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3372
3373 /* Function prototypes. */
3374
3375 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3376 static int get_key_arg (Lisp_Object, int, Lisp_Object *, char *);
3377 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3378 static int cmpfn_eql (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3379 Lisp_Object, unsigned);
3380 static int cmpfn_equal (struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3381 Lisp_Object, unsigned);
3382 static int cmpfn_user_defined (struct Lisp_Hash_Table *, Lisp_Object,
3383 unsigned, Lisp_Object, unsigned);
3384 static unsigned hashfn_eq (struct Lisp_Hash_Table *, Lisp_Object);
3385 static unsigned hashfn_eql (struct Lisp_Hash_Table *, Lisp_Object);
3386 static unsigned hashfn_equal (struct Lisp_Hash_Table *, Lisp_Object);
3387 static unsigned hashfn_user_defined (struct Lisp_Hash_Table *,
3388 Lisp_Object);
3389 static unsigned sxhash_string (unsigned char *, int);
3390 static unsigned sxhash_list (Lisp_Object, int);
3391 static unsigned sxhash_vector (Lisp_Object, int);
3392 static unsigned sxhash_bool_vector (Lisp_Object);
3393 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3394
3395
3396 \f
3397 /***********************************************************************
3398 Utilities
3399 ***********************************************************************/
3400
3401 /* If OBJ is a Lisp hash table, return a pointer to its struct
3402 Lisp_Hash_Table. Otherwise, signal an error. */
3403
3404 static struct Lisp_Hash_Table *
3405 check_hash_table (Lisp_Object obj)
3406 {
3407 CHECK_HASH_TABLE (obj);
3408 return XHASH_TABLE (obj);
3409 }
3410
3411
3412 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3413 number. */
3414
3415 int
3416 next_almost_prime (int n)
3417 {
3418 if (n % 2 == 0)
3419 n += 1;
3420 if (n % 3 == 0)
3421 n += 2;
3422 if (n % 7 == 0)
3423 n += 4;
3424 return n;
3425 }
3426
3427
3428 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3429 which USED[I] is non-zero. If found at index I in ARGS, set
3430 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3431 -1. This function is used to extract a keyword/argument pair from
3432 a DEFUN parameter list. */
3433
3434 static int
3435 get_key_arg (Lisp_Object key, int nargs, Lisp_Object *args, char *used)
3436 {
3437 int i;
3438
3439 for (i = 0; i < nargs - 1; ++i)
3440 if (!used[i] && EQ (args[i], key))
3441 break;
3442
3443 if (i >= nargs - 1)
3444 i = -1;
3445 else
3446 {
3447 used[i++] = 1;
3448 used[i] = 1;
3449 }
3450
3451 return i;
3452 }
3453
3454
3455 /* Return a Lisp vector which has the same contents as VEC but has
3456 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3457 vector that are not copied from VEC are set to INIT. */
3458
3459 Lisp_Object
3460 larger_vector (Lisp_Object vec, int new_size, Lisp_Object init)
3461 {
3462 struct Lisp_Vector *v;
3463 int i, old_size;
3464
3465 xassert (VECTORP (vec));
3466 old_size = ASIZE (vec);
3467 xassert (new_size >= old_size);
3468
3469 v = allocate_vector (new_size);
3470 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3471 for (i = old_size; i < new_size; ++i)
3472 v->contents[i] = init;
3473 XSETVECTOR (vec, v);
3474 return vec;
3475 }
3476
3477
3478 /***********************************************************************
3479 Low-level Functions
3480 ***********************************************************************/
3481
3482 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3483 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3484 KEY2 are the same. */
3485
3486 static int
3487 cmpfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3488 {
3489 return (FLOATP (key1)
3490 && FLOATP (key2)
3491 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3492 }
3493
3494
3495 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3496 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3497 KEY2 are the same. */
3498
3499 static int
3500 cmpfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3501 {
3502 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3503 }
3504
3505
3506 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3507 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3508 if KEY1 and KEY2 are the same. */
3509
3510 static int
3511 cmpfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key1, unsigned int hash1, Lisp_Object key2, unsigned int hash2)
3512 {
3513 if (hash1 == hash2)
3514 {
3515 Lisp_Object args[3];
3516
3517 args[0] = h->user_cmp_function;
3518 args[1] = key1;
3519 args[2] = key2;
3520 return !NILP (Ffuncall (3, args));
3521 }
3522 else
3523 return 0;
3524 }
3525
3526
3527 /* Value is a hash code for KEY for use in hash table H which uses
3528 `eq' to compare keys. The hash code returned is guaranteed to fit
3529 in a Lisp integer. */
3530
3531 static unsigned
3532 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3533 {
3534 unsigned hash = XUINT (key) ^ XTYPE (key);
3535 xassert ((hash & ~INTMASK) == 0);
3536 return hash;
3537 }
3538
3539
3540 /* Value is a hash code for KEY for use in hash table H which uses
3541 `eql' to compare keys. The hash code returned is guaranteed to fit
3542 in a Lisp integer. */
3543
3544 static unsigned
3545 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3546 {
3547 unsigned hash;
3548 if (FLOATP (key))
3549 hash = sxhash (key, 0);
3550 else
3551 hash = XUINT (key) ^ XTYPE (key);
3552 xassert ((hash & ~INTMASK) == 0);
3553 return hash;
3554 }
3555
3556
3557 /* Value is a hash code for KEY for use in hash table H which uses
3558 `equal' to compare keys. The hash code returned is guaranteed to fit
3559 in a Lisp integer. */
3560
3561 static unsigned
3562 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3563 {
3564 unsigned hash = sxhash (key, 0);
3565 xassert ((hash & ~INTMASK) == 0);
3566 return hash;
3567 }
3568
3569
3570 /* Value is a hash code for KEY for use in hash table H which uses as
3571 user-defined function to compare keys. The hash code returned is
3572 guaranteed to fit in a Lisp integer. */
3573
3574 static unsigned
3575 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3576 {
3577 Lisp_Object args[2], hash;
3578
3579 args[0] = h->user_hash_function;
3580 args[1] = key;
3581 hash = Ffuncall (2, args);
3582 if (!INTEGERP (hash))
3583 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3584 return XUINT (hash);
3585 }
3586
3587
3588 /* Create and initialize a new hash table.
