]> code.delx.au - gnu-emacs/blob - src/lisp.h
Add new User Pointer (User_Ptr) type
[gnu-emacs] / src / lisp.h
1 /* Fundamental definitions for GNU Emacs Lisp interpreter. -*- coding: utf-8 -*-
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2015 Free Software Foundation,
4 Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #ifndef EMACS_LISP_H
22 #define EMACS_LISP_H
23
24 #include <setjmp.h>
25 #include <stdalign.h>
26 #include <stdarg.h>
27 #include <stddef.h>
28 #include <float.h>
29 #include <inttypes.h>
30 #include <limits.h>
31
32 #include <intprops.h>
33 #include <verify.h>
34
35 INLINE_HEADER_BEGIN
36
37 /* Define a TYPE constant ID as an externally visible name. Use like this:
38
39 DEFINE_GDB_SYMBOL_BEGIN (TYPE, ID)
40 # define ID (some integer preprocessor expression of type TYPE)
41 DEFINE_GDB_SYMBOL_END (ID)
42
43 This hack is for the benefit of compilers that do not make macro
44 definitions or enums visible to the debugger. It's used for symbols
45 that .gdbinit needs. */
46
47 #define DECLARE_GDB_SYM(type, id) type const id EXTERNALLY_VISIBLE
48 #ifdef MAIN_PROGRAM
49 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) DECLARE_GDB_SYM (type, id)
50 # define DEFINE_GDB_SYMBOL_END(id) = id;
51 #else
52 # define DEFINE_GDB_SYMBOL_BEGIN(type, id) extern DECLARE_GDB_SYM (type, id)
53 # define DEFINE_GDB_SYMBOL_END(val) ;
54 #endif
55
56 /* The ubiquitous max and min macros. */
57 #undef min
58 #undef max
59 #define max(a, b) ((a) > (b) ? (a) : (b))
60 #define min(a, b) ((a) < (b) ? (a) : (b))
61
62 /* Number of elements in an array. */
63 #define ARRAYELTS(arr) (sizeof (arr) / sizeof (arr)[0])
64
65 /* Number of bits in a Lisp_Object tag. */
66 DEFINE_GDB_SYMBOL_BEGIN (int, GCTYPEBITS)
67 #define GCTYPEBITS 3
68 DEFINE_GDB_SYMBOL_END (GCTYPEBITS)
69
70 /* The number of bits needed in an EMACS_INT over and above the number
71 of bits in a pointer. This is 0 on systems where:
72 1. We can specify multiple-of-8 alignment on static variables.
73 2. We know malloc returns a multiple of 8. */
74 #if (defined alignas \
75 && (defined GNU_MALLOC || defined DOUG_LEA_MALLOC || defined __GLIBC__ \
76 || defined DARWIN_OS || defined __sun || defined __MINGW32__ \
77 || defined CYGWIN))
78 # define NONPOINTER_BITS 0
79 #else
80 # define NONPOINTER_BITS GCTYPEBITS
81 #endif
82
83 /* EMACS_INT - signed integer wide enough to hold an Emacs value
84 EMACS_INT_MAX - maximum value of EMACS_INT; can be used in #if
85 pI - printf length modifier for EMACS_INT
86 EMACS_UINT - unsigned variant of EMACS_INT */
87 #ifndef EMACS_INT_MAX
88 # if INTPTR_MAX <= 0
89 # error "INTPTR_MAX misconfigured"
90 # elif INTPTR_MAX <= INT_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
91 typedef int EMACS_INT;
92 typedef unsigned int EMACS_UINT;
93 # define EMACS_INT_MAX INT_MAX
94 # define pI ""
95 # elif INTPTR_MAX <= LONG_MAX >> NONPOINTER_BITS && !defined WIDE_EMACS_INT
96 typedef long int EMACS_INT;
97 typedef unsigned long EMACS_UINT;
98 # define EMACS_INT_MAX LONG_MAX
99 # define pI "l"
100 /* Check versus LLONG_MAX, not LLONG_MAX >> NONPOINTER_BITS.
101 In theory this is not safe, but in practice it seems to be OK. */
102 # elif INTPTR_MAX <= LLONG_MAX
103 typedef long long int EMACS_INT;
104 typedef unsigned long long int EMACS_UINT;
105 # define EMACS_INT_MAX LLONG_MAX
106 # define pI "ll"
107 # else
108 # error "INTPTR_MAX too large"
109 # endif
110 #endif
111
112 /* Number of bits to put in each character in the internal representation
113 of bool vectors. This should not vary across implementations. */
114 enum { BOOL_VECTOR_BITS_PER_CHAR =
115 #define BOOL_VECTOR_BITS_PER_CHAR 8
116 BOOL_VECTOR_BITS_PER_CHAR
117 };
118
119 /* An unsigned integer type representing a fixed-length bit sequence,
120 suitable for bool vector words, GC mark bits, etc. Normally it is size_t
121 for speed, but it is unsigned char on weird platforms. */
122 #if BOOL_VECTOR_BITS_PER_CHAR == CHAR_BIT
123 typedef size_t bits_word;
124 # define BITS_WORD_MAX SIZE_MAX
125 enum { BITS_PER_BITS_WORD = CHAR_BIT * sizeof (bits_word) };
126 #else
127 typedef unsigned char bits_word;
128 # define BITS_WORD_MAX ((1u << BOOL_VECTOR_BITS_PER_CHAR) - 1)
129 enum { BITS_PER_BITS_WORD = BOOL_VECTOR_BITS_PER_CHAR };
130 #endif
131 verify (BITS_WORD_MAX >> (BITS_PER_BITS_WORD - 1) == 1);
132
133 /* Number of bits in some machine integer types. */
134 enum
135 {
136 BITS_PER_CHAR = CHAR_BIT,
137 BITS_PER_SHORT = CHAR_BIT * sizeof (short),
138 BITS_PER_LONG = CHAR_BIT * sizeof (long int),
139 BITS_PER_EMACS_INT = CHAR_BIT * sizeof (EMACS_INT)
140 };
141
142 /* printmax_t and uprintmax_t are types for printing large integers.
143 These are the widest integers that are supported for printing.
144 pMd etc. are conversions for printing them.
145 On C99 hosts, there's no problem, as even the widest integers work.
146 Fall back on EMACS_INT on pre-C99 hosts. */
147 #ifdef PRIdMAX
148 typedef intmax_t printmax_t;
149 typedef uintmax_t uprintmax_t;
150 # define pMd PRIdMAX
151 # define pMu PRIuMAX
152 #else
153 typedef EMACS_INT printmax_t;
154 typedef EMACS_UINT uprintmax_t;
155 # define pMd pI"d"
156 # define pMu pI"u"
157 #endif
158
159 /* Use pD to format ptrdiff_t values, which suffice for indexes into
160 buffers and strings. Emacs never allocates objects larger than
161 PTRDIFF_MAX bytes, as they cause problems with pointer subtraction.
162 In C99, pD can always be "t"; configure it here for the sake of
163 pre-C99 libraries such as glibc 2.0 and Solaris 8. */
164 #if PTRDIFF_MAX == INT_MAX
165 # define pD ""
166 #elif PTRDIFF_MAX == LONG_MAX
167 # define pD "l"
168 #elif PTRDIFF_MAX == LLONG_MAX
169 # define pD "ll"
170 #else
171 # define pD "t"
172 #endif
173
174 /* Extra internal type checking? */
175
176 /* Define Emacs versions of <assert.h>'s 'assert (COND)' and <verify.h>'s
177 'assume (COND)'. COND should be free of side effects, as it may or
178 may not be evaluated.
179
180 'eassert (COND)' checks COND at runtime if ENABLE_CHECKING is
181 defined and suppress_checking is false, and does nothing otherwise.
182 Emacs dies if COND is checked and is false. The suppress_checking
183 variable is initialized to 0 in alloc.c. Set it to 1 using a
184 debugger to temporarily disable aborting on detected internal
185 inconsistencies or error conditions.
186
187 In some cases, a good compiler may be able to optimize away the
188 eassert macro even if ENABLE_CHECKING is true, e.g., if XSTRING (x)
189 uses eassert to test STRINGP (x), but a particular use of XSTRING
190 is invoked only after testing that STRINGP (x) is true, making the
191 test redundant.
192
193 eassume is like eassert except that it also causes the compiler to
194 assume that COND is true afterwards, regardless of whether runtime
195 checking is enabled. This can improve performance in some cases,
196 though it can degrade performance in others. It's often suboptimal
197 for COND to call external functions or access volatile storage. */
198
199 #ifndef ENABLE_CHECKING
200 # define eassert(cond) ((void) (false && (cond))) /* Check COND compiles. */
201 # define eassume(cond) assume (cond)
202 #else /* ENABLE_CHECKING */
203
204 extern _Noreturn void die (const char *, const char *, int);
205
206 extern bool suppress_checking EXTERNALLY_VISIBLE;
207
208 # define eassert(cond) \
209 (suppress_checking || (cond) \
210 ? (void) 0 \
211 : die (# cond, __FILE__, __LINE__))
212 # define eassume(cond) \
213 (suppress_checking \
214 ? assume (cond) \
215 : (cond) \
216 ? (void) 0 \
217 : die (# cond, __FILE__, __LINE__))
218 #endif /* ENABLE_CHECKING */
219
220 \f
221 /* Use the configure flag --enable-check-lisp-object-type to make
222 Lisp_Object use a struct type instead of the default int. The flag
223 causes CHECK_LISP_OBJECT_TYPE to be defined. */
224
225 /***** Select the tagging scheme. *****/
226 /* The following option controls the tagging scheme:
227 - USE_LSB_TAG means that we can assume the least 3 bits of pointers are
228 always 0, and we can thus use them to hold tag bits, without
229 restricting our addressing space.
230
231 If ! USE_LSB_TAG, then use the top 3 bits for tagging, thus
232 restricting our possible address range.
233
234 USE_LSB_TAG not only requires the least 3 bits of pointers returned by
235 malloc to be 0 but also needs to be able to impose a mult-of-8 alignment
236 on the few static Lisp_Objects used: lispsym, all the defsubr, and
237 the two special buffers buffer_defaults and buffer_local_symbols. */
238
239 enum Lisp_Bits
240 {
241 /* 2**GCTYPEBITS. This must be a macro that expands to a literal
242 integer constant, for MSVC. */
243 #define GCALIGNMENT 8
244
245 /* Number of bits in a Lisp_Object value, not counting the tag. */
246 VALBITS = BITS_PER_EMACS_INT - GCTYPEBITS,
247
248 /* Number of bits in a Lisp fixnum tag. */
249 INTTYPEBITS = GCTYPEBITS - 1,
250
251 /* Number of bits in a Lisp fixnum value, not counting the tag. */
252 FIXNUM_BITS = VALBITS + 1
253 };
254
255 #if GCALIGNMENT != 1 << GCTYPEBITS
256 # error "GCALIGNMENT and GCTYPEBITS are inconsistent"
257 #endif
258
259 /* The maximum value that can be stored in a EMACS_INT, assuming all
260 bits other than the type bits contribute to a nonnegative signed value.
261 This can be used in #if, e.g., '#if USE_LSB_TAG' below expands to an
262 expression involving VAL_MAX. */
263 #define VAL_MAX (EMACS_INT_MAX >> (GCTYPEBITS - 1))
264
265 /* Whether the least-significant bits of an EMACS_INT contain the tag.
266 On hosts where pointers-as-ints do not exceed VAL_MAX / 2, USE_LSB_TAG is:
267 a. unnecessary, because the top bits of an EMACS_INT are unused, and
268 b. slower, because it typically requires extra masking.
269 So, USE_LSB_TAG is true only on hosts where it might be useful. */
270 DEFINE_GDB_SYMBOL_BEGIN (bool, USE_LSB_TAG)
271 #define USE_LSB_TAG (VAL_MAX / 2 < INTPTR_MAX)
272 DEFINE_GDB_SYMBOL_END (USE_LSB_TAG)
273
274 #if !USE_LSB_TAG && !defined WIDE_EMACS_INT
275 # error "USE_LSB_TAG not supported on this platform; please report this." \
276 "Try 'configure --with-wide-int' to work around the problem."
277 error !;
278 #endif
279
280 #ifndef alignas
281 # error "alignas not defined"
282 #endif
283
284 #ifdef HAVE_STRUCT_ATTRIBUTE_ALIGNED
285 # define GCALIGNED __attribute__ ((aligned (GCALIGNMENT)))
286 #else
287 # define GCALIGNED /* empty */
288 #endif
289
290 /* Some operations are so commonly executed that they are implemented
291 as macros, not functions, because otherwise runtime performance would
292 suffer too much when compiling with GCC without optimization.
293 There's no need to inline everything, just the operations that
294 would otherwise cause a serious performance problem.
295
296 For each such operation OP, define a macro lisp_h_OP that contains
297 the operation's implementation. That way, OP can be implemented
298 via a macro definition like this:
299
300 #define OP(x) lisp_h_OP (x)
301
302 and/or via a function definition like this:
303
304 Lisp_Object (OP) (Lisp_Object x) { return lisp_h_OP (x); }
305
306 without worrying about the implementations diverging, since
307 lisp_h_OP defines the actual implementation. The lisp_h_OP macros
308 are intended to be private to this include file, and should not be
309 used elsewhere.
310
311 FIXME: Remove the lisp_h_OP macros, and define just the inline OP
312 functions, once most developers have access to GCC 4.8 or later and
313 can use "gcc -Og" to debug. Maybe in the year 2016. See
314 Bug#11935.
315
316 Commentary for these macros can be found near their corresponding
317 functions, below. */
318
319 #if CHECK_LISP_OBJECT_TYPE
320 # define lisp_h_XLI(o) ((o).i)
321 # define lisp_h_XIL(i) ((Lisp_Object) { i })
322 #else
323 # define lisp_h_XLI(o) (o)
324 # define lisp_h_XIL(i) (i)
325 #endif
326 #define lisp_h_CHECK_LIST_CONS(x, y) CHECK_TYPE (CONSP (x), Qlistp, y)
327 #define lisp_h_CHECK_NUMBER(x) CHECK_TYPE (INTEGERP (x), Qintegerp, x)
328 #define lisp_h_CHECK_SYMBOL(x) CHECK_TYPE (SYMBOLP (x), Qsymbolp, x)
329 #define lisp_h_CHECK_TYPE(ok, predicate, x) \
330 ((ok) ? (void) 0 : (void) wrong_type_argument (predicate, x))
331 #define lisp_h_CONSP(x) (XTYPE (x) == Lisp_Cons)
332 #define lisp_h_EQ(x, y) (XLI (x) == XLI (y))
333 #define lisp_h_FLOATP(x) (XTYPE (x) == Lisp_Float)
334 #define lisp_h_INTEGERP(x) ((XTYPE (x) & (Lisp_Int0 | ~Lisp_Int1)) == Lisp_Int0)
335 #define lisp_h_MARKERP(x) (MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Marker)
336 #define lisp_h_MISCP(x) (XTYPE (x) == Lisp_Misc)
337 #define lisp_h_NILP(x) EQ (x, Qnil)
338 #define lisp_h_SET_SYMBOL_VAL(sym, v) \
339 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value = (v))
340 #define lisp_h_SYMBOL_CONSTANT_P(sym) (XSYMBOL (sym)->constant)
341 #define lisp_h_SYMBOL_VAL(sym) \
342 (eassert ((sym)->redirect == SYMBOL_PLAINVAL), (sym)->val.value)
343 #define lisp_h_SYMBOLP(x) (XTYPE (x) == Lisp_Symbol)
344 #define lisp_h_VECTORLIKEP(x) (XTYPE (x) == Lisp_Vectorlike)
345 #define lisp_h_XCAR(c) XCONS (c)->car
346 #define lisp_h_XCDR(c) XCONS (c)->u.cdr
347 #define lisp_h_XCONS(a) \
348 (eassert (CONSP (a)), (struct Lisp_Cons *) XUNTAG (a, Lisp_Cons))
349 #define lisp_h_XHASH(a) XUINT (a)
350 #ifndef GC_CHECK_CONS_LIST
351 # define lisp_h_check_cons_list() ((void) 0)
352 #endif
353 #if USE_LSB_TAG
354 # define lisp_h_make_number(n) \
355 XIL ((EMACS_INT) (((EMACS_UINT) (n) << INTTYPEBITS) + Lisp_Int0))
356 # define lisp_h_XFASTINT(a) XINT (a)
357 # define lisp_h_XINT(a) (XLI (a) >> INTTYPEBITS)
358 # define lisp_h_XSYMBOL(a) \
359 (eassert (SYMBOLP (a)), \
360 (struct Lisp_Symbol *) ((uintptr_t) XLI (a) - Lisp_Symbol \
361 + (char *) lispsym))
362 # define lisp_h_XTYPE(a) ((enum Lisp_Type) (XLI (a) & ~VALMASK))
363 # define lisp_h_XUNTAG(a, type) ((void *) (intptr_t) (XLI (a) - (type)))
364 #endif
365
366 /* When compiling via gcc -O0, define the key operations as macros, as
367 Emacs is too slow otherwise. To disable this optimization, compile
368 with -DINLINING=false. */
369 #if (defined __NO_INLINE__ \
370 && ! defined __OPTIMIZE__ && ! defined __OPTIMIZE_SIZE__ \
371 && ! (defined INLINING && ! INLINING))
372 # define XLI(o) lisp_h_XLI (o)
373 # define XIL(i) lisp_h_XIL (i)
374 # define CHECK_LIST_CONS(x, y) lisp_h_CHECK_LIST_CONS (x, y)
375 # define CHECK_NUMBER(x) lisp_h_CHECK_NUMBER (x)
376 # define CHECK_SYMBOL(x) lisp_h_CHECK_SYMBOL (x)
377 # define CHECK_TYPE(ok, predicate, x) lisp_h_CHECK_TYPE (ok, predicate, x)
378 # define CONSP(x) lisp_h_CONSP (x)
379 # define EQ(x, y) lisp_h_EQ (x, y)
380 # define FLOATP(x) lisp_h_FLOATP (x)
381 # define INTEGERP(x) lisp_h_INTEGERP (x)
382 # define MARKERP(x) lisp_h_MARKERP (x)
383 # define MISCP(x) lisp_h_MISCP (x)
384 # define NILP(x) lisp_h_NILP (x)
385 # define SET_SYMBOL_VAL(sym, v) lisp_h_SET_SYMBOL_VAL (sym, v)
386 # define SYMBOL_CONSTANT_P(sym) lisp_h_SYMBOL_CONSTANT_P (sym)
387 # define SYMBOL_VAL(sym) lisp_h_SYMBOL_VAL (sym)
388 # define SYMBOLP(x) lisp_h_SYMBOLP (x)
389 # define VECTORLIKEP(x) lisp_h_VECTORLIKEP (x)
390 # define XCAR(c) lisp_h_XCAR (c)
391 # define XCDR(c) lisp_h_XCDR (c)
392 # define XCONS(a) lisp_h_XCONS (a)
393 # define XHASH(a) lisp_h_XHASH (a)
394 # ifndef GC_CHECK_CONS_LIST
395 # define check_cons_list() lisp_h_check_cons_list ()
396 # endif
397 # if USE_LSB_TAG
398 # define make_number(n) lisp_h_make_number (n)
399 # define XFASTINT(a) lisp_h_XFASTINT (a)
400 # define XINT(a) lisp_h_XINT (a)
401 # define XSYMBOL(a) lisp_h_XSYMBOL (a)
402 # define XTYPE(a) lisp_h_XTYPE (a)
403 # define XUNTAG(a, type) lisp_h_XUNTAG (a, type)
404 # endif
405 #endif
406
407
408 /* Define the fundamental Lisp data structures. */
409
410 /* This is the set of Lisp data types. If you want to define a new
411 data type, read the comments after Lisp_Fwd_Type definition
412 below. */
413
414 /* Lisp integers use 2 tags, to give them one extra bit, thus
415 extending their range from, e.g., -2^28..2^28-1 to -2^29..2^29-1. */
416 #define INTMASK (EMACS_INT_MAX >> (INTTYPEBITS - 1))
417 #define case_Lisp_Int case Lisp_Int0: case Lisp_Int1
418
419 /* Idea stolen from GDB. Pedantic GCC complains about enum bitfields,
420 MSVC doesn't support them, and xlc and Oracle Studio c99 complain
421 vociferously about them. */
422 #if (defined __STRICT_ANSI__ || defined _MSC_VER || defined __IBMC__ \
423 || (defined __SUNPRO_C && __STDC__))
424 #define ENUM_BF(TYPE) unsigned int
425 #else
426 #define ENUM_BF(TYPE) enum TYPE
427 #endif
428
429
430 enum Lisp_Type
431 {
432 /* Symbol. XSYMBOL (object) points to a struct Lisp_Symbol. */
433 Lisp_Symbol = 0,
434
435 /* Miscellaneous. XMISC (object) points to a union Lisp_Misc,
436 whose first member indicates the subtype. */
437 Lisp_Misc = 1,
438
439 /* Integer. XINT (obj) is the integer value. */
440 Lisp_Int0 = 2,
441 Lisp_Int1 = USE_LSB_TAG ? 6 : 3,
442
443 /* String. XSTRING (object) points to a struct Lisp_String.
444 The length of the string, and its contents, are stored therein. */
445 Lisp_String = 4,
446
447 /* Vector of Lisp objects, or something resembling it.
448 XVECTOR (object) points to a struct Lisp_Vector, which contains
449 the size and contents. The size field also contains the type
450 information, if it's not a real vector object. */
451 Lisp_Vectorlike = 5,
452
453 /* Cons. XCONS (object) points to a struct Lisp_Cons. */
454 Lisp_Cons = USE_LSB_TAG ? 3 : 6,
455
456 Lisp_Float = 7
457 };
458
459 /* This is the set of data types that share a common structure.
460 The first member of the structure is a type code from this set.
461 The enum values are arbitrary, but we'll use large numbers to make it
462 more likely that we'll spot the error if a random word in memory is
463 mistakenly interpreted as a Lisp_Misc. */
464 enum Lisp_Misc_Type
465 {
466 Lisp_Misc_Free = 0x5eab,
467 Lisp_Misc_Marker,
468 Lisp_Misc_Overlay,
469 Lisp_Misc_Save_Value,
470 Lisp_Misc_Finalizer,
471 #ifdef HAVE_MODULES
472 Lisp_Misc_User_Ptr,
473 #endif
474 /* Currently floats are not a misc type,
475 but let's define this in case we want to change that. */
476 Lisp_Misc_Float,
477 /* This is not a type code. It is for range checking. */
478 Lisp_Misc_Limit
479 };
480
481 /* These are the types of forwarding objects used in the value slot
482 of symbols for special built-in variables whose value is stored in
483 C variables. */
484 enum Lisp_Fwd_Type
485 {
486 Lisp_Fwd_Int, /* Fwd to a C `int' variable. */
487 Lisp_Fwd_Bool, /* Fwd to a C boolean var. */
488 Lisp_Fwd_Obj, /* Fwd to a C Lisp_Object variable. */
489 Lisp_Fwd_Buffer_Obj, /* Fwd to a Lisp_Object field of buffers. */
490 Lisp_Fwd_Kboard_Obj /* Fwd to a Lisp_Object field of kboards. */
491 };
492
493 /* If you want to define a new Lisp data type, here are some
494 instructions. See the thread at
495 http://lists.gnu.org/archive/html/emacs-devel/2012-10/msg00561.html
496 for more info.
497
498 First, there are already a couple of Lisp types that can be used if
499 your new type does not need to be exposed to Lisp programs nor
500 displayed to users. These are Lisp_Save_Value, a Lisp_Misc
501 subtype; and PVEC_OTHER, a kind of vectorlike object. The former
502 is suitable for temporarily stashing away pointers and integers in
503 a Lisp object. The latter is useful for vector-like Lisp objects
504 that need to be used as part of other objects, but which are never
505 shown to users or Lisp code (search for PVEC_OTHER in xterm.c for
506 an example).
507
508 These two types don't look pretty when printed, so they are
509 unsuitable for Lisp objects that can be exposed to users.
510
511 To define a new data type, add one more Lisp_Misc subtype or one
512 more pseudovector subtype. Pseudovectors are more suitable for
513 objects with several slots that need to support fast random access,
514 while Lisp_Misc types are for everything else. A pseudovector object
515 provides one or more slots for Lisp objects, followed by struct
516 members that are accessible only from C. A Lisp_Misc object is a
517 wrapper for a C struct that can contain anything you like.
518
519 Explicit freeing is discouraged for Lisp objects in general. But if
520 you really need to exploit this, use Lisp_Misc (check free_misc in
521 alloc.c to see why). There is no way to free a vectorlike object.
522
523 To add a new pseudovector type, extend the pvec_type enumeration;
524 to add a new Lisp_Misc, extend the Lisp_Misc_Type enumeration.
525
526 For a Lisp_Misc, you will also need to add your entry to union
527 Lisp_Misc (but make sure the first word has the same structure as
528 the others, starting with a 16-bit member of the Lisp_Misc_Type
529 enumeration and a 1-bit GC markbit) and make sure the overall size
530 of the union is not increased by your addition.
531
532 For a new pseudovector, it's highly desirable to limit the size
533 of your data type by VBLOCK_BYTES_MAX bytes (defined in alloc.c).
534 Otherwise you will need to change sweep_vectors (also in alloc.c).
535
536 Then you will need to add switch branches in print.c (in
537 print_object, to print your object, and possibly also in
538 print_preprocess) and to alloc.c, to mark your object (in
539 mark_object) and to free it (in gc_sweep). The latter is also the
540 right place to call any code specific to your data type that needs
541 to run when the object is recycled -- e.g., free any additional
542 resources allocated for it that are not Lisp objects. You can even
543 make a pointer to the function that frees the resources a slot in
544 your object -- this way, the same object could be used to represent
545 several disparate C structures. */
546
547 #ifdef CHECK_LISP_OBJECT_TYPE
548
549 typedef struct { EMACS_INT i; } Lisp_Object;
550
551 #define LISP_INITIALLY(i) {i}
552
553 #undef CHECK_LISP_OBJECT_TYPE
554 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = true };
555 #else /* CHECK_LISP_OBJECT_TYPE */
556
557 /* If a struct type is not wanted, define Lisp_Object as just a number. */
558
559 typedef EMACS_INT Lisp_Object;
560 #define LISP_INITIALLY(i) (i)
561 enum CHECK_LISP_OBJECT_TYPE { CHECK_LISP_OBJECT_TYPE = false };
562 #endif /* CHECK_LISP_OBJECT_TYPE */
563
564 #define LISP_INITIALLY_ZERO LISP_INITIALLY (0)
565 \f
566 /* Forward declarations. */
567
568 /* Defined in this file. */
569 union Lisp_Fwd;
570 INLINE bool BOOL_VECTOR_P (Lisp_Object);
571 INLINE bool BUFFER_OBJFWDP (union Lisp_Fwd *);
572 INLINE bool BUFFERP (Lisp_Object);
573 INLINE bool CHAR_TABLE_P (Lisp_Object);
574 INLINE Lisp_Object CHAR_TABLE_REF_ASCII (Lisp_Object, ptrdiff_t);
575 INLINE bool (CONSP) (Lisp_Object);
576 INLINE bool (FLOATP) (Lisp_Object);
577 INLINE bool functionp (Lisp_Object);
578 INLINE bool (INTEGERP) (Lisp_Object);
579 INLINE bool (MARKERP) (Lisp_Object);
580 INLINE bool (MISCP) (Lisp_Object);
581 INLINE bool (NILP) (Lisp_Object);
582 INLINE bool OVERLAYP (Lisp_Object);
583 INLINE bool PROCESSP (Lisp_Object);
584 INLINE bool PSEUDOVECTORP (Lisp_Object, int);
585 INLINE bool SAVE_VALUEP (Lisp_Object);
586 INLINE bool FINALIZERP (Lisp_Object);
587
588 #ifdef HAVE_MODULES
589 INLINE bool USER_PTRP (Lisp_Object);
590 INLINE struct Lisp_User_Ptr *(XUSER_PTR) (Lisp_Object);
591 #endif
592
593 INLINE void set_sub_char_table_contents (Lisp_Object, ptrdiff_t,
594 Lisp_Object);
595 INLINE bool STRINGP (Lisp_Object);
596 INLINE bool SUB_CHAR_TABLE_P (Lisp_Object);
597 INLINE bool SUBRP (Lisp_Object);
598 INLINE bool (SYMBOLP) (Lisp_Object);
599 INLINE bool (VECTORLIKEP) (Lisp_Object);
600 INLINE bool WINDOWP (Lisp_Object);
601 INLINE bool TERMINALP (Lisp_Object);
602 INLINE struct Lisp_Save_Value *XSAVE_VALUE (Lisp_Object);
603 INLINE struct Lisp_Finalizer *XFINALIZER (Lisp_Object);
604 INLINE struct Lisp_Symbol *(XSYMBOL) (Lisp_Object);
605 INLINE void *(XUNTAG) (Lisp_Object, int);
606
607 /* Defined in chartab.c. */
608 extern Lisp_Object char_table_ref (Lisp_Object, int);
609 extern void char_table_set (Lisp_Object, int, Lisp_Object);
610
611 /* Defined in data.c. */
612 extern _Noreturn Lisp_Object wrong_type_argument (Lisp_Object, Lisp_Object);
613 extern _Noreturn void wrong_choice (Lisp_Object, Lisp_Object);
614
615 /* Defined in emacs.c. */
616 extern bool might_dump;
617 /* True means Emacs has already been initialized.
618 Used during startup to detect startup of dumped Emacs. */
619 extern bool initialized;
620
621 /* Defined in floatfns.c. */
622 extern double extract_float (Lisp_Object);
623
624 \f
625 /* Interned state of a symbol. */
626
627 enum symbol_interned
628 {
629 SYMBOL_UNINTERNED = 0,
630 SYMBOL_INTERNED = 1,
631 SYMBOL_INTERNED_IN_INITIAL_OBARRAY = 2
632 };
633
634 enum symbol_redirect
635 {
636 SYMBOL_PLAINVAL = 4,
637 SYMBOL_VARALIAS = 1,
638 SYMBOL_LOCALIZED = 2,
639 SYMBOL_FORWARDED = 3
640 };
641
642 struct Lisp_Symbol
643 {
644 bool_bf gcmarkbit : 1;
645
646 /* Indicates where the value can be found:
647 0 : it's a plain var, the value is in the `value' field.
648 1 : it's a varalias, the value is really in the `alias' symbol.
649 2 : it's a localized var, the value is in the `blv' object.
650 3 : it's a forwarding variable, the value is in `forward'. */
651 ENUM_BF (symbol_redirect) redirect : 3;
652
653 /* Non-zero means symbol is constant, i.e. changing its value
654 should signal an error. If the value is 3, then the var
655 can be changed, but only by `defconst'. */
656 unsigned constant : 2;
657
658 /* Interned state of the symbol. This is an enumerator from
659 enum symbol_interned. */
660 unsigned interned : 2;
661
662 /* True means that this variable has been explicitly declared
663 special (with `defvar' etc), and shouldn't be lexically bound. */
664 bool_bf declared_special : 1;
665
666 /* True if pointed to from purespace and hence can't be GC'd. */
667 bool_bf pinned : 1;
668
669 /* The symbol's name, as a Lisp string. */
670 Lisp_Object name;
671
672 /* Value of the symbol or Qunbound if unbound. Which alternative of the
673 union is used depends on the `redirect' field above. */
674 union {
675 Lisp_Object value;
676 struct Lisp_Symbol *alias;
677 struct Lisp_Buffer_Local_Value *blv;
678 union Lisp_Fwd *fwd;
679 } val;
680
681 /* Function value of the symbol or Qnil if not fboundp. */
682 Lisp_Object function;
683
684 /* The symbol's property list. */
685 Lisp_Object plist;
686
687 /* Next symbol in obarray bucket, if the symbol is interned. */
688 struct Lisp_Symbol *next;
689 };
690
691 /* Declare a Lisp-callable function. The MAXARGS parameter has the same
692 meaning as in the DEFUN macro, and is used to construct a prototype. */
693 /* We can use the same trick as in the DEFUN macro to generate the
694 appropriate prototype. */
695 #define EXFUN(fnname, maxargs) \
696 extern Lisp_Object fnname DEFUN_ARGS_ ## maxargs
697
698 /* Note that the weird token-substitution semantics of ANSI C makes
699 this work for MANY and UNEVALLED. */
700 #define DEFUN_ARGS_MANY (ptrdiff_t, Lisp_Object *)
701 #define DEFUN_ARGS_UNEVALLED (Lisp_Object)
702 #define DEFUN_ARGS_0 (void)
703 #define DEFUN_ARGS_1 (Lisp_Object)
704 #define DEFUN_ARGS_2 (Lisp_Object, Lisp_Object)
705 #define DEFUN_ARGS_3 (Lisp_Object, Lisp_Object, Lisp_Object)
706 #define DEFUN_ARGS_4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
707 #define DEFUN_ARGS_5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
708 Lisp_Object)
709 #define DEFUN_ARGS_6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
710 Lisp_Object, Lisp_Object)
711 #define DEFUN_ARGS_7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
712 Lisp_Object, Lisp_Object, Lisp_Object)
713 #define DEFUN_ARGS_8 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, \
714 Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object)
715
716 /* Yield an integer that contains TAG along with PTR. */
717 #define TAG_PTR(tag, ptr) \
718 ((USE_LSB_TAG ? (tag) : (EMACS_UINT) (tag) << VALBITS) + (uintptr_t) (ptr))
719
720 /* Yield an integer that contains a symbol tag along with OFFSET.
721 OFFSET should be the offset in bytes from 'lispsym' to the symbol. */
722 #define TAG_SYMOFFSET(offset) TAG_PTR (Lisp_Symbol, offset)
723
724 /* XLI_BUILTIN_LISPSYM (iQwhatever) is equivalent to
725 XLI (builtin_lisp_symbol (Qwhatever)),
726 except the former expands to an integer constant expression. */
727 #define XLI_BUILTIN_LISPSYM(iname) TAG_SYMOFFSET ((iname) * sizeof *lispsym)
728
729 /* Declare extern constants for Lisp symbols. These can be helpful
730 when using a debugger like GDB, on older platforms where the debug
731 format does not represent C macros. */
732 #define DEFINE_LISP_SYMBOL(name) \
733 DEFINE_GDB_SYMBOL_BEGIN (Lisp_Object, name) \
734 DEFINE_GDB_SYMBOL_END (LISP_INITIALLY (XLI_BUILTIN_LISPSYM (i##name)))
735
736 /* By default, define macros for Qt, etc., as this leads to a bit
737 better performance in the core Emacs interpreter. A plugin can
738 define DEFINE_NON_NIL_Q_SYMBOL_MACROS to be false, to be portable to
739 other Emacs instances that assign different values to Qt, etc. */
740 #ifndef DEFINE_NON_NIL_Q_SYMBOL_MACROS
741 # define DEFINE_NON_NIL_Q_SYMBOL_MACROS true
742 #endif
743
744 #include "globals.h"
745
746 /* Convert a Lisp_Object to the corresponding EMACS_INT and vice versa.
747 At the machine level, these operations are no-ops. */
748
749 INLINE EMACS_INT
750 (XLI) (Lisp_Object o)
751 {
752 return lisp_h_XLI (o);
753 }
754
755 INLINE Lisp_Object
756 (XIL) (EMACS_INT i)
757 {
758 return lisp_h_XIL (i);
759 }
760
761 /* In the size word of a vector, this bit means the vector has been marked. */
762
763 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, ARRAY_MARK_FLAG)
764 # define ARRAY_MARK_FLAG PTRDIFF_MIN
765 DEFINE_GDB_SYMBOL_END (ARRAY_MARK_FLAG)
766
767 /* In the size word of a struct Lisp_Vector, this bit means it's really
768 some other vector-like object. */
769 DEFINE_GDB_SYMBOL_BEGIN (ptrdiff_t, PSEUDOVECTOR_FLAG)
770 # define PSEUDOVECTOR_FLAG (PTRDIFF_MAX - PTRDIFF_MAX / 2)
771 DEFINE_GDB_SYMBOL_END (PSEUDOVECTOR_FLAG)
772
773 /* In a pseudovector, the size field actually contains a word with one
774 PSEUDOVECTOR_FLAG bit set, and one of the following values extracted
775 with PVEC_TYPE_MASK to indicate the actual type. */
776 enum pvec_type
777 {
778 PVEC_NORMAL_VECTOR,
779 PVEC_FREE,
780 PVEC_PROCESS,
781 PVEC_FRAME,
782 PVEC_WINDOW,
783 PVEC_BOOL_VECTOR,
784 PVEC_BUFFER,
785 PVEC_HASH_TABLE,
786 PVEC_TERMINAL,
787 PVEC_WINDOW_CONFIGURATION,
788 PVEC_SUBR,
789 PVEC_OTHER,
790 /* These should be last, check internal_equal to see why. */
791 PVEC_COMPILED,
792 PVEC_CHAR_TABLE,
793 PVEC_SUB_CHAR_TABLE,
794 PVEC_FONT /* Should be last because it's used for range checking. */
795 };
796
797 enum More_Lisp_Bits
798 {
799 /* For convenience, we also store the number of elements in these bits.
800 Note that this size is not necessarily the memory-footprint size, but
801 only the number of Lisp_Object fields (that need to be traced by GC).
802 The distinction is used, e.g., by Lisp_Process, which places extra
803 non-Lisp_Object fields at the end of the structure. */
804 PSEUDOVECTOR_SIZE_BITS = 12,
805 PSEUDOVECTOR_SIZE_MASK = (1 << PSEUDOVECTOR_SIZE_BITS) - 1,
806
807 /* To calculate the memory footprint of the pseudovector, it's useful
808 to store the size of non-Lisp area in word_size units here. */
809 PSEUDOVECTOR_REST_BITS = 12,
810 PSEUDOVECTOR_REST_MASK = (((1 << PSEUDOVECTOR_REST_BITS) - 1)
811 << PSEUDOVECTOR_SIZE_BITS),
812
813 /* Used to extract pseudovector subtype information. */
814 PSEUDOVECTOR_AREA_BITS = PSEUDOVECTOR_SIZE_BITS + PSEUDOVECTOR_REST_BITS,
815 PVEC_TYPE_MASK = 0x3f << PSEUDOVECTOR_AREA_BITS
816 };
817 \f
818 /* These functions extract various sorts of values from a Lisp_Object.