3589
3590 TEST specifies the test the hash table will use to compare keys.
3591 It must be either one of the predefined tests `eq', `eql' or
3592 `equal' or a symbol denoting a user-defined test named TEST with
3593 test and hash functions USER_TEST and USER_HASH.
3594
3595 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3596
3597 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3598 new size when it becomes full is computed by adding REHASH_SIZE to
3599 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3600 table's new size is computed by multiplying its old size with
3601 REHASH_SIZE.
3602
3603 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3604 be resized when the ratio of (number of entries in the table) /
3605 (table size) is >= REHASH_THRESHOLD.
3606
3607 WEAK specifies the weakness of the table. If non-nil, it must be
3608 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3609
3610 Lisp_Object
3611 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3612 Lisp_Object rehash_threshold, Lisp_Object weak,
3613 Lisp_Object user_test, Lisp_Object user_hash)
3614 {
3615 struct Lisp_Hash_Table *h;
3616 Lisp_Object table;
3617 int index_size, i, sz;
3618
3619 /* Preconditions. */
3620 xassert (SYMBOLP (test));
3621 xassert (INTEGERP (size) && XINT (size) >= 0);
3622 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3623 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3624 xassert (FLOATP (rehash_threshold)
3625 && XFLOATINT (rehash_threshold) > 0
3626 && XFLOATINT (rehash_threshold) <= 1.0);
3627
3628 if (XFASTINT (size) == 0)
3629 size = make_number (1);
3630
3631 /* Allocate a table and initialize it. */
3632 h = allocate_hash_table ();
3633
3634 /* Initialize hash table slots. */
3635 sz = XFASTINT (size);
3636
3637 h->test = test;
3638 if (EQ (test, Qeql))
3639 {
3640 h->cmpfn = cmpfn_eql;
3641 h->hashfn = hashfn_eql;
3642 }
3643 else if (EQ (test, Qeq))
3644 {
3645 h->cmpfn = NULL;
3646 h->hashfn = hashfn_eq;
3647 }
3648 else if (EQ (test, Qequal))
3649 {
3650 h->cmpfn = cmpfn_equal;
3651 h->hashfn = hashfn_equal;
3652 }
3653 else
3654 {
3655 h->user_cmp_function = user_test;
3656 h->user_hash_function = user_hash;
3657 h->cmpfn = cmpfn_user_defined;
3658 h->hashfn = hashfn_user_defined;
3659 }
3660
3661 h->weak = weak;
3662 h->rehash_threshold = rehash_threshold;
3663 h->rehash_size = rehash_size;
3664 h->count = 0;
3665 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3666 h->hash = Fmake_vector (size, Qnil);
3667 h->next = Fmake_vector (size, Qnil);
3668 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
3669 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
3670 h->index = Fmake_vector (make_number (index_size), Qnil);
3671
3672 /* Set up the free list. */
3673 for (i = 0; i < sz - 1; ++i)
3674 HASH_NEXT (h, i) = make_number (i + 1);
3675 h->next_free = make_number (0);
3676
3677 XSET_HASH_TABLE (table, h);
3678 xassert (HASH_TABLE_P (table));
3679 xassert (XHASH_TABLE (table) == h);
3680
3681 /* Maybe add this hash table to the list of all weak hash tables. */
3682 if (NILP (h->weak))
3683 h->next_weak = NULL;
3684 else
3685 {
3686 h->next_weak = weak_hash_tables;
3687 weak_hash_tables = h;
3688 }
3689
3690 return table;
3691 }
3692
3693
3694 /* Return a copy of hash table H1. Keys and values are not copied,
3695 only the table itself is. */
3696
3697 static Lisp_Object
3698 copy_hash_table (struct Lisp_Hash_Table *h1)
3699 {
3700 Lisp_Object table;
3701 struct Lisp_Hash_Table *h2;
3702 struct Lisp_Vector *next;
3703
3704 h2 = allocate_hash_table ();
3705 next = h2->vec_next;
3706 memcpy (h2, h1, sizeof *h2);
3707 h2->vec_next = next;
3708 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3709 h2->hash = Fcopy_sequence (h1->hash);
3710 h2->next = Fcopy_sequence (h1->next);
3711 h2->index = Fcopy_sequence (h1->index);
3712 XSET_HASH_TABLE (table, h2);
3713
3714 /* Maybe add this hash table to the list of all weak hash tables. */
3715 if (!NILP (h2->weak))
3716 {
3717 h2->next_weak = weak_hash_tables;
3718 weak_hash_tables = h2;
3719 }
3720
3721 return table;
3722 }
3723
3724
3725 /* Resize hash table H if it's too full. If H cannot be resized
3726 because it's already too large, throw an error. */
3727
3728 static INLINE void
3729 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3730 {
3731 if (NILP (h->next_free))
3732 {
3733 int old_size = HASH_TABLE_SIZE (h);
3734 int i, new_size, index_size;
3735 EMACS_INT nsize;
3736
3737 if (INTEGERP (h->rehash_size))
3738 new_size = old_size + XFASTINT (h->rehash_size);
3739 else
3740 new_size = old_size * XFLOATINT (h->rehash_size);
3741 new_size = max (old_size + 1, new_size);
3742 index_size = next_almost_prime ((int)
3743 (new_size
3744 / XFLOATINT (h->rehash_threshold)));
3745 /* Assignment to EMACS_INT stops GCC whining about limited range
3746 of data type. */
3747 nsize = max (index_size, 2 * new_size);
3748 if (nsize > MOST_POSITIVE_FIXNUM)
3749 error ("Hash table too large to resize");
3750
3751 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3752 h->next = larger_vector (h->next, new_size, Qnil);
3753 h->hash = larger_vector (h->hash, new_size, Qnil);