819 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
820 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for
821 that cons. */
822
823 /* Mask for the value (as opposed to the type bits) of a Lisp object. */
824 DEFINE_GDB_SYMBOL_BEGIN (EMACS_INT, VALMASK)
825 # define VALMASK (USE_LSB_TAG ? - (1 << GCTYPEBITS) : VAL_MAX)
826 DEFINE_GDB_SYMBOL_END (VALMASK)
827
828 /* Largest and smallest representable fixnum values. These are the C
829 values. They are macros for use in static initializers. */
830 #define MOST_POSITIVE_FIXNUM (EMACS_INT_MAX >> INTTYPEBITS)
831 #define MOST_NEGATIVE_FIXNUM (-1 - MOST_POSITIVE_FIXNUM)
832
833 #if USE_LSB_TAG
834
835 INLINE Lisp_Object
836 (make_number) (EMACS_INT n)
837 {
838 return lisp_h_make_number (n);
839 }
840
841 INLINE EMACS_INT
842 (XINT) (Lisp_Object a)
843 {
844 return lisp_h_XINT (a);
845 }
846
847 INLINE EMACS_INT
848 (XFASTINT) (Lisp_Object a)
849 {
850 return lisp_h_XFASTINT (a);
851 }
852
853 INLINE struct Lisp_Symbol *
854 (XSYMBOL) (Lisp_Object a)
855 {
856 return lisp_h_XSYMBOL (a);
857 }
858
859 INLINE enum Lisp_Type
860 (XTYPE) (Lisp_Object a)
861 {
862 return lisp_h_XTYPE (a);
863 }
864
865 INLINE void *
866 (XUNTAG) (Lisp_Object a, int type)
867 {
868 return lisp_h_XUNTAG (a, type);
869 }
870
871 #else /* ! USE_LSB_TAG */
872
873 /* Although compiled only if ! USE_LSB_TAG, the following functions
874 also work when USE_LSB_TAG; this is to aid future maintenance when
875 the lisp_h_* macros are eventually removed. */
876
877 /* Make a Lisp integer representing the value of the low order
878 bits of N. */
879 INLINE Lisp_Object
880 make_number (EMACS_INT n)
881 {
882 EMACS_INT int0 = Lisp_Int0;
883 if (USE_LSB_TAG)
884 {
885 EMACS_UINT u = n;
886 n = u << INTTYPEBITS;
887 n += int0;
888 }
889 else
890 {
891 n &= INTMASK;
892 n += (int0 << VALBITS);
893 }
894 return XIL (n);
895 }
896
897 /* Extract A's value as a signed integer. */
898 INLINE EMACS_INT
899 XINT (Lisp_Object a)
900 {
901 EMACS_INT i = XLI (a);
902 if (! USE_LSB_TAG)
903 {
904 EMACS_UINT u = i;
905 i = u << INTTYPEBITS;
906 }
907 return i >> INTTYPEBITS;
908 }
909
910 /* Like XINT (A), but may be faster. A must be nonnegative.
911 If ! USE_LSB_TAG, this takes advantage of the fact that Lisp
912 integers have zero-bits in their tags. */
913 INLINE EMACS_INT
914 XFASTINT (Lisp_Object a)
915 {
916 EMACS_INT int0 = Lisp_Int0;
917 EMACS_INT n = USE_LSB_TAG ? XINT (a) : XLI (a) - (int0 << VALBITS);
918 eassert (0 <= n);
919 return n;
920 }
921
922 /* Extract A's value as a symbol. */
923 INLINE struct Lisp_Symbol *
924 XSYMBOL (Lisp_Object a)
925 {
926 uintptr_t i = (uintptr_t) XUNTAG (a, Lisp_Symbol);
927 void *p = (char *) lispsym + i;
928 return p;
929 }
930
931 /* Extract A's type. */
932 INLINE enum Lisp_Type
933 XTYPE (Lisp_Object a)
934 {
935 EMACS_UINT i = XLI (a);
936 return USE_LSB_TAG ? i & ~VALMASK : i >> VALBITS;
937 }
938
939 /* Extract A's pointer value, assuming A's type is TYPE. */
940 INLINE void *
941 XUNTAG (Lisp_Object a, int type)
942 {
943 intptr_t i = USE_LSB_TAG ? XLI (a) - type : XLI (a) & VALMASK;
944 return (void *) i;
945 }
946
947 #endif /* ! USE_LSB_TAG */
948
949 /* Extract A's value as an unsigned integer. */
950 INLINE EMACS_UINT
951 XUINT (Lisp_Object a)
952 {
953 EMACS_UINT i = XLI (a);
954 return USE_LSB_TAG ? i >> INTTYPEBITS : i & INTMASK;
955 }
956
957 /* Return A's (Lisp-integer sized) hash. Happens to be like XUINT
958 right now, but XUINT should only be applied to objects we know are
959 integers. */
960
961 INLINE EMACS_INT
962 (XHASH) (Lisp_Object a)
963 {
964 return lisp_h_XHASH (a);
965 }
966
967 /* Like make_number (N), but may be faster. N must be in nonnegative range. */
968 INLINE Lisp_Object
969 make_natnum (EMACS_INT n)
970 {
971 eassert (0 <= n && n <= MOST_POSITIVE_FIXNUM);
972 EMACS_INT int0 = Lisp_Int0;
973 return USE_LSB_TAG ? make_number (n) : XIL (n + (int0 << VALBITS));
974 }
975
976 /* Return true if X and Y are the same object. */
977
978 INLINE bool
979 (EQ) (Lisp_Object x, Lisp_Object y)
980 {
981 return lisp_h_EQ (x, y);
982 }
983
984 /* Value is true if I doesn't fit into a Lisp fixnum. It is
985 written this way so that it also works if I is of unsigned
986 type or if I is a NaN. */
987
988 #define FIXNUM_OVERFLOW_P(i) \
989 (! ((0 <= (i) || MOST_NEGATIVE_FIXNUM <= (i)) && (i) <= MOST_POSITIVE_FIXNUM))
990
991 INLINE ptrdiff_t
992 clip_to_bounds (ptrdiff_t lower, EMACS_INT num, ptrdiff_t upper)
993 {
994 return num < lower ? lower : num <= upper ? num : upper;
995 }
996 \f
997
998 /* Extract a value or address from a Lisp_Object. */
999
1000 INLINE struct Lisp_Cons *
1001 (XCONS) (Lisp_Object a)
1002 {
1003 return lisp_h_XCONS (a);
1004 }
1005
1006 INLINE struct Lisp_Vector *
1007 XVECTOR (Lisp_Object a)
1008 {
1009 eassert (VECTORLIKEP (a));
1010 return XUNTAG (a, Lisp_Vectorlike);
1011 }
1012
1013 INLINE struct Lisp_String *
1014 XSTRING (Lisp_Object a)
1015 {
1016 eassert (STRINGP (a));
1017 return XUNTAG (a, Lisp_String);
1018 }
1019
1020 /* The index of the C-defined Lisp symbol SYM.
1021 This can be used in a static initializer. */
1022 #define SYMBOL_INDEX(sym) i##sym
1023
1024 INLINE struct Lisp_Float *
1025 XFLOAT (Lisp_Object a)
1026 {
1027 eassert (FLOATP (a));
1028 return XUNTAG (a, Lisp_Float);
1029 }
1030
1031 /* Pseudovector types. */
1032
1033 INLINE struct Lisp_Process *
1034 XPROCESS (Lisp_Object a)
1035 {
1036 eassert (PROCESSP (a));
1037 return XUNTAG (a, Lisp_Vectorlike);
1038 }
1039
1040 INLINE struct window *
1041 XWINDOW (Lisp_Object a)
1042 {
1043 eassert (WINDOWP (a));
1044 return XUNTAG (a, Lisp_Vectorlike);
1045 }
1046
1047 INLINE struct terminal *
1048 XTERMINAL (Lisp_Object a)
1049 {
1050 eassert (TERMINALP (a));
1051 return XUNTAG (a, Lisp_Vectorlike);
1052 }
1053
1054 INLINE struct Lisp_Subr *
1055 XSUBR (Lisp_Object a)
1056 {
1057 eassert (SUBRP (a));
1058 return XUNTAG (a, Lisp_Vectorlike);
1059 }
1060
1061 INLINE struct buffer *
1062 XBUFFER (Lisp_Object a)
1063 {
1064 eassert (BUFFERP (a));
1065 return XUNTAG (a, Lisp_Vectorlike);
1066 }
1067
1068 INLINE struct Lisp_Char_Table *
1069 XCHAR_TABLE (Lisp_Object a)
1070 {
1071 eassert (CHAR_TABLE_P (a));
1072 return XUNTAG (a, Lisp_Vectorlike);
1073 }
1074
1075 INLINE struct Lisp_Sub_Char_Table *
1076 XSUB_CHAR_TABLE (Lisp_Object a)
1077 {
1078 eassert (SUB_CHAR_TABLE_P (a));
1079 return XUNTAG (a, Lisp_Vectorlike);
1080 }
1081
1082 INLINE struct Lisp_Bool_Vector *
1083 XBOOL_VECTOR (Lisp_Object a)
1084 {
1085 eassert (BOOL_VECTOR_P (a));
1086 return XUNTAG (a, Lisp_Vectorlike);
1087 }
1088
1089 /* Construct a Lisp_Object from a value or address. */
1090
1091 INLINE Lisp_Object
1092 make_lisp_ptr (void *ptr, enum Lisp_Type type)
1093 {
1094 Lisp_Object a = XIL (TAG_PTR (type, ptr));
1095 eassert (XTYPE (a) == type && XUNTAG (a, type) == ptr);
1096 return a;
1097 }
1098
1099 INLINE Lisp_Object
1100 make_lisp_symbol (struct Lisp_Symbol *sym)
1101 {
1102 Lisp_Object a = XIL (TAG_SYMOFFSET ((char *) sym - (char *) lispsym));
1103 eassert (XSYMBOL (a) == sym);
1104 return a;
1105 }
1106
1107 INLINE Lisp_Object
1108 builtin_lisp_symbol (int index)
1109 {
1110 return make_lisp_symbol (lispsym + index);
1111 }
1112
1113 #define XSETINT(a, b) ((a) = make_number (b))
1114 #define XSETFASTINT(a, b) ((a) = make_natnum (b))
1115 #define XSETCONS(a, b) ((a) = make_lisp_ptr (b, Lisp_Cons))
1116 #define XSETVECTOR(a, b) ((a) = make_lisp_ptr (b, Lisp_Vectorlike))
1117 #define XSETSTRING(a, b) ((a) = make_lisp_ptr (b, Lisp_String))
1118 #define XSETSYMBOL(a, b) ((a) = make_lisp_symbol (b))
1119 #define XSETFLOAT(a, b) ((a) = make_lisp_ptr (b, Lisp_Float))
1120 #define XSETMISC(a, b) ((a) = make_lisp_ptr (b, Lisp_Misc))
1121
1122 /* Pseudovector types. */
1123
1124 #define XSETPVECTYPE(v, code) \
1125 ((v)->header.size |= PSEUDOVECTOR_FLAG | ((code) << PSEUDOVECTOR_AREA_BITS))
1126 #define XSETPVECTYPESIZE(v, code, lispsize, restsize) \
1127 ((v)->header.size = (PSEUDOVECTOR_FLAG \
1128 | ((code) << PSEUDOVECTOR_AREA_BITS) \
1129 | ((restsize) << PSEUDOVECTOR_SIZE_BITS) \
1130 | (lispsize)))
1131
1132 /* The cast to struct vectorlike_header * avoids aliasing issues. */
1133 #define XSETPSEUDOVECTOR(a, b, code) \
1134 XSETTYPED_PSEUDOVECTOR (a, b, \
1135 (((struct vectorlike_header *) \
1136 XUNTAG (a, Lisp_Vectorlike)) \
1137 ->size), \
1138 code)
1139 #define XSETTYPED_PSEUDOVECTOR(a, b, size, code) \
1140 (XSETVECTOR (a, b), \
1141 eassert ((size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK)) \
1142 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS))))
1143
1144 #define XSETWINDOW_CONFIGURATION(a, b) \
1145 (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
1146 #define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
1147 #define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
1148 #define XSETTERMINAL(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_TERMINAL))
1149 #define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
1150 #define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
1151 #define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
1152 #define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
1153 #define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
1154 #define XSETSUB_CHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUB_CHAR_TABLE))
1155
1156 /* Efficiently convert a pointer to a Lisp object and back. The
1157 pointer is represented as a Lisp integer, so the garbage collector
1158 does not know about it. The pointer should not have both Lisp_Int1
1159 bits set, which makes this conversion inherently unportable. */
1160
1161 INLINE void *
1162 XINTPTR (Lisp_Object a)
1163 {
1164 return XUNTAG (a, Lisp_Int0);
1165 }
1166
1167 INLINE Lisp_Object
1168 make_pointer_integer (void *p)
1169 {
1170 Lisp_Object a = XIL (TAG_PTR (Lisp_Int0, p));
1171 eassert (INTEGERP (a) && XINTPTR (a) == p);
1172 return a;
1173 }
1174
1175 /* Type checking. */
1176
1177 INLINE void
1178 (CHECK_TYPE) (int ok, Lisp_Object predicate, Lisp_Object x)
1179 {
1180 lisp_h_CHECK_TYPE (ok, predicate, x);
1181 }
1182
1183 /* See the macros in intervals.h. */
1184
1185 typedef struct interval *INTERVAL;
1186
1187 struct GCALIGNED Lisp_Cons
1188 {
1189 /* Car of this cons cell. */
1190 Lisp_Object car;
1191
1192 union
1193 {
1194 /* Cdr of this cons cell. */
1195 Lisp_Object cdr;
1196
1197 /* Used to chain conses on a free list. */
1198 struct Lisp_Cons *chain;
1199 } u;
1200 };
1201
1202 /* Take the car or cdr of something known to be a cons cell. */
1203 /* The _addr functions shouldn't be used outside of the minimal set
1204 of code that has to know what a cons cell looks like. Other code not
1205 part of the basic lisp implementation should assume that the car and cdr
1206 fields are not accessible. (What if we want to switch to
1207 a copying collector someday? Cached cons cell field addresses may be
1208 invalidated at arbitrary points.) */
1209 INLINE Lisp_Object *
1210 xcar_addr (Lisp_Object c)
1211 {
1212 return &XCONS (c)->car;
1213 }
1214 INLINE Lisp_Object *
1215 xcdr_addr (Lisp_Object c)
1216 {
1217 return &XCONS (c)->u.cdr;
1218 }
1219
1220 /* Use these from normal code. */
1221
1222 INLINE Lisp_Object
1223 (XCAR) (Lisp_Object c)
1224 {
1225 return lisp_h_XCAR (c);
1226 }
1227
1228 INLINE Lisp_Object
1229 (XCDR) (Lisp_Object c)
1230 {
1231 return lisp_h_XCDR (c);
1232 }
1233
1234 /* Use these to set the fields of a cons cell.
1235
1236 Note that both arguments may refer to the same object, so 'n'
1237 should not be read after 'c' is first modified. */
1238 INLINE void
1239 XSETCAR (Lisp_Object c, Lisp_Object n)
1240 {
1241 *xcar_addr (c) = n;
1242 }
1243 INLINE void
1244 XSETCDR (Lisp_Object c, Lisp_Object n)
1245 {
1246 *xcdr_addr (c) = n;
1247 }
1248
1249 /* Take the car or cdr of something whose type is not known. */
1250 INLINE Lisp_Object
1251 CAR (Lisp_Object c)
1252 {
1253 return (CONSP (c) ? XCAR (c)
1254 : NILP (c) ? Qnil
1255 : wrong_type_argument (Qlistp, c));
1256 }
1257 INLINE Lisp_Object
1258 CDR (Lisp_Object c)
1259 {
1260 return (CONSP (c) ? XCDR (c)
1261 : NILP (c) ? Qnil
1262 : wrong_type_argument (Qlistp, c));
1263 }
1264
1265 /* Take the car or cdr of something whose type is not known. */
1266 INLINE Lisp_Object
1267 CAR_SAFE (Lisp_Object c)
1268 {
1269 return CONSP (c) ? XCAR (c) : Qnil;
1270 }
1271 INLINE Lisp_Object
1272 CDR_SAFE (Lisp_Object c)
1273 {
1274 return CONSP (c) ? XCDR (c) : Qnil;
1275 }
1276
1277 /* In a string or vector, the sign bit of the `size' is the gc mark bit. */
1278
1279 struct GCALIGNED Lisp_String
1280 {
1281 ptrdiff_t size;
1282 ptrdiff_t size_byte;
1283 INTERVAL intervals; /* Text properties in this string. */
1284 unsigned char *data;
1285 };
1286
1287 /* True if STR is a multibyte string. */
1288 INLINE bool
1289 STRING_MULTIBYTE (Lisp_Object str)
1290 {
1291 return 0 <= XSTRING (str)->size_byte;
1292 }
1293
1294 /* An upper bound on the number of bytes in a Lisp string, not
1295 counting the terminating null. This a tight enough bound to
1296 prevent integer overflow errors that would otherwise occur during
1297 string size calculations. A string cannot contain more bytes than
1298 a fixnum can represent, nor can it be so long that C pointer
1299 arithmetic stops working on the string plus its terminating null.
1300 Although the actual size limit (see STRING_BYTES_MAX in alloc.c)
1301 may be a bit smaller than STRING_BYTES_BOUND, calculating it here
1302 would expose alloc.c internal details that we'd rather keep
1303 private.
1304
1305 This is a macro for use in static initializers. The cast to
1306 ptrdiff_t ensures that the macro is signed. */
1307 #define STRING_BYTES_BOUND \
1308 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, min (SIZE_MAX, PTRDIFF_MAX) - 1))
1309
1310 /* Mark STR as a unibyte string. */
1311 #define STRING_SET_UNIBYTE(STR) \
1312 do { \
1313 if (EQ (STR, empty_multibyte_string)) \
1314 (STR) = empty_unibyte_string; \
1315 else \
1316 XSTRING (STR)->size_byte = -1; \
1317 } while (false)
1318
1319 /* Mark STR as a multibyte string. Assure that STR contains only
1320 ASCII characters in advance. */
1321 #define STRING_SET_MULTIBYTE(STR) \
1322 do { \
1323 if (EQ (STR, empty_unibyte_string)) \
1324 (STR) = empty_multibyte_string; \
1325 else \
1326 XSTRING (STR)->size_byte = XSTRING (STR)->size; \
1327 } while (false)
1328
1329 /* Convenience functions for dealing with Lisp strings. */
1330
1331 INLINE unsigned char *
1332 SDATA (Lisp_Object string)
1333 {
1334 return XSTRING (string)->data;
1335 }
1336 INLINE char *
1337 SSDATA (Lisp_Object string)
1338 {
1339 /* Avoid "differ in sign" warnings. */
1340 return (char *) SDATA (string);
1341 }
1342 INLINE unsigned char
1343 SREF (Lisp_Object string, ptrdiff_t index)
1344 {
1345 return SDATA (string)[index];
1346 }
1347 INLINE void
1348 SSET (Lisp_Object string, ptrdiff_t index, unsigned char new)
1349 {
1350 SDATA (string)[index] = new;
1351 }
1352 INLINE ptrdiff_t
1353 SCHARS (Lisp_Object string)
1354 {
1355 return XSTRING (string)->size;
1356 }
1357
1358 #ifdef GC_CHECK_STRING_BYTES
1359 extern ptrdiff_t string_bytes (struct Lisp_String *);
1360 #endif
1361 INLINE ptrdiff_t
1362 STRING_BYTES (struct Lisp_String *s)
1363 {
1364 #ifdef GC_CHECK_STRING_BYTES
1365 return string_bytes (s);
1366 #else
1367 return s->size_byte < 0 ? s->size : s->size_byte;
1368 #endif
1369 }
1370
1371 INLINE ptrdiff_t
1372 SBYTES (Lisp_Object string)
1373 {
1374 return STRING_BYTES (XSTRING (string));
1375 }
1376 INLINE void
1377 STRING_SET_CHARS (Lisp_Object string, ptrdiff_t newsize)
1378 {
1379 XSTRING (string)->size = newsize;
1380 }
1381
1382 /* Header of vector-like objects. This documents the layout constraints on
1383 vectors and pseudovectors (objects of PVEC_xxx subtype). It also prevents
1384 compilers from being fooled by Emacs's type punning: XSETPSEUDOVECTOR
1385 and PSEUDOVECTORP cast their pointers to struct vectorlike_header *,
1386 because when two such pointers potentially alias, a compiler won't
1387 incorrectly reorder loads and stores to their size fields. See
1388 Bug#8546. */
1389 struct vectorlike_header
1390 {
1391 /* The only field contains various pieces of information:
1392 - The MSB (ARRAY_MARK_FLAG) holds the gcmarkbit.
1393 - The next bit (PSEUDOVECTOR_FLAG) indicates whether this is a plain
1394 vector (0) or a pseudovector (1).
1395 - If PSEUDOVECTOR_FLAG is 0, the rest holds the size (number
1396 of slots) of the vector.
1397 - If PSEUDOVECTOR_FLAG is 1, the rest is subdivided into three fields:
1398 - a) pseudovector subtype held in PVEC_TYPE_MASK field;
1399 - b) number of Lisp_Objects slots at the beginning of the object
1400 held in PSEUDOVECTOR_SIZE_MASK field. These objects are always
1401 traced by the GC;
1402 - c) size of the rest fields held in PSEUDOVECTOR_REST_MASK and
1403 measured in word_size units. Rest fields may also include
1404 Lisp_Objects, but these objects usually needs some special treatment
1405 during GC.
1406 There are some exceptions. For PVEC_FREE, b) is always zero. For
1407 PVEC_BOOL_VECTOR and PVEC_SUBR, both b) and c) are always zero.
1408 Current layout limits the pseudovectors to 63 PVEC_xxx subtypes,
1409 4095 Lisp_Objects in GC-ed area and 4095 word-sized other slots. */
1410 ptrdiff_t size;
1411 };
1412
1413 /* A regular vector is just a header plus an array of Lisp_Objects. */
1414
1415 struct Lisp_Vector
1416 {
1417 struct vectorlike_header header;
1418 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1419 };
1420
1421 /* C11 prohibits alignof (struct Lisp_Vector), so compute it manually. */
1422 enum
1423 {
1424 ALIGNOF_STRUCT_LISP_VECTOR
1425 = alignof (union { struct vectorlike_header a; Lisp_Object b; })
1426 };
1427
1428 /* A boolvector is a kind of vectorlike, with contents like a string. */
1429
1430 struct Lisp_Bool_Vector
1431 {
1432 /* HEADER.SIZE is the vector's size field. It doesn't have the real size,
1433 just the subtype information. */
1434 struct vectorlike_header header;
1435 /* This is the size in bits. */
1436 EMACS_INT size;
1437 /* The actual bits, packed into bytes.
1438 Zeros fill out the last word if needed.
1439 The bits are in little-endian order in the bytes, and
1440 the bytes are in little-endian order in the words. */
1441 bits_word data[FLEXIBLE_ARRAY_MEMBER];
1442 };
1443
1444 INLINE EMACS_INT
1445 bool_vector_size (Lisp_Object a)
1446 {
1447 EMACS_INT size = XBOOL_VECTOR (a)->size;
1448 eassume (0 <= size);
1449 return size;
1450 }
1451
1452 INLINE bits_word *
1453 bool_vector_data (Lisp_Object a)
1454 {
1455 return XBOOL_VECTOR (a)->data;
1456 }
1457
1458 INLINE unsigned char *
1459 bool_vector_uchar_data (Lisp_Object a)
1460 {
1461 return (unsigned char *) bool_vector_data (a);
1462 }
1463
1464 /* The number of data words and bytes in a bool vector with SIZE bits. */
1465
1466 INLINE EMACS_INT
1467 bool_vector_words (EMACS_INT size)
1468 {
1469 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1470 return (size + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
1471 }
1472
1473 INLINE EMACS_INT
1474 bool_vector_bytes (EMACS_INT size)
1475 {
1476 eassume (0 <= size && size <= EMACS_INT_MAX - (BITS_PER_BITS_WORD - 1));
1477 return (size + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
1478 }
1479
1480 /* True if A's Ith bit is set. */
1481
1482 INLINE bool
1483 bool_vector_bitref (Lisp_Object a, EMACS_INT i)
1484 {
1485 eassume (0 <= i && i < bool_vector_size (a));
1486 return !! (bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR]
1487 & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR)));
1488 }
1489
1490 INLINE Lisp_Object
1491 bool_vector_ref (Lisp_Object a, EMACS_INT i)
1492 {
1493 return bool_vector_bitref (a, i) ? Qt : Qnil;
1494 }
1495
1496 /* Set A's Ith bit to B. */
1497
1498 INLINE void
1499 bool_vector_set (Lisp_Object a, EMACS_INT i, bool b)
1500 {
1501 unsigned char *addr;
1502
1503 eassume (0 <= i && i < bool_vector_size (a));
1504 addr = &bool_vector_uchar_data (a)[i / BOOL_VECTOR_BITS_PER_CHAR];
1505
1506 if (b)
1507 *addr |= 1 << (i % BOOL_VECTOR_BITS_PER_CHAR);
1508 else
1509 *addr &= ~ (1 << (i % BOOL_VECTOR_BITS_PER_CHAR));
1510 }
1511
1512 /* Some handy constants for calculating sizes
1513 and offsets, mostly of vectorlike objects. */
1514
1515 enum
1516 {
1517 header_size = offsetof (struct Lisp_Vector, contents),
1518 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
1519 word_size = sizeof (Lisp_Object)
1520 };
1521
1522 /* Conveniences for dealing with Lisp arrays. */
1523
1524 INLINE Lisp_Object
1525 AREF (Lisp_Object array, ptrdiff_t idx)
1526 {
1527 return XVECTOR (array)->contents[idx];
1528 }
1529
1530 INLINE Lisp_Object *
1531 aref_addr (Lisp_Object array, ptrdiff_t idx)
1532 {
1533 return & XVECTOR (array)->contents[idx];
1534 }
1535
1536 INLINE ptrdiff_t
1537 ASIZE (Lisp_Object array)
1538 {
1539 return XVECTOR (array)->header.size;
1540 }
1541
1542 INLINE void
1543 ASET (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1544 {
1545 eassert (0 <= idx && idx < ASIZE (array));
1546 XVECTOR (array)->contents[idx] = val;
1547 }
1548
1549 INLINE void
1550 gc_aset (Lisp_Object array, ptrdiff_t idx, Lisp_Object val)
1551 {
1552 /* Like ASET, but also can be used in the garbage collector:
1553 sweep_weak_table calls set_hash_key etc. while the table is marked. */
1554 eassert (0 <= idx && idx < (ASIZE (array) & ~ARRAY_MARK_FLAG));
1555 XVECTOR (array)->contents[idx] = val;
1556 }
1557
1558 /* True, since Qnil's representation is zero. Every place in the code
1559 that assumes Qnil is zero should verify (NIL_IS_ZERO), to make it easy
1560 to find such assumptions later if we change Qnil to be nonzero. */
1561 enum { NIL_IS_ZERO = XLI_BUILTIN_LISPSYM (iQnil) == 0 };
1562
1563 /* Clear the object addressed by P, with size NBYTES, so that all its
1564 bytes are zero and all its Lisp values are nil. */
1565 INLINE void
1566 memclear (void *p, ptrdiff_t nbytes)
1567 {
1568 eassert (0 <= nbytes);
1569 verify (NIL_IS_ZERO);
1570 /* Since Qnil is zero, memset suffices. */
1571 memset (p, 0, nbytes);
1572 }
1573
1574 /* If a struct is made to look like a vector, this macro returns the length
1575 of the shortest vector that would hold that struct. */
1576
1577 #define VECSIZE(type) \
1578 ((sizeof (type) - header_size + word_size - 1) / word_size)
1579
1580 /* Like VECSIZE, but used when the pseudo-vector has non-Lisp_Object fields
1581 at the end and we need to compute the number of Lisp_Object fields (the
1582 ones that the GC needs to trace). */
1583
1584 #define PSEUDOVECSIZE(type, nonlispfield) \
1585 ((offsetof (type, nonlispfield) - header_size) / word_size)
1586
1587 /* Compute A OP B, using the unsigned comparison operator OP. A and B
1588 should be integer expressions. This is not the same as
1589 mathematical comparison; for example, UNSIGNED_CMP (0, <, -1)
1590 returns true. For efficiency, prefer plain unsigned comparison if A
1591 and B's sizes both fit (after integer promotion). */
1592 #define UNSIGNED_CMP(a, op, b) \
1593 (max (sizeof ((a) + 0), sizeof ((b) + 0)) <= sizeof (unsigned) \
1594 ? ((a) + (unsigned) 0) op ((b) + (unsigned) 0) \
1595 : ((a) + (uintmax_t) 0) op ((b) + (uintmax_t) 0))
1596
1597 /* True iff C is an ASCII character. */
1598 #define ASCII_CHAR_P(c) UNSIGNED_CMP (c, <, 0x80)
1599
1600 /* A char-table is a kind of vectorlike, with contents are like a
1601 vector but with a few other slots. For some purposes, it makes
1602 sense to handle a char-table with type struct Lisp_Vector. An
1603 element of a char table can be any Lisp objects, but if it is a sub
1604 char-table, we treat it a table that contains information of a
1605 specific range of characters. A sub char-table is like a vector but
1606 with two integer fields between the header and Lisp data, which means
1607 that it has to be marked with some precautions (see mark_char_table
1608 in alloc.c). A sub char-table appears only in an element of a char-table,
1609 and there's no way to access it directly from Emacs Lisp program. */
1610
1611 enum CHARTAB_SIZE_BITS
1612 {
1613 CHARTAB_SIZE_BITS_0 = 6,
1614 CHARTAB_SIZE_BITS_1 = 4,
1615 CHARTAB_SIZE_BITS_2 = 5,
1616 CHARTAB_SIZE_BITS_3 = 7
1617 };
1618
1619 extern const int chartab_size[4];
1620
1621 struct Lisp_Char_Table
1622 {
1623 /* HEADER.SIZE is the vector's size field, which also holds the
1624 pseudovector type information. It holds the size, too.
1625 The size counts the defalt, parent, purpose, ascii,
1626 contents, and extras slots. */
1627 struct vectorlike_header header;
1628
1629 /* This holds a default value,
1630 which is used whenever the value for a specific character is nil. */
1631 Lisp_Object defalt;
1632
1633 /* This points to another char table, which we inherit from when the
1634 value for a specific character is nil. The `defalt' slot takes
1635 precedence over this. */
1636 Lisp_Object parent;
1637
1638 /* This is a symbol which says what kind of use this char-table is
1639 meant for. */
1640 Lisp_Object purpose;
1641
1642 /* The bottom sub char-table for characters of the range 0..127. It
1643 is nil if none of ASCII character has a specific value. */
1644 Lisp_Object ascii;
1645
1646 Lisp_Object contents[(1 << CHARTAB_SIZE_BITS_0)];
1647
1648 /* These hold additional data. It is a vector. */
1649 Lisp_Object extras[FLEXIBLE_ARRAY_MEMBER];
1650 };
1651
1652 struct Lisp_Sub_Char_Table
1653 {
1654 /* HEADER.SIZE is the vector's size field, which also holds the
1655 pseudovector type information. It holds the size, too. */
1656 struct vectorlike_header header;
1657
1658 /* Depth of this sub char-table. It should be 1, 2, or 3. A sub
1659 char-table of depth 1 contains 16 elements, and each element
1660 covers 4096 (128*32) characters. A sub char-table of depth 2
1661 contains 32 elements, and each element covers 128 characters. A
1662 sub char-table of depth 3 contains 128 elements, and each element
1663 is for one character. */
1664 int depth;
1665
1666 /* Minimum character covered by the sub char-table. */
1667 int min_char;
1668
1669 /* Use set_sub_char_table_contents to set this. */
1670 Lisp_Object contents[FLEXIBLE_ARRAY_MEMBER];
1671 };
1672
1673 INLINE Lisp_Object
1674 CHAR_TABLE_REF_ASCII (Lisp_Object ct, ptrdiff_t idx)
1675 {
1676 struct Lisp_Char_Table *tbl = NULL;
1677 Lisp_Object val;
1678 do
1679 {
1680 tbl = tbl ? XCHAR_TABLE (tbl->parent) : XCHAR_TABLE (ct);
1681 val = (! SUB_CHAR_TABLE_P (tbl->ascii) ? tbl->ascii
1682 : XSUB_CHAR_TABLE (tbl->ascii)->contents[idx]);
1683 if (NILP (val))
1684 val = tbl->defalt;
1685 }
1686 while (NILP (val) && ! NILP (tbl->parent));
1687
1688 return val;
1689 }
1690
1691 /* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
1692 characters. Do not check validity of CT. */
1693 INLINE Lisp_Object
1694 CHAR_TABLE_REF (Lisp_Object ct, int idx)
1695 {
1696 return (ASCII_CHAR_P (idx)
1697 ? CHAR_TABLE_REF_ASCII (ct, idx)
1698 : char_table_ref (ct, idx));
1699 }
1700
1701 /* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
1702 8-bit European characters. Do not check validity of CT. */
1703 INLINE void
1704 CHAR_TABLE_SET (Lisp_Object ct, int idx, Lisp_Object val)
1705 {
1706 if (ASCII_CHAR_P (idx) && SUB_CHAR_TABLE_P (XCHAR_TABLE (ct)->ascii))
1707 set_sub_char_table_contents (XCHAR_TABLE (ct)->ascii, idx, val);
1708 else
1709 char_table_set (ct, idx, val);
1710 }
1711
1712 /* This structure describes a built-in function.