3754 h->index = Fmake_vector (make_number (index_size), Qnil);
3755
3756 /* Update the free list. Do it so that new entries are added at
3757 the end of the free list. This makes some operations like
3758 maphash faster. */
3759 for (i = old_size; i < new_size - 1; ++i)
3760 HASH_NEXT (h, i) = make_number (i + 1);
3761
3762 if (!NILP (h->next_free))
3763 {
3764 Lisp_Object last, next;
3765
3766 last = h->next_free;
3767 while (next = HASH_NEXT (h, XFASTINT (last)),
3768 !NILP (next))
3769 last = next;
3770
3771 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3772 }
3773 else
3774 XSETFASTINT (h->next_free, old_size);
3775
3776 /* Rehash. */
3777 for (i = 0; i < old_size; ++i)
3778 if (!NILP (HASH_HASH (h, i)))
3779 {
3780 unsigned hash_code = XUINT (HASH_HASH (h, i));
3781 int start_of_bucket = hash_code % ASIZE (h->index);
3782 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3783 HASH_INDEX (h, start_of_bucket) = make_number (i);
3784 }
3785 }
3786 }
3787
3788
3789 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3790 the hash code of KEY. Value is the index of the entry in H
3791 matching KEY, or -1 if not found. */
3792
3793 int
3794 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, unsigned int *hash)
3795 {
3796 unsigned hash_code;
3797 int start_of_bucket;
3798 Lisp_Object idx;
3799
3800 hash_code = h->hashfn (h, key);
3801 if (hash)
3802 *hash = hash_code;
3803
3804 start_of_bucket = hash_code % ASIZE (h->index);
3805 idx = HASH_INDEX (h, start_of_bucket);
3806
3807 /* We need not gcpro idx since it's either an integer or nil. */
3808 while (!NILP (idx))
3809 {
3810 int i = XFASTINT (idx);
3811 if (EQ (key, HASH_KEY (h, i))
3812 || (h->cmpfn
3813 && h->cmpfn (h, key, hash_code,
3814 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3815 break;
3816 idx = HASH_NEXT (h, i);
3817 }
3818
3819 return NILP (idx) ? -1 : XFASTINT (idx);
3820 }
3821
3822
3823 /* Put an entry into hash table H that associates KEY with VALUE.
3824 HASH is a previously computed hash code of KEY.
3825 Value is the index of the entry in H matching KEY. */
3826
3827 int
3828 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value, unsigned int hash)
3829 {
3830 int start_of_bucket, i;
3831
3832 xassert ((hash & ~INTMASK) == 0);
3833
3834 /* Increment count after resizing because resizing may fail. */
3835 maybe_resize_hash_table (h);
3836 h->count++;
3837
3838 /* Store key/value in the key_and_value vector. */
3839 i = XFASTINT (h->next_free);
3840 h->next_free = HASH_NEXT (h, i);
3841 HASH_KEY (h, i) = key;
3842 HASH_VALUE (h, i) = value;
3843
3844 /* Remember its hash code. */
3845 HASH_HASH (h, i) = make_number (hash);
3846
3847 /* Add new entry to its collision chain. */
3848 start_of_bucket = hash % ASIZE (h->index);
3849 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3850 HASH_INDEX (h, start_of_bucket) = make_number (i);
3851 return i;
3852 }
3853
3854
3855 /* Remove the entry matching KEY from hash table H, if there is one. */
3856
3857 static void
3858 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3859 {
3860 unsigned hash_code;
3861 int start_of_bucket;
3862 Lisp_Object idx, prev;
3863
3864 hash_code = h->hashfn (h, key);
3865 start_of_bucket = hash_code % ASIZE (h->index);
3866 idx = HASH_INDEX (h, start_of_bucket);
3867 prev = Qnil;
3868
3869 /* We need not gcpro idx, prev since they're either integers or nil. */
3870 while (!NILP (idx))
3871 {
3872 int i = XFASTINT (idx);
3873
3874 if (EQ (key, HASH_KEY (h, i))
3875 || (h->cmpfn
3876 && h->cmpfn (h, key, hash_code,
3877 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3878 {
3879 /* Take entry out of collision chain. */
3880 if (NILP (prev))
3881 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3882 else
3883 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3884
3885 /* Clear slots in key_and_value and add the slots to
3886 the free list. */
3887 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3888 HASH_NEXT (h, i) = h->next_free;
3889 h->next_free = make_number (i);
3890 h->count--;
3891 xassert (h->count >= 0);
3892 break;
3893 }
3894 else
3895 {
3896 prev = idx;
3897 idx = HASH_NEXT (h, i);
3898 }
3899 }
3900 }
3901
3902
3903 /* Clear hash table H. */
3904
3905 static void
3906 hash_clear (struct Lisp_Hash_Table *h)
3907 {
3908 if (h->count > 0)
3909 {
3910 int i, size = HASH_TABLE_SIZE (h);
3911
3912 for (i = 0; i < size; ++i)
3913 {
3914 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3915 HASH_KEY (h, i) = Qnil;
3916 HASH_VALUE (h, i) = Qnil;
3917 HASH_HASH (h, i) = Qnil;
3918 }
3919
3920 for (i = 0; i < ASIZE (h->index); ++i)
3921 ASET (h->index, i, Qnil);
3922
3923 h->next_free = make_number (0);
3924 h->count = 0;
3925 }
3926 }
3927
3928
3929 \f
3930 /************************************************************************
3931 Weak Hash Tables
3932 ************************************************************************/
3933
3934 void
3935 init_weak_hash_tables (void)
3936 {
3937 weak_hash_tables = NULL;
3938 }
3939
3940 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3941 entries from the table that don't survive the current GC.