1713 It is generated by the DEFUN macro only.
1714 defsubr makes it into a Lisp object. */
1715
1716 struct Lisp_Subr
1717 {
1718 struct vectorlike_header header;
1719 union {
1720 Lisp_Object (*a0) (void);
1721 Lisp_Object (*a1) (Lisp_Object);
1722 Lisp_Object (*a2) (Lisp_Object, Lisp_Object);
1723 Lisp_Object (*a3) (Lisp_Object, Lisp_Object, Lisp_Object);
1724 Lisp_Object (*a4) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1725 Lisp_Object (*a5) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1726 Lisp_Object (*a6) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1727 Lisp_Object (*a7) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1728 Lisp_Object (*a8) (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
1729 Lisp_Object (*aUNEVALLED) (Lisp_Object args);
1730 Lisp_Object (*aMANY) (ptrdiff_t, Lisp_Object *);
1731 } function;
1732 short min_args, max_args;
1733 const char *symbol_name;
1734 const char *intspec;
1735 const char *doc;
1736 };
1737
1738 enum char_table_specials
1739 {
1740 /* This is the number of slots that every char table must have. This
1741 counts the ordinary slots and the top, defalt, parent, and purpose
1742 slots. */
1743 CHAR_TABLE_STANDARD_SLOTS = PSEUDOVECSIZE (struct Lisp_Char_Table, extras),
1744
1745 /* This is an index of first Lisp_Object field in Lisp_Sub_Char_Table
1746 when the latter is treated as an ordinary Lisp_Vector. */
1747 SUB_CHAR_TABLE_OFFSET = PSEUDOVECSIZE (struct Lisp_Sub_Char_Table, contents)
1748 };
1749
1750 /* Return the number of "extra" slots in the char table CT. */
1751
1752 INLINE int
1753 CHAR_TABLE_EXTRA_SLOTS (struct Lisp_Char_Table *ct)
1754 {
1755 return ((ct->header.size & PSEUDOVECTOR_SIZE_MASK)
1756 - CHAR_TABLE_STANDARD_SLOTS);
1757 }
1758
1759 /* Make sure that sub char-table contents slot is where we think it is. */
1760 verify (offsetof (struct Lisp_Sub_Char_Table, contents)
1761 == offsetof (struct Lisp_Vector, contents[SUB_CHAR_TABLE_OFFSET]));
1762
1763 /***********************************************************************
1764 Symbols
1765 ***********************************************************************/
1766
1767 /* Value is name of symbol. */
1768
1769 INLINE Lisp_Object
1770 (SYMBOL_VAL) (struct Lisp_Symbol *sym)
1771 {
1772 return lisp_h_SYMBOL_VAL (sym);
1773 }
1774
1775 INLINE struct Lisp_Symbol *
1776 SYMBOL_ALIAS (struct Lisp_Symbol *sym)
1777 {
1778 eassert (sym->redirect == SYMBOL_VARALIAS);
1779 return sym->val.alias;
1780 }
1781 INLINE struct Lisp_Buffer_Local_Value *
1782 SYMBOL_BLV (struct Lisp_Symbol *sym)
1783 {
1784 eassert (sym->redirect == SYMBOL_LOCALIZED);
1785 return sym->val.blv;
1786 }
1787 INLINE union Lisp_Fwd *
1788 SYMBOL_FWD (struct Lisp_Symbol *sym)
1789 {
1790 eassert (sym->redirect == SYMBOL_FORWARDED);
1791 return sym->val.fwd;
1792 }
1793
1794 INLINE void
1795 (SET_SYMBOL_VAL) (struct Lisp_Symbol *sym, Lisp_Object v)
1796 {
1797 lisp_h_SET_SYMBOL_VAL (sym, v);
1798 }
1799
1800 INLINE void
1801 SET_SYMBOL_ALIAS (struct Lisp_Symbol *sym, struct Lisp_Symbol *v)
1802 {
1803 eassert (sym->redirect == SYMBOL_VARALIAS);
1804 sym->val.alias = v;
1805 }
1806 INLINE void
1807 SET_SYMBOL_BLV (struct Lisp_Symbol *sym, struct Lisp_Buffer_Local_Value *v)
1808 {
1809 eassert (sym->redirect == SYMBOL_LOCALIZED);
1810 sym->val.blv = v;
1811 }
1812 INLINE void
1813 SET_SYMBOL_FWD (struct Lisp_Symbol *sym, union Lisp_Fwd *v)
1814 {
1815 eassert (sym->redirect == SYMBOL_FORWARDED);
1816 sym->val.fwd = v;
1817 }
1818
1819 INLINE Lisp_Object
1820 SYMBOL_NAME (Lisp_Object sym)
1821 {
1822 return XSYMBOL (sym)->name;
1823 }
1824
1825 /* Value is true if SYM is an interned symbol. */
1826
1827 INLINE bool
1828 SYMBOL_INTERNED_P (Lisp_Object sym)
1829 {
1830 return XSYMBOL (sym)->interned != SYMBOL_UNINTERNED;
1831 }
1832
1833 /* Value is true if SYM is interned in initial_obarray. */
1834
1835 INLINE bool
1836 SYMBOL_INTERNED_IN_INITIAL_OBARRAY_P (Lisp_Object sym)
1837 {
1838 return XSYMBOL (sym)->interned == SYMBOL_INTERNED_IN_INITIAL_OBARRAY;
1839 }
1840
1841 /* Value is non-zero if symbol is considered a constant, i.e. its
1842 value cannot be changed (there is an exception for keyword symbols,
1843 whose value can be set to the keyword symbol itself). */
1844
1845 INLINE int
1846 (SYMBOL_CONSTANT_P) (Lisp_Object sym)
1847 {
1848 return lisp_h_SYMBOL_CONSTANT_P (sym);
1849 }
1850
1851 /* Placeholder for make-docfile to process. The actual symbol
1852 definition is done by lread.c's defsym. */
1853 #define DEFSYM(sym, name) /* empty */
1854
1855 \f
1856 /***********************************************************************
1857 Hash Tables
1858 ***********************************************************************/
1859
1860 /* The structure of a Lisp hash table. */
1861
1862 struct hash_table_test
1863 {
1864 /* Name of the function used to compare keys. */
1865 Lisp_Object name;
1866
1867 /* User-supplied hash function, or nil. */
1868 Lisp_Object user_hash_function;
1869
1870 /* User-supplied key comparison function, or nil. */
1871 Lisp_Object user_cmp_function;
1872
1873 /* C function to compare two keys. */
1874 bool (*cmpfn) (struct hash_table_test *t, Lisp_Object, Lisp_Object);
1875
1876 /* C function to compute hash code. */
1877 EMACS_UINT (*hashfn) (struct hash_table_test *t, Lisp_Object);
1878 };
1879
1880 struct Lisp_Hash_Table
1881 {
1882 /* This is for Lisp; the hash table code does not refer to it. */
1883 struct vectorlike_header header;
1884
1885 /* Nil if table is non-weak. Otherwise a symbol describing the
1886 weakness of the table. */
1887 Lisp_Object weak;
1888
1889 /* When the table is resized, and this is an integer, compute the
1890 new size by adding this to the old size. If a float, compute the
1891 new size by multiplying the old size with this factor. */
1892 Lisp_Object rehash_size;
1893
1894 /* Resize hash table when number of entries/ table size is >= this
1895 ratio, a float. */
1896 Lisp_Object rehash_threshold;
1897
1898 /* Vector of hash codes. If hash[I] is nil, this means that the
1899 I-th entry is unused. */
1900 Lisp_Object hash;
1901
1902 /* Vector used to chain entries. If entry I is free, next[I] is the
1903 entry number of the next free item. If entry I is non-free,
1904 next[I] is the index of the next entry in the collision chain. */
1905 Lisp_Object next;
1906
1907 /* Index of first free entry in free list. */
1908 Lisp_Object next_free;
1909
1910 /* Bucket vector. A non-nil entry is the index of the first item in
1911 a collision chain. This vector's size can be larger than the
1912 hash table size to reduce collisions. */
1913 Lisp_Object index;
1914
1915 /* Only the fields above are traced normally by the GC. The ones below
1916 `count' are special and are either ignored by the GC or traced in
1917 a special way (e.g. because of weakness). */
1918
1919 /* Number of key/value entries in the table. */
1920 ptrdiff_t count;
1921
1922 /* Vector of keys and values. The key of item I is found at index
1923 2 * I, the value is found at index 2 * I + 1.
1924 This is gc_marked specially if the table is weak. */
1925 Lisp_Object key_and_value;
1926
1927 /* The comparison and hash functions. */
1928 struct hash_table_test test;
1929
1930 /* Next weak hash table if this is a weak hash table. The head
1931 of the list is in weak_hash_tables. */
1932 struct Lisp_Hash_Table *next_weak;
1933 };
1934
1935
1936 INLINE struct Lisp_Hash_Table *
1937 XHASH_TABLE (Lisp_Object a)
1938 {
1939 return XUNTAG (a, Lisp_Vectorlike);
1940 }
1941
1942 #define XSET_HASH_TABLE(VAR, PTR) \
1943 (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))
1944
1945 INLINE bool
1946 HASH_TABLE_P (Lisp_Object a)
1947 {
1948 return PSEUDOVECTORP (a, PVEC_HASH_TABLE);
1949 }
1950
1951 /* Value is the key part of entry IDX in hash table H. */
1952 INLINE Lisp_Object
1953 HASH_KEY (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1954 {
1955 return AREF (h->key_and_value, 2 * idx);
1956 }
1957
1958 /* Value is the value part of entry IDX in hash table H. */
1959 INLINE Lisp_Object
1960 HASH_VALUE (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1961 {
1962 return AREF (h->key_and_value, 2 * idx + 1);
1963 }
1964
1965 /* Value is the index of the next entry following the one at IDX
1966 in hash table H. */
1967 INLINE Lisp_Object
1968 HASH_NEXT (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1969 {
1970 return AREF (h->next, idx);
1971 }
1972
1973 /* Value is the hash code computed for entry IDX in hash table H. */
1974 INLINE Lisp_Object
1975 HASH_HASH (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1976 {
1977 return AREF (h->hash, idx);
1978 }
1979
1980 /* Value is the index of the element in hash table H that is the
1981 start of the collision list at index IDX in the index vector of H. */
1982 INLINE Lisp_Object
1983 HASH_INDEX (struct Lisp_Hash_Table *h, ptrdiff_t idx)
1984 {
1985 return AREF (h->index, idx);
1986 }
1987
1988 /* Value is the size of hash table H. */
1989 INLINE ptrdiff_t
1990 HASH_TABLE_SIZE (struct Lisp_Hash_Table *h)
1991 {
1992 return ASIZE (h->next);
1993 }
1994
1995 /* Default size for hash tables if not specified. */
1996
1997 enum DEFAULT_HASH_SIZE { DEFAULT_HASH_SIZE = 65 };
1998
1999 /* Default threshold specifying when to resize a hash table. The
2000 value gives the ratio of current entries in the hash table and the
2001 size of the hash table. */
2002
2003 static double const DEFAULT_REHASH_THRESHOLD = 0.8;
2004
2005 /* Default factor by which to increase the size of a hash table. */
2006
2007 static double const DEFAULT_REHASH_SIZE = 1.5;
2008
2009 /* Combine two integers X and Y for hashing. The result might not fit
2010 into a Lisp integer. */
2011
2012 INLINE EMACS_UINT
2013 sxhash_combine (EMACS_UINT x, EMACS_UINT y)
2014 {
2015 return (x << 4) + (x >> (BITS_PER_EMACS_INT - 4)) + y;
2016 }
2017
2018 /* Hash X, returning a value that fits into a fixnum. */
2019
2020 INLINE EMACS_UINT
2021 SXHASH_REDUCE (EMACS_UINT x)
2022 {
2023 return (x ^ x >> (BITS_PER_EMACS_INT - FIXNUM_BITS)) & INTMASK;
2024 }
2025
2026 /* These structures are used for various misc types. */
2027
2028 struct Lisp_Misc_Any /* Supertype of all Misc types. */
2029 {
2030 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_??? */
2031 bool_bf gcmarkbit : 1;
2032 unsigned spacer : 15;
2033 };
2034
2035 struct Lisp_Marker
2036 {
2037 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Marker */
2038 bool_bf gcmarkbit : 1;
2039 unsigned spacer : 13;
2040 /* This flag is temporarily used in the functions
2041 decode/encode_coding_object to record that the marker position
2042 must be adjusted after the conversion. */
2043 bool_bf need_adjustment : 1;
2044 /* True means normal insertion at the marker's position
2045 leaves the marker after the inserted text. */
2046 bool_bf insertion_type : 1;
2047 /* This is the buffer that the marker points into, or 0 if it points nowhere.
2048 Note: a chain of markers can contain markers pointing into different
2049 buffers (the chain is per buffer_text rather than per buffer, so it's
2050 shared between indirect buffers). */
2051 /* This is used for (other than NULL-checking):
2052 - Fmarker_buffer
2053 - Fset_marker: check eq(oldbuf, newbuf) to avoid unchain+rechain.
2054 - unchain_marker: to find the list from which to unchain.
2055 - Fkill_buffer: to only unchain the markers of current indirect buffer.
2056 */
2057 struct buffer *buffer;
2058
2059 /* The remaining fields are meaningless in a marker that
2060 does not point anywhere. */
2061
2062 /* For markers that point somewhere,
2063 this is used to chain of all the markers in a given buffer. */
2064 /* We could remove it and use an array in buffer_text instead.
2065 That would also allow to preserve it ordered. */
2066 struct Lisp_Marker *next;
2067 /* This is the char position where the marker points. */
2068 ptrdiff_t charpos;
2069 /* This is the byte position.
2070 It's mostly used as a charpos<->bytepos cache (i.e. it's not directly
2071 used to implement the functionality of markers, but rather to (ab)use
2072 markers as a cache for char<->byte mappings). */
2073 ptrdiff_t bytepos;
2074 };
2075
2076 /* START and END are markers in the overlay's buffer, and
2077 PLIST is the overlay's property list. */
2078 struct Lisp_Overlay
2079 /* An overlay's real data content is:
2080 - plist
2081 - buffer (really there are two buffer pointers, one per marker,
2082 and both points to the same buffer)
2083 - insertion type of both ends (per-marker fields)
2084 - start & start byte (of start marker)
2085 - end & end byte (of end marker)
2086 - next (singly linked list of overlays)
2087 - next fields of start and end markers (singly linked list of markers).
2088 I.e. 9words plus 2 bits, 3words of which are for external linked lists.
2089 */
2090 {
2091 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Overlay */
2092 bool_bf gcmarkbit : 1;
2093 unsigned spacer : 15;
2094 struct Lisp_Overlay *next;
2095 Lisp_Object start;
2096 Lisp_Object end;
2097 Lisp_Object plist;
2098 };
2099
2100 /* Types of data which may be saved in a Lisp_Save_Value. */
2101
2102 enum
2103 {
2104 SAVE_UNUSED,
2105 SAVE_INTEGER,
2106 SAVE_FUNCPOINTER,
2107 SAVE_POINTER,
2108 SAVE_OBJECT
2109 };
2110
2111 /* Number of bits needed to store one of the above values. */
2112 enum { SAVE_SLOT_BITS = 3 };
2113
2114 /* Number of slots in a save value where save_type is nonzero. */
2115 enum { SAVE_VALUE_SLOTS = 4 };
2116
2117 /* Bit-width and values for struct Lisp_Save_Value's save_type member. */
2118
2119 enum { SAVE_TYPE_BITS = SAVE_VALUE_SLOTS * SAVE_SLOT_BITS + 1 };
2120
2121 enum Lisp_Save_Type
2122 {
2123 SAVE_TYPE_INT_INT = SAVE_INTEGER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2124 SAVE_TYPE_INT_INT_INT
2125 = (SAVE_INTEGER + (SAVE_TYPE_INT_INT << SAVE_SLOT_BITS)),
2126 SAVE_TYPE_OBJ_OBJ = SAVE_OBJECT + (SAVE_OBJECT << SAVE_SLOT_BITS),
2127 SAVE_TYPE_OBJ_OBJ_OBJ = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ << SAVE_SLOT_BITS),
2128 SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
2129 = SAVE_OBJECT + (SAVE_TYPE_OBJ_OBJ_OBJ << SAVE_SLOT_BITS),
2130 SAVE_TYPE_PTR_INT = SAVE_POINTER + (SAVE_INTEGER << SAVE_SLOT_BITS),
2131 SAVE_TYPE_PTR_OBJ = SAVE_POINTER + (SAVE_OBJECT << SAVE_SLOT_BITS),
2132 SAVE_TYPE_PTR_PTR = SAVE_POINTER + (SAVE_POINTER << SAVE_SLOT_BITS),
2133 SAVE_TYPE_FUNCPTR_PTR_OBJ
2134 = SAVE_FUNCPOINTER + (SAVE_TYPE_PTR_OBJ << SAVE_SLOT_BITS),
2135
2136 /* This has an extra bit indicating it's raw memory. */
2137 SAVE_TYPE_MEMORY = SAVE_TYPE_PTR_INT + (1 << (SAVE_TYPE_BITS - 1))
2138 };
2139
2140 /* Special object used to hold a different values for later use.
2141
2142 This is mostly used to package C integers and pointers to call
2143 record_unwind_protect when two or more values need to be saved.
2144 For example:
2145
2146 ...
2147 struct my_data *md = get_my_data ();
2148 ptrdiff_t mi = get_my_integer ();
2149 record_unwind_protect (my_unwind, make_save_ptr_int (md, mi));
2150 ...
2151
2152 Lisp_Object my_unwind (Lisp_Object arg)
2153 {
2154 struct my_data *md = XSAVE_POINTER (arg, 0);
2155 ptrdiff_t mi = XSAVE_INTEGER (arg, 1);
2156 ...
2157 }
2158
2159 If ENABLE_CHECKING is in effect, XSAVE_xxx macros do type checking of the
2160 saved objects and raise eassert if type of the saved object doesn't match
2161 the type which is extracted. In the example above, XSAVE_INTEGER (arg, 2)
2162 and XSAVE_OBJECT (arg, 0) are wrong because nothing was saved in slot 2 and
2163 slot 0 is a pointer. */
2164
2165 typedef void (*voidfuncptr) (void);
2166
2167 struct Lisp_Save_Value
2168 {
2169 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Save_Value */
2170 bool_bf gcmarkbit : 1;
2171 unsigned spacer : 32 - (16 + 1 + SAVE_TYPE_BITS);
2172
2173 /* V->data may hold up to SAVE_VALUE_SLOTS entries. The type of
2174 V's data entries are determined by V->save_type. E.g., if
2175 V->save_type == SAVE_TYPE_PTR_OBJ, V->data[0] is a pointer,
2176 V->data[1] is an integer, and V's other data entries are unused.
2177
2178 If V->save_type == SAVE_TYPE_MEMORY, V->data[0].pointer is the address of
2179 a memory area containing V->data[1].integer potential Lisp_Objects. */
2180 ENUM_BF (Lisp_Save_Type) save_type : SAVE_TYPE_BITS;
2181 union {
2182 void *pointer;
2183 voidfuncptr funcpointer;
2184 ptrdiff_t integer;
2185 Lisp_Object object;
2186 } data[SAVE_VALUE_SLOTS];
2187 };
2188
2189 /* Return the type of V's Nth saved value. */
2190 INLINE int
2191 save_type (struct Lisp_Save_Value *v, int n)
2192 {
2193 eassert (0 <= n && n < SAVE_VALUE_SLOTS);
2194 return (v->save_type >> (SAVE_SLOT_BITS * n) & ((1 << SAVE_SLOT_BITS) - 1));
2195 }
2196
2197 /* Get and set the Nth saved pointer. */
2198
2199 INLINE void *
2200 XSAVE_POINTER (Lisp_Object obj, int n)
2201 {
2202 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2203 return XSAVE_VALUE (obj)->data[n].pointer;
2204 }
2205 INLINE void
2206 set_save_pointer (Lisp_Object obj, int n, void *val)
2207 {
2208 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_POINTER);
2209 XSAVE_VALUE (obj)->data[n].pointer = val;
2210 }
2211 INLINE voidfuncptr
2212 XSAVE_FUNCPOINTER (Lisp_Object obj, int n)
2213 {
2214 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_FUNCPOINTER);
2215 return XSAVE_VALUE (obj)->data[n].funcpointer;
2216 }
2217
2218 /* Likewise for the saved integer. */
2219
2220 INLINE ptrdiff_t
2221 XSAVE_INTEGER (Lisp_Object obj, int n)
2222 {
2223 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2224 return XSAVE_VALUE (obj)->data[n].integer;
2225 }
2226 INLINE void
2227 set_save_integer (Lisp_Object obj, int n, ptrdiff_t val)
2228 {
2229 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_INTEGER);
2230 XSAVE_VALUE (obj)->data[n].integer = val;
2231 }
2232
2233 /* Extract Nth saved object. */
2234
2235 INLINE Lisp_Object
2236 XSAVE_OBJECT (Lisp_Object obj, int n)
2237 {
2238 eassert (save_type (XSAVE_VALUE (obj), n) == SAVE_OBJECT);
2239 return XSAVE_VALUE (obj)->data[n].object;
2240 }
2241
2242 #ifdef HAVE_MODULES
2243 struct Lisp_User_Ptr
2244 {
2245 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_User_Ptr */
2246 bool_bf gcmarkbit : 1;
2247 unsigned spacer : 15;
2248
2249 void (*finalizer) (void*);
2250 void *p;
2251 };
2252 #endif
2253
2254 /* A finalizer sentinel. */
2255 struct Lisp_Finalizer
2256 {
2257 struct Lisp_Misc_Any base;
2258
2259 /* Circular list of all active weak references. */
2260 struct Lisp_Finalizer *prev;
2261 struct Lisp_Finalizer *next;
2262
2263 /* Call FUNCTION when the finalizer becomes unreachable, even if
2264 FUNCTION contains a reference to the finalizer; i.e., call
2265 FUNCTION when it is reachable _only_ through finalizers. */
2266 Lisp_Object function;
2267 };
2268
2269 /* A miscellaneous object, when it's on the free list. */
2270 struct Lisp_Free
2271 {
2272 ENUM_BF (Lisp_Misc_Type) type : 16; /* = Lisp_Misc_Free */
2273 bool_bf gcmarkbit : 1;
2274 unsigned spacer : 15;
2275 union Lisp_Misc *chain;
2276 };
2277
2278 /* To get the type field of a union Lisp_Misc, use XMISCTYPE.