3942 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3943 non-zero if anything was marked. */
3944
3945 static int
3946 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3947 {
3948 int bucket, n, marked;
3949
3950 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3951 marked = 0;
3952
3953 for (bucket = 0; bucket < n; ++bucket)
3954 {
3955 Lisp_Object idx, next, prev;
3956
3957 /* Follow collision chain, removing entries that
3958 don't survive this garbage collection. */
3959 prev = Qnil;
3960 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3961 {
3962 int i = XFASTINT (idx);
3963 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3964 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3965 int remove_p;
3966
3967 if (EQ (h->weak, Qkey))
3968 remove_p = !key_known_to_survive_p;
3969 else if (EQ (h->weak, Qvalue))
3970 remove_p = !value_known_to_survive_p;
3971 else if (EQ (h->weak, Qkey_or_value))
3972 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3973 else if (EQ (h->weak, Qkey_and_value))
3974 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3975 else
3976 abort ();
3977
3978 next = HASH_NEXT (h, i);
3979
3980 if (remove_entries_p)
3981 {
3982 if (remove_p)
3983 {
3984 /* Take out of collision chain. */
3985 if (NILP (prev))
3986 HASH_INDEX (h, bucket) = next;
3987 else
3988 HASH_NEXT (h, XFASTINT (prev)) = next;
3989
3990 /* Add to free list. */
3991 HASH_NEXT (h, i) = h->next_free;
3992 h->next_free = idx;
3993
3994 /* Clear key, value, and hash. */
3995 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3996 HASH_HASH (h, i) = Qnil;
3997
3998 h->count--;
3999 }
4000 else
4001 {
4002 prev = idx;
4003 }
4004 }
4005 else
4006 {
4007 if (!remove_p)
4008 {
4009 /* Make sure key and value survive. */
4010 if (!key_known_to_survive_p)
4011 {
4012 mark_object (HASH_KEY (h, i));
4013 marked = 1;
4014 }
4015
4016 if (!value_known_to_survive_p)
4017 {
4018 mark_object (HASH_VALUE (h, i));
4019 marked = 1;
4020 }
4021 }
4022 }
4023 }
4024 }
4025
4026 return marked;
4027 }
4028
4029 /* Remove elements from weak hash tables that don't survive the
4030 current garbage collection. Remove weak tables that don't survive
4031 from Vweak_hash_tables. Called from gc_sweep. */
4032
4033 void
4034 sweep_weak_hash_tables (void)
4035 {
4036 struct Lisp_Hash_Table *h, *used, *next;
4037 int marked;
4038
4039 /* Mark all keys and values that are in use. Keep on marking until
4040 there is no more change. This is necessary for cases like
4041 value-weak table A containing an entry X -> Y, where Y is used in a
4042 key-weak table B, Z -> Y. If B comes after A in the list of weak
4043 tables, X -> Y might be removed from A, although when looking at B
4044 one finds that it shouldn't. */
4045 do
4046 {
4047 marked = 0;
4048 for (h = weak_hash_tables; h; h = h->next_weak)
4049 {
4050 if (h->size & ARRAY_MARK_FLAG)
4051 marked |= sweep_weak_table (h, 0);
4052 }
4053 }
4054 while (marked);
4055
4056 /* Remove tables and entries that aren't used. */
4057 for (h = weak_hash_tables, used = NULL; h; h = next)
4058 {
4059 next = h->next_weak;
4060
4061 if (h->size & ARRAY_MARK_FLAG)
4062 {
4063 /* TABLE is marked as used. Sweep its contents. */
4064 if (h->count > 0)
4065 sweep_weak_table (h, 1);
4066
4067 /* Add table to the list of used weak hash tables. */
4068 h->next_weak = used;
4069 used = h;
4070 }
4071 }
4072
4073 weak_hash_tables = used;
4074 }
4075
4076
4077 \f
4078 /***********************************************************************
4079 Hash Code Computation
4080 ***********************************************************************/
4081
4082 /* Maximum depth up to which to dive into Lisp structures. */
4083
4084 #define SXHASH_MAX_DEPTH 3
4085
4086 /* Maximum length up to which to take list and vector elements into
4087 account. */
4088
4089 #define SXHASH_MAX_LEN 7
4090
4091 /* Combine two integers X and Y for hashing. */
4092
4093 #define SXHASH_COMBINE(X, Y) \
4094 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4095 + (unsigned)(Y))
4096
4097
4098 /* Return a hash for string PTR which has length LEN. The hash
4099 code returned is guaranteed to fit in a Lisp integer. */
4100
4101 static unsigned
4102 sxhash_string (unsigned char *ptr, int len)
4103 {
4104 unsigned char *p = ptr;
4105 unsigned char *end = p + len;
4106 unsigned char c;
4107 unsigned hash = 0;
4108
4109 while (p != end)
4110 {
4111 c = *p++;
4112 if (c >= 0140)
4113 c -= 40;
4114 hash = ((hash << 4) + (hash >> 28) + c);
4115 }
4116
4117 return hash & INTMASK;
4118 }
4119
4120
4121 /* Return a hash for list LIST. DEPTH is the current depth in the
4122 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4123
4124 static unsigned
4125 sxhash_list (Lisp_Object list, int depth)
4126 {
4127 unsigned hash = 0;
4128 int i;
4129
4130 if (depth < SXHASH_MAX_DEPTH)
4131 for (i = 0;
4132 CONSP (list) && i < SXHASH_MAX_LEN;
4133 list = XCDR (list), ++i)
4134 {
4135 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4136 hash = SXHASH_COMBINE (hash, hash2);
4137 }
4138
4139 if (!NILP (list))
4140 {
4141 unsigned hash2 = sxhash (list, depth + 1);
4142 hash = SXHASH_COMBINE (hash, hash2);
4143 }
4144
4145 return hash;
4146 }
4147
4148
4149 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4150 the Lisp structure. */
4151
4152 static unsigned
4153 sxhash_vector (Lisp_Object vec, int depth)
4154 {
4155 unsigned hash = ASIZE (vec);
4156 int i, n;
4157
4158 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4159 for (i = 0; i < n; ++i)
4160 {
4161 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4162 hash = SXHASH_COMBINE (hash, hash2);
4163 }
4164
4165 return hash;
4166 }
4167
4168
4169 /* Return a hash for bool-vector VECTOR. */
4170
4171 static unsigned
4172 sxhash_bool_vector (Lisp_Object vec)
4173 {
4174 unsigned hash = XBOOL_VECTOR (vec)->size;
4175 int i, n;
4176
4177 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4178 for (i = 0; i < n; ++i)
4179 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4180
4181 return hash;
4182 }
4183
4184
4185 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4186 structure. Value is an unsigned integer clipped to INTMASK. */
4187
4188 unsigned
4189 sxhash (Lisp_Object obj, int depth)
4190 {
4191 unsigned hash;
4192
4193 if (depth > SXHASH_MAX_DEPTH)
4194 return 0;
4195
4196 switch (XTYPE (obj))
4197 {
4198 case_Lisp_Int:
4199 hash = XUINT (obj);
4200 break;
4201
4202 case Lisp_Misc:
4203 hash = XUINT (obj);
4204 break;
4205
4206 case Lisp_Symbol:
4207 obj = SYMBOL_NAME (obj);
4208 /* Fall through. */
4209
4210 case Lisp_String:
4211 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4212 break;