2279 It uses one of these struct subtypes to get the type field. */
2280
2281 union Lisp_Misc
2282 {
2283 struct Lisp_Misc_Any u_any; /* Supertype of all Misc types. */
2284 struct Lisp_Free u_free;
2285 struct Lisp_Marker u_marker;
2286 struct Lisp_Overlay u_overlay;
2287 struct Lisp_Save_Value u_save_value;
2288 struct Lisp_Finalizer u_finalizer;
2289 #ifdef HAVE_MODULES
2290 struct Lisp_User_Ptr u_user_ptr;
2291 #endif
2292 };
2293
2294 INLINE union Lisp_Misc *
2295 XMISC (Lisp_Object a)
2296 {
2297 return XUNTAG (a, Lisp_Misc);
2298 }
2299
2300 INLINE struct Lisp_Misc_Any *
2301 XMISCANY (Lisp_Object a)
2302 {
2303 eassert (MISCP (a));
2304 return & XMISC (a)->u_any;
2305 }
2306
2307 INLINE enum Lisp_Misc_Type
2308 XMISCTYPE (Lisp_Object a)
2309 {
2310 return XMISCANY (a)->type;
2311 }
2312
2313 INLINE struct Lisp_Marker *
2314 XMARKER (Lisp_Object a)
2315 {
2316 eassert (MARKERP (a));
2317 return & XMISC (a)->u_marker;
2318 }
2319
2320 INLINE struct Lisp_Overlay *
2321 XOVERLAY (Lisp_Object a)
2322 {
2323 eassert (OVERLAYP (a));
2324 return & XMISC (a)->u_overlay;
2325 }
2326
2327 INLINE struct Lisp_Save_Value *
2328 XSAVE_VALUE (Lisp_Object a)
2329 {
2330 eassert (SAVE_VALUEP (a));
2331 return & XMISC (a)->u_save_value;
2332 }
2333
2334 INLINE struct Lisp_Finalizer *
2335 XFINALIZER (Lisp_Object a)
2336 {
2337 eassert (FINALIZERP (a));
2338 return & XMISC (a)->u_finalizer;
2339 }
2340
2341 #ifdef HAVE_MODULES
2342 INLINE struct Lisp_User_Ptr *
2343 XUSER_PTR (Lisp_Object a)
2344 {
2345 eassert (USER_PTRP (a));
2346 return & XMISC (a)->u_user_ptr;
2347 }
2348 #endif
2349
2350
2351 \f
2352 /* Forwarding pointer to an int variable.
2353 This is allowed only in the value cell of a symbol,
2354 and it means that the symbol's value really lives in the
2355 specified int variable. */
2356 struct Lisp_Intfwd
2357 {
2358 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Int */
2359 EMACS_INT *intvar;
2360 };
2361
2362 /* Boolean forwarding pointer to an int variable.
2363 This is like Lisp_Intfwd except that the ostensible
2364 "value" of the symbol is t if the bool variable is true,
2365 nil if it is false. */
2366 struct Lisp_Boolfwd
2367 {
2368 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Bool */
2369 bool *boolvar;
2370 };
2371
2372 /* Forwarding pointer to a Lisp_Object variable.
2373 This is allowed only in the value cell of a symbol,
2374 and it means that the symbol's value really lives in the
2375 specified variable. */
2376 struct Lisp_Objfwd
2377 {
2378 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Obj */
2379 Lisp_Object *objvar;
2380 };
2381
2382 /* Like Lisp_Objfwd except that value lives in a slot in the
2383 current buffer. Value is byte index of slot within buffer. */
2384 struct Lisp_Buffer_Objfwd
2385 {
2386 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Buffer_Obj */
2387 int offset;
2388 /* One of Qnil, Qintegerp, Qsymbolp, Qstringp, Qfloatp or Qnumberp. */
2389 Lisp_Object predicate;
2390 };
2391
2392 /* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
2393 the symbol has buffer-local or frame-local bindings. (Exception:
2394 some buffer-local variables are built-in, with their values stored
2395 in the buffer structure itself. They are handled differently,
2396 using struct Lisp_Buffer_Objfwd.)
2397
2398 The `realvalue' slot holds the variable's current value, or a
2399 forwarding pointer to where that value is kept. This value is the
2400 one that corresponds to the loaded binding. To read or set the
2401 variable, you must first make sure the right binding is loaded;
2402 then you can access the value in (or through) `realvalue'.
2403
2404 `buffer' and `frame' are the buffer and frame for which the loaded
2405 binding was found. If those have changed, to make sure the right
2406 binding is loaded it is necessary to find which binding goes with
2407 the current buffer and selected frame, then load it. To load it,
2408 first unload the previous binding, then copy the value of the new
2409 binding into `realvalue' (or through it). Also update
2410 LOADED-BINDING to point to the newly loaded binding.
2411
2412 `local_if_set' indicates that merely setting the variable creates a
2413 local binding for the current buffer. Otherwise the latter, setting
2414 the variable does not do that; only make-local-variable does that. */
2415
2416 struct Lisp_Buffer_Local_Value
2417 {
2418 /* True means that merely setting the variable creates a local
2419 binding for the current buffer. */
2420 bool_bf local_if_set : 1;
2421 /* True means this variable can have frame-local bindings, otherwise, it is
2422 can have buffer-local bindings. The two cannot be combined. */
2423 bool_bf frame_local : 1;
2424 /* True means that the binding now loaded was found.
2425 Presumably equivalent to (defcell!=valcell). */
2426 bool_bf found : 1;
2427 /* If non-NULL, a forwarding to the C var where it should also be set. */
2428 union Lisp_Fwd *fwd; /* Should never be (Buffer|Kboard)_Objfwd. */
2429 /* The buffer or frame for which the loaded binding was found. */
2430 Lisp_Object where;
2431 /* A cons cell that holds the default value. It has the form
2432 (SYMBOL . DEFAULT-VALUE). */
2433 Lisp_Object defcell;
2434 /* The cons cell from `where's parameter alist.
2435 It always has the form (SYMBOL . VALUE)
2436 Note that if `forward' is non-nil, VALUE may be out of date.
2437 Also if the currently loaded binding is the default binding, then
2438 this is `eq'ual to defcell. */
2439 Lisp_Object valcell;
2440 };
2441
2442 /* Like Lisp_Objfwd except that value lives in a slot in the
2443 current kboard. */
2444 struct Lisp_Kboard_Objfwd
2445 {
2446 enum Lisp_Fwd_Type type; /* = Lisp_Fwd_Kboard_Obj */
2447 int offset;
2448 };
2449
2450 union Lisp_Fwd
2451 {
2452 struct Lisp_Intfwd u_intfwd;
2453 struct Lisp_Boolfwd u_boolfwd;
2454 struct Lisp_Objfwd u_objfwd;
2455 struct Lisp_Buffer_Objfwd u_buffer_objfwd;
2456 struct Lisp_Kboard_Objfwd u_kboard_objfwd;
2457 };
2458
2459 INLINE enum Lisp_Fwd_Type
2460 XFWDTYPE (union Lisp_Fwd *a)
2461 {
2462 return a->u_intfwd.type;
2463 }
2464
2465 INLINE struct Lisp_Buffer_Objfwd *
2466 XBUFFER_OBJFWD (union Lisp_Fwd *a)
2467 {
2468 eassert (BUFFER_OBJFWDP (a));
2469 return &a->u_buffer_objfwd;
2470 }
2471 \f
2472 /* Lisp floating point type. */
2473 struct Lisp_Float
2474 {
2475 union
2476 {
2477 double data;
2478 struct Lisp_Float *chain;
2479 } u;
2480 };
2481
2482 INLINE double
2483 XFLOAT_DATA (Lisp_Object f)
2484 {
2485 return XFLOAT (f)->u.data;
2486 }
2487
2488 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
2489 representations, have infinities and NaNs, and do not trap on
2490 exceptions. Define IEEE_FLOATING_POINT if this host is one of the
2491 typical ones. The C11 macro __STDC_IEC_559__ is close to what is
2492 wanted here, but is not quite right because Emacs does not require
2493 all the features of C11 Annex F (and does not require C11 at all,
2494 for that matter). */
2495 enum
2496 {
2497 IEEE_FLOATING_POINT
2498 = (FLT_RADIX == 2 && FLT_MANT_DIG == 24
2499 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
2500 };
2501
2502 /* A character, declared with the following typedef, is a member
2503 of some character set associated with the current buffer. */
2504 #ifndef _UCHAR_T /* Protect against something in ctab.h on AIX. */
2505 #define _UCHAR_T
2506 typedef unsigned char UCHAR;
2507 #endif
2508
2509 /* Meanings of slots in a Lisp_Compiled: */
2510
2511 enum Lisp_Compiled
2512 {
2513 COMPILED_ARGLIST = 0,
2514 COMPILED_BYTECODE = 1,
2515 COMPILED_CONSTANTS = 2,
2516 COMPILED_STACK_DEPTH = 3,
2517 COMPILED_DOC_STRING = 4,
2518 COMPILED_INTERACTIVE = 5
2519 };
2520
2521 /* Flag bits in a character. These also get used in termhooks.h.
2522 Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
2523 (MUlti-Lingual Emacs) might need 22 bits for the character value
2524 itself, so we probably shouldn't use any bits lower than 0x0400000. */
2525 enum char_bits
2526 {
2527 CHAR_ALT = 0x0400000,
2528 CHAR_SUPER = 0x0800000,
2529 CHAR_HYPER = 0x1000000,
2530 CHAR_SHIFT = 0x2000000,
2531 CHAR_CTL = 0x4000000,
2532 CHAR_META = 0x8000000,
2533
2534 CHAR_MODIFIER_MASK =
2535 CHAR_ALT | CHAR_SUPER | CHAR_HYPER | CHAR_SHIFT | CHAR_CTL | CHAR_META,
2536
2537 /* Actually, the current Emacs uses 22 bits for the character value
2538 itself. */
2539 CHARACTERBITS = 22
2540 };
2541 \f
2542 /* Data type checking. */
2543
2544 INLINE bool
2545 (NILP) (Lisp_Object x)
2546 {
2547 return lisp_h_NILP (x);
2548 }
2549
2550 INLINE bool
2551 NUMBERP (Lisp_Object x)
2552 {
2553 return INTEGERP (x) || FLOATP (x);
2554 }
2555 INLINE bool
2556 NATNUMP (Lisp_Object x)
2557 {
2558 return INTEGERP (x) && 0 <= XINT (x);
2559 }
2560
2561 INLINE bool
2562 RANGED_INTEGERP (intmax_t lo, Lisp_Object x, intmax_t hi)
2563 {
2564 return INTEGERP (x) && lo <= XINT (x) && XINT (x) <= hi;
2565 }
2566
2567 #define TYPE_RANGED_INTEGERP(type, x) \
2568 (INTEGERP (x) \
2569 && (TYPE_SIGNED (type) ? TYPE_MINIMUM (type) <= XINT (x) : 0 <= XINT (x)) \
2570 && XINT (x) <= TYPE_MAXIMUM (type))
2571
2572 INLINE bool
2573 (CONSP) (Lisp_Object x)
2574 {
2575 return lisp_h_CONSP (x);
2576 }
2577 INLINE bool
2578 (FLOATP) (Lisp_Object x)
2579 {
2580 return lisp_h_FLOATP (x);
2581 }
2582 INLINE bool
2583 (MISCP) (Lisp_Object x)
2584 {
2585 return lisp_h_MISCP (x);
2586 }
2587 INLINE bool
2588 (SYMBOLP) (Lisp_Object x)
2589 {
2590 return lisp_h_SYMBOLP (x);
2591 }
2592 INLINE bool
2593 (INTEGERP) (Lisp_Object x)
2594 {
2595 return lisp_h_INTEGERP (x);
2596 }
2597 INLINE bool
2598 (VECTORLIKEP) (Lisp_Object x)
2599 {
2600 return lisp_h_VECTORLIKEP (x);
2601 }
2602 INLINE bool
2603 (MARKERP) (Lisp_Object x)
2604 {
2605 return lisp_h_MARKERP (x);
2606 }
2607
2608 INLINE bool
2609 STRINGP (Lisp_Object x)
2610 {
2611 return XTYPE (x) == Lisp_String;
2612 }
2613 INLINE bool
2614 VECTORP (Lisp_Object x)
2615 {
2616 return VECTORLIKEP (x) && ! (ASIZE (x) & PSEUDOVECTOR_FLAG);
2617 }
2618 INLINE bool
2619 OVERLAYP (Lisp_Object x)
2620 {
2621 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Overlay;
2622 }
2623 INLINE bool
2624 SAVE_VALUEP (Lisp_Object x)
2625 {
2626 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Save_Value;
2627 }
2628
2629 INLINE bool
2630 FINALIZERP (Lisp_Object x)
2631 {
2632 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_Finalizer;
2633 }
2634
2635 #ifdef HAVE_MODULES
2636 INLINE bool
2637 USER_PTRP (Lisp_Object x)
2638 {
2639 return MISCP (x) && XMISCTYPE (x) == Lisp_Misc_User_Ptr;
2640 }
2641 #endif
2642
2643 INLINE bool
2644 AUTOLOADP (Lisp_Object x)
2645 {
2646 return CONSP (x) && EQ (Qautoload, XCAR (x));
2647 }
2648
2649 INLINE bool
2650 BUFFER_OBJFWDP (union Lisp_Fwd *a)
2651 {
2652 return XFWDTYPE (a) == Lisp_Fwd_Buffer_Obj;
2653 }
2654
2655 INLINE bool
2656 PSEUDOVECTOR_TYPEP (struct vectorlike_header *a, int code)
2657 {
2658 return ((a->size & (PSEUDOVECTOR_FLAG | PVEC_TYPE_MASK))
2659 == (PSEUDOVECTOR_FLAG | (code << PSEUDOVECTOR_AREA_BITS)));
2660 }
2661
2662 /* True if A is a pseudovector whose code is CODE. */
2663 INLINE bool
2664 PSEUDOVECTORP (Lisp_Object a, int code)
2665 {
2666 if (! VECTORLIKEP (a))
2667 return false;
2668 else
2669 {
2670 /* Converting to struct vectorlike_header * avoids aliasing issues. */
2671 struct vectorlike_header *h = XUNTAG (a, Lisp_Vectorlike);
2672 return PSEUDOVECTOR_TYPEP (h, code);
2673 }
2674 }
2675
2676
2677 /* Test for specific pseudovector types. */
2678
2679 INLINE bool
2680 WINDOW_CONFIGURATIONP (Lisp_Object a)
2681 {
2682 return PSEUDOVECTORP (a, PVEC_WINDOW_CONFIGURATION);
2683 }
2684
2685 INLINE bool
2686 PROCESSP (Lisp_Object a)
2687 {
2688 return PSEUDOVECTORP (a, PVEC_PROCESS);
2689 }
2690
2691 INLINE bool
2692 WINDOWP (Lisp_Object a)
2693 {
2694 return PSEUDOVECTORP (a, PVEC_WINDOW);
2695 }
2696
2697 INLINE bool
2698 TERMINALP (Lisp_Object a)
2699 {
2700 return PSEUDOVECTORP (a, PVEC_TERMINAL);
2701 }
2702
2703 INLINE bool
2704 SUBRP (Lisp_Object a)
2705 {
2706 return PSEUDOVECTORP (a, PVEC_SUBR);
2707 }
2708
2709 INLINE bool
2710 COMPILEDP (Lisp_Object a)
2711 {
2712 return PSEUDOVECTORP (a, PVEC_COMPILED);
2713 }
2714
2715 INLINE bool
2716 BUFFERP (Lisp_Object a)
2717 {
2718 return PSEUDOVECTORP (a, PVEC_BUFFER);
2719 }
2720
2721 INLINE bool
2722 CHAR_TABLE_P (Lisp_Object a)
2723 {
2724 return PSEUDOVECTORP (a, PVEC_CHAR_TABLE);
2725 }
2726
2727 INLINE bool
2728 SUB_CHAR_TABLE_P (Lisp_Object a)
2729 {
2730 return PSEUDOVECTORP (a, PVEC_SUB_CHAR_TABLE);
2731 }
2732
2733 INLINE bool
2734 BOOL_VECTOR_P (Lisp_Object a)
2735 {
2736 return PSEUDOVECTORP (a, PVEC_BOOL_VECTOR);
2737 }
2738
2739 INLINE bool
2740 FRAMEP (Lisp_Object a)
2741 {
2742 return PSEUDOVECTORP (a, PVEC_FRAME);
2743 }
2744
2745 /* Test for image (image . spec) */
2746 INLINE bool
2747 IMAGEP (Lisp_Object x)
2748 {
2749 return CONSP (x) && EQ (XCAR (x), Qimage);
2750 }
2751
2752 /* Array types. */
2753 INLINE bool
2754 ARRAYP (Lisp_Object x)
2755 {
2756 return VECTORP (x) || STRINGP (x) || CHAR_TABLE_P (x) || BOOL_VECTOR_P (x);
2757 }
2758 \f
2759 INLINE void
2760 CHECK_LIST (Lisp_Object x)
2761 {
2762 CHECK_TYPE (CONSP (x) || NILP (x), Qlistp, x);
2763 }
2764
2765 INLINE void
2766 (CHECK_LIST_CONS) (Lisp_Object x, Lisp_Object y)
2767 {
2768 lisp_h_CHECK_LIST_CONS (x, y);
2769 }
2770
2771 INLINE void
2772 (CHECK_SYMBOL) (Lisp_Object x)
2773 {
2774 lisp_h_CHECK_SYMBOL (x);
2775 }
2776
2777 INLINE void
2778 (CHECK_NUMBER) (Lisp_Object x)
2779 {
2780 lisp_h_CHECK_NUMBER (x);
2781 }
2782
2783 INLINE void
2784 CHECK_STRING (Lisp_Object x)
2785 {
2786 CHECK_TYPE (STRINGP (x), Qstringp, x);
2787 }
2788 INLINE void
2789 CHECK_STRING_CAR (Lisp_Object x)
2790 {
2791 CHECK_TYPE (STRINGP (XCAR (x)), Qstringp, XCAR (x));
2792 }
2793 INLINE void
2794 CHECK_CONS (Lisp_Object x)
2795 {
2796 CHECK_TYPE (CONSP (x), Qconsp, x);
2797 }
2798 INLINE void
2799 CHECK_VECTOR (Lisp_Object x)
2800 {
2801 CHECK_TYPE (VECTORP (x), Qvectorp, x);
2802 }
2803 INLINE void
2804 CHECK_BOOL_VECTOR (Lisp_Object x)
2805 {
2806 CHECK_TYPE (BOOL_VECTOR_P (x), Qbool_vector_p, x);
2807 }
2808 /* This is a bit special because we always need size afterwards. */
2809 INLINE ptrdiff_t
2810 CHECK_VECTOR_OR_STRING (Lisp_Object x)
2811 {
2812 if (VECTORP (x))
2813 return ASIZE (x);
2814 if (STRINGP (x))
2815 return SCHARS (x);
2816 wrong_type_argument (Qarrayp, x);
2817 }
2818 INLINE void
2819 CHECK_ARRAY (Lisp_Object x, Lisp_Object predicate)
2820 {
2821 CHECK_TYPE (ARRAYP (x), predicate, x);
2822 }
2823 INLINE void
2824 CHECK_BUFFER (Lisp_Object x)
2825 {
2826 CHECK_TYPE (BUFFERP (x), Qbufferp, x);
2827 }
2828 INLINE void
2829 CHECK_WINDOW (Lisp_Object x)
2830 {
2831 CHECK_TYPE (WINDOWP (x), Qwindowp, x);
2832 }
2833 #ifdef subprocesses
2834 INLINE void
2835 CHECK_PROCESS (Lisp_Object x)
2836 {
2837 CHECK_TYPE (PROCESSP (x), Qprocessp, x);
2838 }
2839 #endif
2840 INLINE void
2841 CHECK_NATNUM (Lisp_Object x)
2842 {
2843 CHECK_TYPE (NATNUMP (x), Qwholenump, x);
2844 }
2845
2846 #define CHECK_RANGED_INTEGER(x, lo, hi) \
2847 do { \
2848 CHECK_NUMBER (x); \
2849 if (! ((lo) <= XINT (x) && XINT (x) <= (hi))) \
2850 args_out_of_range_3 \
2851 (x, \
2852 make_number ((lo) < 0 && (lo) < MOST_NEGATIVE_FIXNUM \
2853 ? MOST_NEGATIVE_FIXNUM \
2854 : (lo)), \
2855 make_number (min (hi, MOST_POSITIVE_FIXNUM))); \
2856 } while (false)
2857 #define CHECK_TYPE_RANGED_INTEGER(type, x) \
2858 do { \
2859 if (TYPE_SIGNED (type)) \
2860 CHECK_RANGED_INTEGER (x, TYPE_MINIMUM (type), TYPE_MAXIMUM (type)); \
2861 else \
2862 CHECK_RANGED_INTEGER (x, 0, TYPE_MAXIMUM (type)); \
2863 } while (false)
2864
2865 #define CHECK_NUMBER_COERCE_MARKER(x) \
2866 do { \
2867 if (MARKERP ((x))) \
2868 XSETFASTINT (x, marker_position (x)); \
2869 else \
2870 CHECK_TYPE (INTEGERP (x), Qinteger_or_marker_p, x); \
2871 } while (false)
2872
2873 INLINE double
2874 XFLOATINT (Lisp_Object n)
2875 {
2876 return extract_float (n);
2877 }
2878
2879 INLINE void
2880 CHECK_NUMBER_OR_FLOAT (Lisp_Object x)
2881 {
2882 CHECK_TYPE (NUMBERP (x), Qnumberp, x);
2883 }
2884
2885 #define CHECK_NUMBER_OR_FLOAT_COERCE_MARKER(x) \
2886 do { \
2887 if (MARKERP (x)) \
2888 XSETFASTINT (x, marker_position (x)); \
2889 else \
2890 CHECK_TYPE (NUMBERP (x), Qnumber_or_marker_p, x); \
2891 } while (false)
2892
2893 /* Since we can't assign directly to the CAR or CDR fields of a cons
2894 cell, use these when checking that those fields contain numbers. */
2895 INLINE void
2896 CHECK_NUMBER_CAR (Lisp_Object x)
2897 {
2898 Lisp_Object tmp = XCAR (x);
2899 CHECK_NUMBER (tmp);
2900 XSETCAR (x, tmp);
2901 }
2902
2903 INLINE void
2904 CHECK_NUMBER_CDR (Lisp_Object x)
2905 {
2906 Lisp_Object tmp = XCDR (x);
2907 CHECK_NUMBER (tmp);
2908 XSETCDR (x, tmp);
2909 }
2910 \f
2911 /* Define a built-in function for calling from Lisp.