4213
4214 /* This can be everything from a vector to an overlay. */
4215 case Lisp_Vectorlike:
4216 if (VECTORP (obj))
4217 /* According to the CL HyperSpec, two arrays are equal only if
4218 they are `eq', except for strings and bit-vectors. In
4219 Emacs, this works differently. We have to compare element
4220 by element. */
4221 hash = sxhash_vector (obj, depth);
4222 else if (BOOL_VECTOR_P (obj))
4223 hash = sxhash_bool_vector (obj);
4224 else
4225 /* Others are `equal' if they are `eq', so let's take their
4226 address as hash. */
4227 hash = XUINT (obj);
4228 break;
4229
4230 case Lisp_Cons:
4231 hash = sxhash_list (obj, depth);
4232 break;
4233
4234 case Lisp_Float:
4235 {
4236 double val = XFLOAT_DATA (obj);
4237 unsigned char *p = (unsigned char *) &val;
4238 unsigned char *e = p + sizeof val;
4239 for (hash = 0; p < e; ++p)
4240 hash = SXHASH_COMBINE (hash, *p);
4241 break;
4242 }
4243
4244 default:
4245 abort ();
4246 }
4247
4248 return hash & INTMASK;
4249 }
4250
4251
4252 \f
4253 /***********************************************************************
4254 Lisp Interface
4255 ***********************************************************************/
4256
4257
4258 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4259 doc: /* Compute a hash code for OBJ and return it as integer. */)
4260 (Lisp_Object obj)
4261 {
4262 unsigned hash = sxhash (obj, 0);
4263 return make_number (hash);
4264 }
4265
4266
4267 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4268 doc: /* Create and return a new hash table.
4269
4270 Arguments are specified as keyword/argument pairs. The following
4271 arguments are defined:
4272
4273 :test TEST -- TEST must be a symbol that specifies how to compare
4274 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4275 `equal'. User-supplied test and hash functions can be specified via
4276 `define-hash-table-test'.
4277
4278 :size SIZE -- A hint as to how many elements will be put in the table.
4279 Default is 65.
4280
4281 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4282 fills up. If REHASH-SIZE is an integer, increase the size by that
4283 amount. If it is a float, it must be > 1.0, and the new size is the
4284 old size multiplied by that factor. Default is 1.5.
4285
4286 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4287 Resize the hash table when the ratio (number of entries / table size)
4288 is greater than or equal to THRESHOLD. Default is 0.8.
4289
4290 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4291 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4292 returned is a weak table. Key/value pairs are removed from a weak
4293 hash table when there are no non-weak references pointing to their
4294 key, value, one of key or value, or both key and value, depending on
4295 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4296 is nil.
4297
4298 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4299 (int nargs, Lisp_Object *args)
4300 {
4301 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4302 Lisp_Object user_test, user_hash;
4303 char *used;
4304 int i;
4305
4306 /* The vector `used' is used to keep track of arguments that
4307 have been consumed. */
4308 used = (char *) alloca (nargs * sizeof *used);
4309 memset (used, 0, nargs * sizeof *used);
4310
4311 /* See if there's a `:test TEST' among the arguments. */
4312 i = get_key_arg (QCtest, nargs, args, used);
4313 test = i < 0 ? Qeql : args[i];
4314 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4315 {
4316 /* See if it is a user-defined test. */
4317 Lisp_Object prop;
4318
4319 prop = Fget (test, Qhash_table_test);
4320 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4321 signal_error ("Invalid hash table test", test);
4322 user_test = XCAR (prop);
4323 user_hash = XCAR (XCDR (prop));
4324 }
4325 else
4326 user_test = user_hash = Qnil;
4327
4328 /* See if there's a `:size SIZE' argument. */
4329 i = get_key_arg (QCsize, nargs, args, used);
4330 size = i < 0 ? Qnil : args[i];
4331 if (NILP (size))
4332 size = make_number (DEFAULT_HASH_SIZE);
4333 else if (!INTEGERP (size) || XINT (size) < 0)
4334 signal_error ("Invalid hash table size", size);
4335
4336 /* Look for `:rehash-size SIZE'. */
4337 i = get_key_arg (QCrehash_size, nargs, args, used);
4338 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4339 if (!NUMBERP (rehash_size)
4340 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4341 || XFLOATINT (rehash_size) <= 1.0)
4342 signal_error ("Invalid hash table rehash size", rehash_size);
4343
4344 /* Look for `:rehash-threshold THRESHOLD'. */
4345 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4346 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4347 if (!FLOATP (rehash_threshold)
4348 || XFLOATINT (rehash_threshold) <= 0.0
4349 || XFLOATINT (rehash_threshold) > 1.0)
4350 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4351
4352 /* Look for `:weakness WEAK'. */
4353 i = get_key_arg (QCweakness, nargs, args, used);
4354 weak = i < 0 ? Qnil : args[i];
4355 if (EQ (weak, Qt))
4356 weak = Qkey_and_value;
4357 if (!NILP (weak)
4358 && !EQ (weak, Qkey)
4359 && !EQ (weak, Qvalue)
4360 && !EQ (weak, Qkey_or_value)
4361 && !EQ (weak, Qkey_and_value))
4362 signal_error ("Invalid hash table weakness", weak);
4363
4364 /* Now, all args should have been used up, or there's a problem. */
4365 for (i = 0; i < nargs; ++i)
4366 if (!used[i])
4367 signal_error ("Invalid argument list", args[i]);
4368
4369 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4370 user_test, user_hash);
4371 }
4372
4373
4374 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4375 doc: /* Return a copy of hash table TABLE. */)
4376 (Lisp_Object table)
4377 {
4378 return copy_hash_table (check_hash_table (table));
4379 }
4380
4381
4382 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4383 doc: /* Return the number of elements in TABLE. */)
4384 (Lisp_Object table)
4385 {
4386 return make_number (check_hash_table (table)->count);
4387 }
4388
4389
4390 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4391 Shash_table_rehash_size, 1, 1, 0,
4392 doc: /* Return the current rehash size of TABLE. */)
4393 (Lisp_Object table)
4394 {
4395 return check_hash_table (table)->rehash_size;
4396 }
4397
4398
4399 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4400 Shash_table_rehash_threshold, 1, 1, 0,
4401 doc: /* Return the current rehash threshold of TABLE. */)
4402 (Lisp_Object table)
4403 {
4404 return check_hash_table (table)->rehash_threshold;
4405 }
4406
4407
4408 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4409 doc: /* Return the size of TABLE.
4410 The size can be used as an argument to `make-hash-table' to create
4411 a hash table than can hold as many elements as TABLE holds
4412 without need for resizing. */)
4413 (Lisp_Object table)
4414 {
4415 struct Lisp_Hash_Table *h = check_hash_table (table);
4416 return make_number (HASH_TABLE_SIZE (h));
4417 }
4418
4419
4420 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4421 doc: /* Return the test TABLE uses. */)
4422 (Lisp_Object table)
4423 {
4424 return check_hash_table (table)->test;
4425 }
4426
4427
4428 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4429 1, 1, 0,
4430 doc: /* Return the weakness of TABLE. */)
4431 (Lisp_Object table)
4432 {
4433 return check_hash_table (table)->weak;
4434 }
4435
4436
4437 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4438 doc: /* Return t if OBJ is a Lisp hash table object. */)
4439 (Lisp_Object obj)
4440 {
4441 return HASH_TABLE_P (obj) ? Qt : Qnil;
4442 }
4443
4444
4445 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4446 doc: /* Clear hash table TABLE and return it. */)
4447 (Lisp_Object table)
4448 {
4449 hash_clear (check_hash_table (table));
4450 /* Be compatible with XEmacs. */
4451 return table;
4452 }
4453
4454
4455 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4456 doc: /* Look up KEY in TABLE and return its associated value.
4457 If KEY is not found, return DFLT which defaults to nil. */)
4458 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4459 {
4460 struct Lisp_Hash_Table *h = check_hash_table (table);
4461 int i = hash_lookup (h, key, NULL);
4462 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4463 }
4464
4465
4466 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4467 doc: /* Associate KEY with VALUE in hash table TABLE.
4468 If KEY is already present in table, replace its current value with
4469 VALUE. */)
4470 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4471 {
4472 struct Lisp_Hash_Table *h = check_hash_table (table);
4473 int i;
4474 unsigned hash;
4475
4476 i = hash_lookup (h, key, &hash);
4477 if (i >= 0)
4478 HASH_VALUE (h, i) = value;
4479 else
4480 hash_put (h, key, value, hash);
4481
4482 return value;
4483 }
4484
4485
4486 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4487 doc: /* Remove KEY from TABLE. */)
4488 (Lisp_Object key, Lisp_Object table)
4489 {
4490 struct Lisp_Hash_Table *h = check_hash_table (table);
4491 hash_remove_from_table (h, key);
4492 return Qnil;
4493 }
4494
4495
4496 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4497 doc: /* Call FUNCTION for all entries in hash table TABLE.
4498 FUNCTION is called with two arguments, KEY and VALUE. */)
4499 (Lisp_Object function, Lisp_Object table)
4500 {
4501 struct Lisp_Hash_Table *h = check_hash_table (table);
4502 Lisp_Object args[3];
4503 int i;
4504
4505 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4506 if (!NILP (HASH_HASH (h, i)))
4507 {
4508 args[0] = function;
4509 args[1] = HASH_KEY (h, i);
4510 args[2] = HASH_VALUE (h, i);
4511 Ffuncall (3, args);
4512 }
4513
4514 return Qnil;
4515 }
4516
4517
4518 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4519 Sdefine_hash_table_test, 3, 3, 0,
4520 doc: /* Define a new hash table test with name NAME, a symbol.
4521
4522 In hash tables created with NAME specified as test, use TEST to
4523 compare keys, and HASH for computing hash codes of keys.
4524
4525 TEST must be a function taking two arguments and returning non-nil if
4526 both arguments are the same. HASH must be a function taking one
4527 argument and return an integer that is the hash code of the argument.
4528 Hash code computation should use the whole value range of integers,
4529 including negative integers. */)
4530 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4531 {
4532 return Fput (name, Qhash_table_test, list2 (test, hash));
4533 }
4534
4535
4536 \f
4537 /************************************************************************
4538 MD5
4539 ************************************************************************/
4540
4541 #include "md5.h"
4542
4543 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4544 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4545
4546 A message digest is a cryptographic checksum of a document, and the
4547 algorithm to calculate it is defined in RFC 1321.
4548
4549 The two optional arguments START and END are character positions
4550 specifying for which part of OBJECT the message digest should be
4551 computed. If nil or omitted, the digest is computed for the whole
4552 OBJECT.
4553
4554 The MD5 message digest is computed from the result of encoding the
4555 text in a coding system, not directly from the internal Emacs form of
4556 the text. The optional fourth argument CODING-SYSTEM specifies which
4557 coding system to encode the text with. It should be the same coding
4558 system that you used or will use when actually writing the text into a
4559 file.
4560
4561 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4562 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4563 system would be chosen by default for writing this text into a file.
4564
4565 If OBJECT is a string, the most preferred coding system (see the
4566 command `prefer-coding-system') is used.