2912 `lname' should be the name to give the function in Lisp,
2913 as a null-terminated C string.
2914 `fnname' should be the name of the function in C.
2915 By convention, it starts with F.
2916 `sname' should be the name for the C constant structure
2917 that records information on this function for internal use.
2918 By convention, it should be the same as `fnname' but with S instead of F.
2919 It's too bad that C macros can't compute this from `fnname'.
2920 `minargs' should be a number, the minimum number of arguments allowed.
2921 `maxargs' should be a number, the maximum number of arguments allowed,
2922 or else MANY or UNEVALLED.
2923 MANY means pass a vector of evaluated arguments,
2924 in the form of an integer number-of-arguments
2925 followed by the address of a vector of Lisp_Objects
2926 which contains the argument values.
2927 UNEVALLED means pass the list of unevaluated arguments
2928 `intspec' says how interactive arguments are to be fetched.
2929 If the string starts with a `(', `intspec' is evaluated and the resulting
2930 list is the list of arguments.
2931 If it's a string that doesn't start with `(', the value should follow
2932 the one of the doc string for `interactive'.
2933 A null string means call interactively with no arguments.
2934 `doc' is documentation for the user. */
2935
2936 /* This version of DEFUN declares a function prototype with the right
2937 arguments, so we can catch errors with maxargs at compile-time. */
2938 #ifdef _MSC_VER
2939 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2940 Lisp_Object fnname DEFUN_ARGS_ ## maxargs ; \
2941 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2942 { { (PVEC_SUBR << PSEUDOVECTOR_AREA_BITS) \
2943 | (sizeof (struct Lisp_Subr) / sizeof (EMACS_INT)) }, \
2944 { (Lisp_Object (__cdecl *)(void))fnname }, \
2945 minargs, maxargs, lname, intspec, 0}; \
2946 Lisp_Object fnname
2947 #else /* not _MSC_VER */
2948 #define DEFUN(lname, fnname, sname, minargs, maxargs, intspec, doc) \
2949 static struct Lisp_Subr alignas (GCALIGNMENT) sname = \
2950 { { PVEC_SUBR << PSEUDOVECTOR_AREA_BITS }, \
2951 { .a ## maxargs = fnname }, \
2952 minargs, maxargs, lname, intspec, 0}; \
2953 Lisp_Object fnname
2954 #endif
2955
2956 /* True if OBJ is a Lisp function. */
2957 INLINE bool
2958 FUNCTIONP (Lisp_Object obj)
2959 {
2960 return functionp (obj);
2961 }
2962
2963 /* defsubr (Sname);
2964 is how we define the symbol for function `name' at start-up time. */
2965 extern void defsubr (struct Lisp_Subr *);
2966
2967 enum maxargs
2968 {
2969 MANY = -2,
2970 UNEVALLED = -1
2971 };
2972
2973 /* Call a function F that accepts many args, passing it ARRAY's elements. */
2974 #define CALLMANY(f, array) (f) (ARRAYELTS (array), array)
2975
2976 /* Call a function F that accepts many args, passing it the remaining args,
2977 E.g., 'return CALLN (Fformat, fmt, text);' is less error-prone than
2978 '{ Lisp_Object a[2]; a[0] = fmt; a[1] = text; return Fformat (2, a); }'.
2979 CALLN is overkill for simple usages like 'Finsert (1, &text);'. */
2980 #define CALLN(f, ...) CALLMANY (f, ((Lisp_Object []) {__VA_ARGS__}))
2981
2982 extern void defvar_lisp (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2983 extern void defvar_lisp_nopro (struct Lisp_Objfwd *, const char *, Lisp_Object *);
2984 extern void defvar_bool (struct Lisp_Boolfwd *, const char *, bool *);
2985 extern void defvar_int (struct Lisp_Intfwd *, const char *, EMACS_INT *);
2986 extern void defvar_kboard (struct Lisp_Kboard_Objfwd *, const char *, int);
2987
2988 /* Macros we use to define forwarded Lisp variables.
2989 These are used in the syms_of_FILENAME functions.
2990
2991 An ordinary (not in buffer_defaults, per-buffer, or per-keyboard)
2992 lisp variable is actually a field in `struct emacs_globals'. The
2993 field's name begins with "f_", which is a convention enforced by
2994 these macros. Each such global has a corresponding #define in
2995 globals.h; the plain name should be used in the code.
2996
2997 E.g., the global "cons_cells_consed" is declared as "int
2998 f_cons_cells_consed" in globals.h, but there is a define:
2999
3000 #define cons_cells_consed globals.f_cons_cells_consed
3001
3002 All C code uses the `cons_cells_consed' name. This is all done
3003 this way to support indirection for multi-threaded Emacs. */
3004
3005 #define DEFVAR_LISP(lname, vname, doc) \
3006 do { \
3007 static struct Lisp_Objfwd o_fwd; \
3008 defvar_lisp (&o_fwd, lname, &globals.f_ ## vname); \
3009 } while (false)
3010 #define DEFVAR_LISP_NOPRO(lname, vname, doc) \
3011 do { \
3012 static struct Lisp_Objfwd o_fwd; \
3013 defvar_lisp_nopro (&o_fwd, lname, &globals.f_ ## vname); \
3014 } while (false)
3015 #define DEFVAR_BOOL(lname, vname, doc) \
3016 do { \
3017 static struct Lisp_Boolfwd b_fwd; \
3018 defvar_bool (&b_fwd, lname, &globals.f_ ## vname); \
3019 } while (false)
3020 #define DEFVAR_INT(lname, vname, doc) \
3021 do { \
3022 static struct Lisp_Intfwd i_fwd; \
3023 defvar_int (&i_fwd, lname, &globals.f_ ## vname); \
3024 } while (false)
3025
3026 #define DEFVAR_BUFFER_DEFAULTS(lname, vname, doc) \
3027 do { \
3028 static struct Lisp_Objfwd o_fwd; \
3029 defvar_lisp_nopro (&o_fwd, lname, &BVAR (&buffer_defaults, vname)); \
3030 } while (false)
3031
3032 #define DEFVAR_KBOARD(lname, vname, doc) \
3033 do { \
3034 static struct Lisp_Kboard_Objfwd ko_fwd; \
3035 defvar_kboard (&ko_fwd, lname, offsetof (KBOARD, vname ## _)); \
3036 } while (false)
3037 \f
3038 /* Save and restore the instruction and environment pointers,
3039 without affecting the signal mask. */
3040
3041 #ifdef HAVE__SETJMP
3042 typedef jmp_buf sys_jmp_buf;
3043 # define sys_setjmp(j) _setjmp (j)
3044 # define sys_longjmp(j, v) _longjmp (j, v)
3045 #elif defined HAVE_SIGSETJMP
3046 typedef sigjmp_buf sys_jmp_buf;
3047 # define sys_setjmp(j) sigsetjmp (j, 0)
3048 # define sys_longjmp(j, v) siglongjmp (j, v)
3049 #else
3050 /* A platform that uses neither _longjmp nor siglongjmp; assume
3051 longjmp does not affect the sigmask. */
3052 typedef jmp_buf sys_jmp_buf;
3053 # define sys_setjmp(j) setjmp (j)
3054 # define sys_longjmp(j, v) longjmp (j, v)
3055 #endif
3056
3057 \f
3058 /* Elisp uses several stacks:
3059 - the C stack.
3060 - the bytecode stack: used internally by the bytecode interpreter.
3061 Allocated from the C stack.
3062 - The specpdl stack: keeps track of active unwind-protect and
3063 dynamic-let-bindings. Allocated from the `specpdl' array, a manually
3064 managed stack.
3065 - The handler stack: keeps track of active catch tags and condition-case
3066 handlers. Allocated in a manually managed stack implemented by a
3067 doubly-linked list allocated via xmalloc and never freed. */
3068
3069 /* Structure for recording Lisp call stack for backtrace purposes. */
3070
3071 /* The special binding stack holds the outer values of variables while
3072 they are bound by a function application or a let form, stores the
3073 code to be executed for unwind-protect forms.
3074
3075 NOTE: The specbinding union is defined here, because SPECPDL_INDEX is
3076 used all over the place, needs to be fast, and needs to know the size of
3077 union specbinding. But only eval.c should access it. */
3078
3079 enum specbind_tag {
3080 SPECPDL_UNWIND, /* An unwind_protect function on Lisp_Object. */
3081 SPECPDL_UNWIND_PTR, /* Likewise, on void *. */
3082 SPECPDL_UNWIND_INT, /* Likewise, on int. */
3083 SPECPDL_UNWIND_VOID, /* Likewise, with no arg. */
3084 SPECPDL_BACKTRACE, /* An element of the backtrace. */
3085 SPECPDL_LET, /* A plain and simple dynamic let-binding. */
3086 /* Tags greater than SPECPDL_LET must be "subkinds" of LET. */
3087 SPECPDL_LET_LOCAL, /* A buffer-local let-binding. */
3088 SPECPDL_LET_DEFAULT /* A global binding for a localized var. */
3089 };
3090
3091 union specbinding
3092 {
3093 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3094 struct {
3095 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3096 void (*func) (Lisp_Object);
3097 Lisp_Object arg;
3098 } unwind;
3099 struct {
3100 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3101 void (*func) (void *);
3102 void *arg;
3103 } unwind_ptr;
3104 struct {
3105 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3106 void (*func) (int);
3107 int arg;
3108 } unwind_int;
3109 struct {
3110 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3111 void (*func) (void);
3112 } unwind_void;
3113 struct {
3114 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3115 /* `where' is not used in the case of SPECPDL_LET. */
3116 Lisp_Object symbol, old_value, where;
3117 } let;
3118 struct {
3119 ENUM_BF (specbind_tag) kind : CHAR_BIT;
3120 bool_bf debug_on_exit : 1;
3121 Lisp_Object function;
3122 Lisp_Object *args;
3123 ptrdiff_t nargs;
3124 } bt;
3125 };
3126
3127 extern union specbinding *specpdl;
3128 extern union specbinding *specpdl_ptr;
3129 extern ptrdiff_t specpdl_size;
3130
3131 INLINE ptrdiff_t
3132 SPECPDL_INDEX (void)
3133 {
3134 return specpdl_ptr - specpdl;
3135 }
3136
3137 /* This structure helps implement the `catch/throw' and `condition-case/signal'
3138 control structures. A struct handler contains all the information needed to
3139 restore the state of the interpreter after a non-local jump.
3140
3141 handler structures are chained together in a doubly linked list; the `next'
3142 member points to the next outer catchtag and the `nextfree' member points in
3143 the other direction to the next inner element (which is typically the next
3144 free element since we mostly use it on the deepest handler).
3145
3146 A call like (throw TAG VAL) searches for a catchtag whose `tag_or_ch'
3147 member is TAG, and then unbinds to it. The `val' member is used to
3148 hold VAL while the stack is unwound; `val' is returned as the value
3149 of the catch form. If there is a handler of type CATCHER_ALL, it will
3150 be treated as a handler for all invocations of `throw'; in this case
3151 `val' will be set to (TAG . VAL).
3152
3153 All the other members are concerned with restoring the interpreter
3154 state.
3155
3156 Members are volatile if their values need to survive _longjmp when
3157 a 'struct handler' is a local variable. */
3158
3159 enum handlertype { CATCHER, CONDITION_CASE, CATCHER_ALL };
3160
3161 struct handler
3162 {
3163 enum handlertype type;
3164 Lisp_Object tag_or_ch;
3165 Lisp_Object val;
3166 struct handler *next;
3167 struct handler *nextfree;
3168
3169 /* The bytecode interpreter can have several handlers active at the same
3170 time, so when we longjmp to one of them, it needs to know which handler
3171 this was and what was the corresponding internal state. This is stored
3172 here, and when we longjmp we make sure that handlerlist points to the
3173 proper handler. */
3174 Lisp_Object *bytecode_top;
3175 int bytecode_dest;
3176
3177 /* Most global vars are reset to their value via the specpdl mechanism,
3178 but a few others are handled by storing their value here. */
3179 sys_jmp_buf jmp;
3180 EMACS_INT lisp_eval_depth;
3181 ptrdiff_t pdlcount;
3182 int poll_suppress_count;
3183 int interrupt_input_blocked;
3184 struct byte_stack *byte_stack;
3185 };
3186
3187 /* Fill in the components of c, and put it on the list. */
3188 #define PUSH_HANDLER(c, tag_ch_val, handlertype) \
3189 push_handler(&(c), (tag_ch_val), (handlertype))
3190
3191 extern void push_handler (struct handler **c, Lisp_Object tag_ch_val,
3192 enum handlertype handlertype);
3193
3194 /* Like push_handler, but don't signal if the handler could not be
3195 allocated. Instead return false in that case. */
3196 extern bool push_handler_nosignal (struct handler **c, Lisp_Object tag_ch_val,
3197 enum handlertype handlertype);
3198
3199 extern Lisp_Object memory_signal_data;
3200
3201 /* An address near the bottom of the stack.
3202 Tells GC how to save a copy of the stack. */
3203 extern char *stack_bottom;
3204
3205 /* Check quit-flag and quit if it is non-nil.
3206 Typing C-g does not directly cause a quit; it only sets Vquit_flag.
3207 So the program needs to do QUIT at times when it is safe to quit.
3208 Every loop that might run for a long time or might not exit
3209 ought to do QUIT at least once, at a safe place.
3210 Unless that is impossible, of course.
3211 But it is very desirable to avoid creating loops where QUIT is impossible.
3212
3213 Exception: if you set immediate_quit to true,
3214 then the handler that responds to the C-g does the quit itself.
3215 This is a good thing to do around a loop that has no side effects
3216 and (in particular) cannot call arbitrary Lisp code.