4567
4568 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4569 guesswork fails. Normally, an error is signaled in such case. */)
4570 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4571 {
4572 unsigned char digest[16];
4573 char value[33];
4574 int i;
4575 EMACS_INT size;
4576 EMACS_INT size_byte = 0;
4577 EMACS_INT start_char = 0, end_char = 0;
4578 EMACS_INT start_byte = 0, end_byte = 0;
4579 register EMACS_INT b, e;
4580 register struct buffer *bp;
4581 EMACS_INT temp;
4582
4583 if (STRINGP (object))
4584 {
4585 if (NILP (coding_system))
4586 {
4587 /* Decide the coding-system to encode the data with. */
4588
4589 if (STRING_MULTIBYTE (object))
4590 /* use default, we can't guess correct value */
4591 coding_system = preferred_coding_system ();
4592 else
4593 coding_system = Qraw_text;
4594 }
4595
4596 if (NILP (Fcoding_system_p (coding_system)))
4597 {
4598 /* Invalid coding system. */
4599
4600 if (!NILP (noerror))
4601 coding_system = Qraw_text;
4602 else
4603 xsignal1 (Qcoding_system_error, coding_system);
4604 }
4605
4606 if (STRING_MULTIBYTE (object))
4607 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4608
4609 size = SCHARS (object);
4610 size_byte = SBYTES (object);
4611
4612 if (!NILP (start))
4613 {
4614 CHECK_NUMBER (start);
4615
4616 start_char = XINT (start);
4617
4618 if (start_char < 0)
4619 start_char += size;
4620
4621 start_byte = string_char_to_byte (object, start_char);
4622 }
4623
4624 if (NILP (end))
4625 {
4626 end_char = size;
4627 end_byte = size_byte;
4628 }
4629 else
4630 {
4631 CHECK_NUMBER (end);
4632
4633 end_char = XINT (end);
4634
4635 if (end_char < 0)
4636 end_char += size;
4637
4638 end_byte = string_char_to_byte (object, end_char);
4639 }
4640
4641 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4642 args_out_of_range_3 (object, make_number (start_char),
4643 make_number (end_char));
4644 }
4645 else
4646 {
4647 struct buffer *prev = current_buffer;
4648
4649 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4650
4651 CHECK_BUFFER (object);
4652
4653 bp = XBUFFER (object);
4654 if (bp != current_buffer)
4655 set_buffer_internal (bp);
4656
4657 if (NILP (start))
4658 b = BEGV;
4659 else
4660 {
4661 CHECK_NUMBER_COERCE_MARKER (start);
4662 b = XINT (start);
4663 }
4664
4665 if (NILP (end))
4666 e = ZV;
4667 else
4668 {
4669 CHECK_NUMBER_COERCE_MARKER (end);
4670 e = XINT (end);
4671 }
4672
4673 if (b > e)
4674 temp = b, b = e, e = temp;
4675
4676 if (!(BEGV <= b && e <= ZV))
4677 args_out_of_range (start, end);
4678
4679 if (NILP (coding_system))
4680 {
4681 /* Decide the coding-system to encode the data with.
4682 See fileio.c:Fwrite-region */
4683
4684 if (!NILP (Vcoding_system_for_write))
4685 coding_system = Vcoding_system_for_write;
4686 else
4687 {
4688 int force_raw_text = 0;
4689
4690 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4691 if (NILP (coding_system)
4692 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4693 {
4694 coding_system = Qnil;
4695 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4696 force_raw_text = 1;
4697 }
4698
4699 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4700 {
4701 /* Check file-coding-system-alist. */
4702 Lisp_Object args[4], val;
4703
4704 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4705 args[3] = Fbuffer_file_name(object);
4706 val = Ffind_operation_coding_system (4, args);
4707 if (CONSP (val) && !NILP (XCDR (val)))
4708 coding_system = XCDR (val);
4709 }
4710
4711 if (NILP (coding_system)
4712 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4713 {
4714 /* If we still have not decided a coding system, use the
4715 default value of buffer-file-coding-system. */
4716 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4717 }
4718
4719 if (!force_raw_text
4720 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4721 /* Confirm that VAL can surely encode the current region. */
4722 coding_system = call4 (Vselect_safe_coding_system_function,
4723 make_number (b), make_number (e),
4724 coding_system, Qnil);
4725
4726 if (force_raw_text)
4727 coding_system = Qraw_text;
4728 }
4729
4730 if (NILP (Fcoding_system_p (coding_system)))
4731 {
4732 /* Invalid coding system. */
4733
4734 if (!NILP (noerror))
4735 coding_system = Qraw_text;
4736 else
4737 xsignal1 (Qcoding_system_error, coding_system);
4738 }
4739 }
4740
4741 object = make_buffer_string (b, e, 0);
4742 if (prev != current_buffer)
4743 set_buffer_internal (prev);
4744 /* Discard the unwind protect for recovering the current
4745 buffer. */
4746 specpdl_ptr--;
4747
4748 if (STRING_MULTIBYTE (object))
4749 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4750 }
4751
4752 md5_buffer (SSDATA (object) + start_byte,
4753 SBYTES (object) - (size_byte - end_byte),
4754 digest);
4755
4756 for (i = 0; i < 16; i++)
4757 sprintf (&value[2 * i], "%02x", digest[i]);
4758 value[32] = '\0';
4759
4760 return make_string (value, 32);
4761 }
4762
4763 \f
4764 void
4765 syms_of_fns (void)
4766 {
4767 /* Hash table stuff. */
4768 Qhash_table_p = intern_c_string ("hash-table-p");
4769 staticpro (&Qhash_table_p);
4770 Qeq = intern_c_string ("eq");
4771 staticpro (&Qeq);
4772 Qeql = intern_c_string ("eql");
4773 staticpro (&Qeql);
4774 Qequal = intern_c_string ("equal");
4775 staticpro (&Qequal);
4776 QCtest = intern_c_string (":test");
4777 staticpro (&QCtest);
4778 QCsize = intern_c_string (":size");
4779 staticpro (&QCsize);
4780 QCrehash_size = intern_c_string (":rehash-size");
4781 staticpro (&QCrehash_size);
4782 QCrehash_threshold = intern_c_string (":rehash-threshold");
4783 staticpro (&QCrehash_threshold);
4784 QCweakness = intern_c_string (":weakness");
4785 staticpro (&QCweakness);
4786 Qkey = intern_c_string ("key");
4787 staticpro (&Qkey);
4788 Qvalue = intern_c_string ("value");
4789 staticpro (&Qvalue);
4790 Qhash_table_test = intern_c_string ("hash-table-test");
4791 staticpro (&Qhash_table_test);
4792 Qkey_or_value = intern_c_string ("key-or-value");
4793 staticpro (&Qkey_or_value);
4794 Qkey_and_value = intern_c_string ("key-and-value");
4795 staticpro (&Qkey_and_value);
4796
4797 defsubr (&Ssxhash);
4798 defsubr (&Smake_hash_table);
4799 defsubr (&Scopy_hash_table);
4800 defsubr (&Shash_table_count);
4801 defsubr (&Shash_table_rehash_size);
4802 defsubr (&Shash_table_rehash_threshold);
4803 defsubr (&Shash_table_size);
4804 defsubr (&Shash_table_test);
4805 defsubr (&Shash_table_weakness);
4806 defsubr (&Shash_table_p);
4807 defsubr (&Sclrhash);
4808 defsubr (&Sgethash);
4809 defsubr (&Sputhash);
4810 defsubr (&Sremhash);
4811 defsubr (&Smaphash);
4812 defsubr (&Sdefine_hash_table_test);
4813
4814 Qstring_lessp = intern_c_string ("string-lessp");
4815 staticpro (&Qstring_lessp);
4816 Qprovide = intern_c_string ("provide");
4817 staticpro (&Qprovide);
4818 Qrequire = intern_c_string ("require");
4819 staticpro (&Qrequire);
4820 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4821 staticpro (&Qyes_or_no_p_history);
4822 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4823 staticpro (&Qcursor_in_echo_area);
4824 Qwidget_type = intern_c_string ("widget-type");
4825 staticpro (&Qwidget_type);
4826
4827 staticpro (&string_char_byte_cache_string);
4828 string_char_byte_cache_string = Qnil;
4829
4830 require_nesting_list = Qnil;
4831 staticpro (&require_nesting_list);
4832
4833 Fset (Qyes_or_no_p_history, Qnil);
4834
4835 DEFVAR_LISP ("features", Vfeatures,
4836 doc: /* A list of symbols which are the features of the executing Emacs.
4837 Used by `featurep' and `require', and altered by `provide'. */);
4838 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4839 Qsubfeatures = intern_c_string ("subfeatures");
4840 staticpro (&Qsubfeatures);
4841
4842 #ifdef HAVE_LANGINFO_CODESET
4843 Qcodeset = intern_c_string ("codeset");
4844 staticpro (&Qcodeset);
4845 Qdays = intern_c_string ("days");
4846 staticpro (&Qdays);
4847 Qmonths = intern_c_string ("months");
4848 staticpro (&Qmonths);
4849 Qpaper = intern_c_string ("paper");
4850 staticpro (&Qpaper);
4851 #endif /* HAVE_LANGINFO_CODESET */
4852
4853 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4854 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4855 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4856 invoked by mouse clicks and mouse menu items.
4857
4858 On some platforms, file selection dialogs are also enabled if this is
4859 non-nil. */);
4860 use_dialog_box = 1;
4861
4862 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4863 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4864 This applies to commands from menus and tool bar buttons even when
4865 they are initiated from the keyboard. If `use-dialog-box' is nil,
4866 that disables the use of a file dialog, regardless of the value of
4867 this variable. */);
4868 use_file_dialog = 1;
4869
4870 defsubr (&Sidentity);
4871 defsubr (&Srandom);
4872 defsubr (&Slength);
4873 defsubr (&Ssafe_length);
4874 defsubr (&Sstring_bytes);
4875 defsubr (&Sstring_equal);
4876 defsubr (&Scompare_strings);
4877 defsubr (&Sstring_lessp);
4878 defsubr (&Sappend);
4879 defsubr (&Sconcat);
4880 defsubr (&Svconcat);
4881 defsubr (&Scopy_sequence);
4882 defsubr (&Sstring_make_multibyte);
4883 defsubr (&Sstring_make_unibyte);
4884 defsubr (&Sstring_as_multibyte);
4885 defsubr (&Sstring_as_unibyte);
4886 defsubr (&Sstring_to_multibyte);
4887 defsubr (&Sstring_to_unibyte);
4888 defsubr (&Scopy_alist);
4889 defsubr (&Ssubstring);
4890 defsubr (&Ssubstring_no_properties);
4891 defsubr (&Snthcdr);
4892 defsubr (&Snth);
4893 defsubr (&Selt);
4894 defsubr (&Smember);
4895 defsubr (&Smemq);
4896 defsubr (&Smemql);
4897 defsubr (&Sassq);
4898 defsubr (&Sassoc);
4899 defsubr (&Srassq);
4900 defsubr (&Srassoc);
4901 defsubr (&Sdelq);
4902 defsubr (&Sdelete);
4903 defsubr (&Snreverse);
4904 defsubr (&Sreverse);
4905 defsubr (&Ssort);
4906 defsubr (&Splist_get);
4907 defsubr (&Sget);
4908 defsubr (&Splist_put);
4909 defsubr (&Sput);
4910 defsubr (&Slax_plist_get);
4911 defsubr (&Slax_plist_put);
4912 defsubr (&Seql);
4913 defsubr (&Sequal);
4914 defsubr (&Sequal_including_properties);
4915 defsubr (&Sfillarray);
4916 defsubr (&Sclear_string);
4917 defsubr (&Snconc);
4918 defsubr (&Smapcar);
4919 defsubr (&Smapc);
4920 defsubr (&Smapconcat);
4921 defsubr (&Syes_or_no_p);
4922 defsubr (&Sload_average);
4923 defsubr (&Sfeaturep);
4924 defsubr (&Srequire);
4925 defsubr (&Sprovide);
4926 defsubr (&Splist_member);
4927 defsubr (&Swidget_put);
4928 defsubr (&Swidget_get);
4929 defsubr (&Swidget_apply);
4930 defsubr (&Sbase64_encode_region);
4931 defsubr (&Sbase64_decode_region);
4932 defsubr (&Sbase64_encode_string);
4933 defsubr (&Sbase64_decode_string);
4934 defsubr (&Smd5);
4935 defsubr (&Slocale_info);
4936 }
4937
4938
4939 void
4940 init_fns (void)
4941 {
4942 }