3217
3218 If quit-flag is set to `kill-emacs' the SIGINT handler has received
3219 a request to exit Emacs when it is safe to do. */
3220
3221 extern void process_pending_signals (void);
3222 extern bool volatile pending_signals;
3223
3224 extern void process_quit_flag (void);
3225 #define QUIT \
3226 do { \
3227 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
3228 process_quit_flag (); \
3229 else if (pending_signals) \
3230 process_pending_signals (); \
3231 } while (false)
3232
3233
3234 /* True if ought to quit now. */
3235
3236 #define QUITP (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
3237 \f
3238 extern Lisp_Object Vascii_downcase_table;
3239 extern Lisp_Object Vascii_canon_table;
3240 \f
3241 /* Call staticpro (&var) to protect static variable `var'. */
3242
3243 void staticpro (Lisp_Object *);
3244 \f
3245 /* Forward declarations for prototypes. */
3246 struct window;
3247 struct frame;
3248
3249 /* Copy COUNT Lisp_Objects from ARGS to contents of V starting from OFFSET. */
3250
3251 INLINE void
3252 vcopy (Lisp_Object v, ptrdiff_t offset, Lisp_Object *args, ptrdiff_t count)
3253 {
3254 eassert (0 <= offset && 0 <= count && offset + count <= ASIZE (v));
3255 memcpy (XVECTOR (v)->contents + offset, args, count * sizeof *args);
3256 }
3257
3258 /* Functions to modify hash tables. */
3259
3260 INLINE void
3261 set_hash_key_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3262 {
3263 gc_aset (h->key_and_value, 2 * idx, val);
3264 }
3265
3266 INLINE void
3267 set_hash_value_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3268 {
3269 gc_aset (h->key_and_value, 2 * idx + 1, val);
3270 }
3271
3272 /* Use these functions to set Lisp_Object
3273 or pointer slots of struct Lisp_Symbol. */
3274
3275 INLINE void
3276 set_symbol_function (Lisp_Object sym, Lisp_Object function)
3277 {
3278 XSYMBOL (sym)->function = function;
3279 }
3280
3281 INLINE void
3282 set_symbol_plist (Lisp_Object sym, Lisp_Object plist)
3283 {
3284 XSYMBOL (sym)->plist = plist;
3285 }
3286
3287 INLINE void
3288 set_symbol_next (Lisp_Object sym, struct Lisp_Symbol *next)
3289 {
3290 XSYMBOL (sym)->next = next;
3291 }
3292
3293 /* Buffer-local (also frame-local) variable access functions. */
3294
3295 INLINE int
3296 blv_found (struct Lisp_Buffer_Local_Value *blv)
3297 {
3298 eassert (blv->found == !EQ (blv->defcell, blv->valcell));
3299 return blv->found;
3300 }
3301
3302 /* Set overlay's property list. */
3303
3304 INLINE void
3305 set_overlay_plist (Lisp_Object overlay, Lisp_Object plist)
3306 {
3307 XOVERLAY (overlay)->plist = plist;
3308 }
3309
3310 /* Get text properties of S. */
3311
3312 INLINE INTERVAL
3313 string_intervals (Lisp_Object s)
3314 {
3315 return XSTRING (s)->intervals;
3316 }
3317
3318 /* Set text properties of S to I. */
3319
3320 INLINE void
3321 set_string_intervals (Lisp_Object s, INTERVAL i)
3322 {
3323 XSTRING (s)->intervals = i;
3324 }
3325
3326 /* Set a Lisp slot in TABLE to VAL. Most code should use this instead
3327 of setting slots directly. */
3328
3329 INLINE void
3330 set_char_table_defalt (Lisp_Object table, Lisp_Object val)
3331 {
3332 XCHAR_TABLE (table)->defalt = val;
3333 }
3334 INLINE void
3335 set_char_table_purpose (Lisp_Object table, Lisp_Object val)
3336 {
3337 XCHAR_TABLE (table)->purpose = val;
3338 }
3339
3340 /* Set different slots in (sub)character tables. */
3341
3342 INLINE void
3343 set_char_table_extras (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3344 {
3345 eassert (0 <= idx && idx < CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (table)));
3346 XCHAR_TABLE (table)->extras[idx] = val;
3347 }
3348
3349 INLINE void
3350 set_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3351 {
3352 eassert (0 <= idx && idx < (1 << CHARTAB_SIZE_BITS_0));
3353 XCHAR_TABLE (table)->contents[idx] = val;
3354 }
3355
3356 INLINE void
3357 set_sub_char_table_contents (Lisp_Object table, ptrdiff_t idx, Lisp_Object val)
3358 {
3359 XSUB_CHAR_TABLE (table)->contents[idx] = val;
3360 }
3361
3362 /* Defined in data.c. */
3363 extern Lisp_Object indirect_function (Lisp_Object);
3364 extern Lisp_Object find_symbol_value (Lisp_Object);
3365 enum Arith_Comparison {
3366 ARITH_EQUAL,
3367 ARITH_NOTEQUAL,
3368 ARITH_LESS,
3369 ARITH_GRTR,
3370 ARITH_LESS_OR_EQUAL,
3371 ARITH_GRTR_OR_EQUAL
3372 };
3373 extern Lisp_Object arithcompare (Lisp_Object num1, Lisp_Object num2,
3374 enum Arith_Comparison comparison);
3375
3376 /* Convert the integer I to an Emacs representation, either the integer
3377 itself, or a cons of two or three integers, or if all else fails a float.
3378 I should not have side effects. */
3379 #define INTEGER_TO_CONS(i) \
3380 (! FIXNUM_OVERFLOW_P (i) \
3381 ? make_number (i) \
3382 : EXPR_SIGNED (i) ? intbig_to_lisp (i) : uintbig_to_lisp (i))
3383 extern Lisp_Object intbig_to_lisp (intmax_t);
3384 extern Lisp_Object uintbig_to_lisp (uintmax_t);
3385
3386 /* Convert the Emacs representation CONS back to an integer of type
3387 TYPE, storing the result the variable VAR. Signal an error if CONS
3388 is not a valid representation or is out of range for TYPE. */
3389 #define CONS_TO_INTEGER(cons, type, var) \
3390 (TYPE_SIGNED (type) \
3391 ? ((var) = cons_to_signed (cons, TYPE_MINIMUM (type), TYPE_MAXIMUM (type))) \
3392 : ((var) = cons_to_unsigned (cons, TYPE_MAXIMUM (type))))
3393 extern intmax_t cons_to_signed (Lisp_Object, intmax_t, intmax_t);
3394 extern uintmax_t cons_to_unsigned (Lisp_Object, uintmax_t);
3395
3396 extern struct Lisp_Symbol *indirect_variable (struct Lisp_Symbol *);
3397 extern _Noreturn void args_out_of_range (Lisp_Object, Lisp_Object);
3398 extern _Noreturn void args_out_of_range_3 (Lisp_Object, Lisp_Object,
3399 Lisp_Object);
3400 extern Lisp_Object do_symval_forwarding (union Lisp_Fwd *);
3401 extern void set_internal (Lisp_Object, Lisp_Object, Lisp_Object, bool);
3402 extern void syms_of_data (void);
3403 extern void swap_in_global_binding (struct Lisp_Symbol *);
3404
3405 /* Defined in cmds.c */
3406 extern void syms_of_cmds (void);
3407 extern void keys_of_cmds (void);
3408
3409 /* Defined in coding.c. */
3410 extern Lisp_Object detect_coding_system (const unsigned char *, ptrdiff_t,
3411 ptrdiff_t, bool, bool, Lisp_Object);
3412 extern void init_coding (void);
3413 extern void init_coding_once (void);
3414 extern void syms_of_coding (void);
3415
3416 /* Defined in character.c. */
3417 extern ptrdiff_t chars_in_text (const unsigned char *, ptrdiff_t);
3418 extern ptrdiff_t multibyte_chars_in_text (const unsigned char *, ptrdiff_t);
3419 extern void syms_of_character (void);
3420
3421 /* Defined in charset.c. */
3422 extern void init_charset (void);
3423 extern void init_charset_once (void);
3424 extern void syms_of_charset (void);
3425 /* Structure forward declarations. */
3426 struct charset;
3427
3428 /* Defined in syntax.c. */
3429 extern void init_syntax_once (void);
3430 extern void syms_of_syntax (void);
3431
3432 /* Defined in fns.c. */
3433 enum { NEXT_ALMOST_PRIME_LIMIT = 11 };
3434 extern EMACS_INT next_almost_prime (EMACS_INT) ATTRIBUTE_CONST;
3435 extern Lisp_Object larger_vector (Lisp_Object, ptrdiff_t, ptrdiff_t);
3436 extern void sweep_weak_hash_tables (void);
3437 EMACS_UINT hash_string (char const *, ptrdiff_t);
3438 EMACS_UINT sxhash (Lisp_Object, int);
3439 Lisp_Object make_hash_table (struct hash_table_test, Lisp_Object, Lisp_Object,
3440 Lisp_Object, Lisp_Object);
3441 ptrdiff_t hash_lookup (struct Lisp_Hash_Table *, Lisp_Object, EMACS_UINT *);
3442 ptrdiff_t hash_put (struct Lisp_Hash_Table *, Lisp_Object, Lisp_Object,
3443 EMACS_UINT);
3444 void hash_remove_from_table (struct Lisp_Hash_Table *, Lisp_Object);
3445 extern struct hash_table_test hashtest_eq, hashtest_eql, hashtest_equal;
3446 extern void validate_subarray (Lisp_Object, Lisp_Object, Lisp_Object,
3447 ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
3448 extern Lisp_Object substring_both (Lisp_Object, ptrdiff_t, ptrdiff_t,
3449 ptrdiff_t, ptrdiff_t);
3450 extern Lisp_Object merge (Lisp_Object, Lisp_Object, Lisp_Object);
3451 extern Lisp_Object do_yes_or_no_p (Lisp_Object);
3452 extern Lisp_Object concat2 (Lisp_Object, Lisp_Object);
3453 extern Lisp_Object concat3 (Lisp_Object, Lisp_Object, Lisp_Object);
3454 extern Lisp_Object nconc2 (Lisp_Object, Lisp_Object);
3455 extern Lisp_Object assq_no_quit (Lisp_Object, Lisp_Object);
3456 extern Lisp_Object assoc_no_quit (Lisp_Object, Lisp_Object);
3457 extern void clear_string_char_byte_cache (void);
3458 extern ptrdiff_t string_char_to_byte (Lisp_Object, ptrdiff_t);
3459 extern ptrdiff_t string_byte_to_char (Lisp_Object, ptrdiff_t);
3460 extern Lisp_Object string_to_multibyte (Lisp_Object);
3461 extern Lisp_Object string_make_unibyte (Lisp_Object);
3462 extern void syms_of_fns (void);
3463
3464 /* Defined in floatfns.c. */
3465 extern void syms_of_floatfns (void);
3466 extern Lisp_Object fmod_float (Lisp_Object x, Lisp_Object y);
3467
3468 /* Defined in fringe.c. */
3469 extern void syms_of_fringe (void);
3470 extern void init_fringe (void);
3471 #ifdef HAVE_WINDOW_SYSTEM
3472 extern void mark_fringe_data (void);
3473 extern void init_fringe_once (void);
3474 #endif /* HAVE_WINDOW_SYSTEM */
3475
3476 /* Defined in image.c. */
3477 extern int x_bitmap_mask (struct frame *, ptrdiff_t);
3478 extern void reset_image_types (void);
3479 extern void syms_of_image (void);
3480
3481 /* Defined in insdel.c. */
3482 extern void move_gap_both (ptrdiff_t, ptrdiff_t);
3483 extern _Noreturn void buffer_overflow (void);
3484 extern void make_gap (ptrdiff_t);
3485 extern void make_gap_1 (struct buffer *, ptrdiff_t);
3486 extern ptrdiff_t copy_text (const unsigned char *, unsigned char *,
3487 ptrdiff_t, bool, bool);
3488 extern int count_combining_before (const unsigned char *,
3489 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3490 extern int count_combining_after (const unsigned char *,
3491 ptrdiff_t, ptrdiff_t, ptrdiff_t);
3492 extern void insert (const char *, ptrdiff_t);
3493 extern void insert_and_inherit (const char *, ptrdiff_t);
3494 extern void insert_1_both (const char *, ptrdiff_t, ptrdiff_t,
3495 bool, bool, bool);
3496 extern void insert_from_gap (ptrdiff_t, ptrdiff_t, bool text_at_gap_tail);
3497 extern void insert_from_string (Lisp_Object, ptrdiff_t, ptrdiff_t,
3498 ptrdiff_t, ptrdiff_t, bool);
3499 extern void insert_from_buffer (struct buffer *, ptrdiff_t, ptrdiff_t, bool);
3500 extern void insert_char (int);
3501 extern void insert_string (const char *);
3502 extern void insert_before_markers (const char *, ptrdiff_t);
3503 extern void insert_before_markers_and_inherit (const char *, ptrdiff_t);
3504 extern void insert_from_string_before_markers (Lisp_Object, ptrdiff_t,
3505 ptrdiff_t, ptrdiff_t,
3506 ptrdiff_t, bool);
3507 extern void del_range (ptrdiff_t, ptrdiff_t);
3508 extern Lisp_Object del_range_1 (ptrdiff_t, ptrdiff_t, bool, bool);
3509 extern void del_range_byte (ptrdiff_t, ptrdiff_t, bool);
3510 extern void del_range_both (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t, bool);
3511 extern Lisp_Object del_range_2 (ptrdiff_t, ptrdiff_t,
3512 ptrdiff_t, ptrdiff_t, bool);
3513 extern void modify_text (ptrdiff_t, ptrdiff_t);
3514 extern void prepare_to_modify_buffer (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3515 extern void prepare_to_modify_buffer_1 (ptrdiff_t, ptrdiff_t, ptrdiff_t *);
3516 extern void invalidate_buffer_caches (struct buffer *, ptrdiff_t, ptrdiff_t);
3517 extern void signal_after_change (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3518 extern void adjust_after_insert (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3519 ptrdiff_t, ptrdiff_t);
3520 extern void adjust_markers_for_delete (ptrdiff_t, ptrdiff_t,
3521 ptrdiff_t, ptrdiff_t);
3522 extern void replace_range (ptrdiff_t, ptrdiff_t, Lisp_Object, bool, bool, bool);
3523 extern void replace_range_2 (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
3524 const char *, ptrdiff_t, ptrdiff_t, bool);
3525 extern void syms_of_insdel (void);
3526
3527 /* Defined in dispnew.c. */
3528 #if (defined PROFILING \
3529 && (defined __FreeBSD__ || defined GNU_LINUX || defined __MINGW32__))
3530 _Noreturn void __executable_start (void);
3531 #endif
3532 extern Lisp_Object Vwindow_system;
3533 extern Lisp_Object sit_for (Lisp_Object, bool, int);
3534
3535 /* Defined in xdisp.c. */
3536 extern bool noninteractive_need_newline;
3537 extern Lisp_Object echo_area_buffer[2];
3538 extern void add_to_log (char const *, ...);
3539 extern void vadd_to_log (char const *, va_list);
3540 extern void check_message_stack (void);
3541 extern void setup_echo_area_for_printing (bool);
3542 extern bool push_message (void);
3543 extern void pop_message_unwind (void);
3544 extern Lisp_Object restore_message_unwind (Lisp_Object);
3545 extern void restore_message (void);
3546 extern Lisp_Object current_message (void);
3547 extern void clear_message (bool, bool);
3548 extern void message (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3549 extern void message1 (const char *);
3550 extern void message1_nolog (const char *);
3551 extern void message3 (Lisp_Object);
3552 extern void message3_nolog (Lisp_Object);
3553 extern void message_dolog (const char *, ptrdiff_t, bool, bool);
3554 extern void message_with_string (const char *, Lisp_Object, bool);
3555 extern void message_log_maybe_newline (void);
3556 extern void update_echo_area (void);
3557 extern void truncate_echo_area (ptrdiff_t);
3558 extern void redisplay (void);
3559
3560 void set_frame_cursor_types (struct frame *, Lisp_Object);
3561 extern void syms_of_xdisp (void);
3562 extern void init_xdisp (void);
3563 extern Lisp_Object safe_eval (Lisp_Object);
3564 extern bool pos_visible_p (struct window *, ptrdiff_t, int *,
3565 int *, int *, int *, int *, int *);
3566
3567 /* Defined in xsettings.c. */
3568 extern void syms_of_xsettings (void);
3569
3570 /* Defined in vm-limit.c. */
3571 extern void memory_warnings (void *, void (*warnfun) (const char *));
3572
3573 /* Defined in character.c. */
3574 extern void parse_str_as_multibyte (const unsigned char *, ptrdiff_t,
3575 ptrdiff_t *, ptrdiff_t *);
3576
3577 /* Defined in alloc.c. */
3578 extern void check_pure_size (void);
3579 extern void free_misc (Lisp_Object);
3580 extern void allocate_string_data (struct Lisp_String *, EMACS_INT, EMACS_INT);
3581 extern void malloc_warning (const char *);
3582 extern _Noreturn void memory_full (size_t);
3583 extern _Noreturn void buffer_memory_full (ptrdiff_t);
3584 extern bool survives_gc_p (Lisp_Object);
3585 extern void mark_object (Lisp_Object);
3586 #if defined REL_ALLOC && !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3587 extern void refill_memory_reserve (void);
3588 #endif
3589 extern const char *pending_malloc_warning;
3590 extern Lisp_Object zero_vector;
3591 extern Lisp_Object *stack_base;
3592 extern EMACS_INT consing_since_gc;
3593 extern EMACS_INT gc_relative_threshold;
3594 extern EMACS_INT memory_full_cons_threshold;
3595 extern Lisp_Object list1 (Lisp_Object);
3596 extern Lisp_Object list2 (Lisp_Object, Lisp_Object);
3597 extern Lisp_Object list3 (Lisp_Object, Lisp_Object, Lisp_Object);
3598 extern Lisp_Object list4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3599 extern Lisp_Object list5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object,
3600 Lisp_Object);
3601 enum constype {CONSTYPE_HEAP, CONSTYPE_PURE};
3602 extern Lisp_Object listn (enum constype, ptrdiff_t, Lisp_Object, ...);
3603
3604 /* Build a frequently used 2/3/4-integer lists. */
3605
3606 INLINE Lisp_Object
3607 list2i (EMACS_INT x, EMACS_INT y)
3608 {
3609 return list2 (make_number (x), make_number (y));
3610 }
3611
3612 INLINE Lisp_Object
3613 list3i (EMACS_INT x, EMACS_INT y, EMACS_INT w)
3614 {
3615 return list3 (make_number (x), make_number (y), make_number (w));
3616 }
3617
3618 INLINE Lisp_Object
3619 list4i (EMACS_INT x, EMACS_INT y, EMACS_INT w, EMACS_INT h)
3620 {
3621 return list4 (make_number (x), make_number (y),
3622 make_number (w), make_number (h));
3623 }
3624
3625 extern Lisp_Object make_uninit_bool_vector (EMACS_INT);
3626 extern Lisp_Object bool_vector_fill (Lisp_Object, Lisp_Object);
3627 extern _Noreturn void string_overflow (void);
3628 extern Lisp_Object make_string (const char *, ptrdiff_t);
3629 extern Lisp_Object make_formatted_string (char *, const char *, ...)
3630 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3631 extern Lisp_Object make_unibyte_string (const char *, ptrdiff_t);
3632
3633 /* Make unibyte string from C string when the length isn't known. */
3634
3635 INLINE Lisp_Object
3636 build_unibyte_string (const char *str)
3637 {
3638 return make_unibyte_string (str, strlen (str));
3639 }
3640
3641 extern Lisp_Object make_multibyte_string (const char *, ptrdiff_t, ptrdiff_t);
3642 extern Lisp_Object make_event_array (ptrdiff_t, Lisp_Object *);
3643 extern Lisp_Object make_uninit_string (EMACS_INT);
3644 extern Lisp_Object make_uninit_multibyte_string (EMACS_INT, EMACS_INT);
3645 extern Lisp_Object make_string_from_bytes (const char *, ptrdiff_t, ptrdiff_t);
3646 extern Lisp_Object make_specified_string (const char *,
3647 ptrdiff_t, ptrdiff_t, bool);
3648 extern Lisp_Object make_pure_string (const char *, ptrdiff_t, ptrdiff_t, bool);
3649 extern Lisp_Object make_pure_c_string (const char *, ptrdiff_t);
3650
3651 /* Make a string allocated in pure space, use STR as string data. */
3652
3653 INLINE Lisp_Object
3654 build_pure_c_string (const char *str)
3655 {
3656 return make_pure_c_string (str, strlen (str));
3657 }
3658
3659 /* Make a string from the data at STR, treating it as multibyte if the
3660 data warrants. */
3661
3662 INLINE Lisp_Object
3663 build_string (const char *str)
3664 {
3665 return make_string (str, strlen (str));
3666 }
3667
3668 extern Lisp_Object pure_cons (Lisp_Object, Lisp_Object);
3669 extern void make_byte_code (struct Lisp_Vector *);
3670 extern struct Lisp_Vector *allocate_vector (EMACS_INT);
3671
3672 /* Make an uninitialized vector for SIZE objects. NOTE: you must
3673 be sure that GC cannot happen until the vector is completely
3674 initialized. E.g. the following code is likely to crash:
3675
3676 v = make_uninit_vector (3);
3677 ASET (v, 0, obj0);
3678 ASET (v, 1, Ffunction_can_gc ());
3679 ASET (v, 2, obj1); */
3680
3681 INLINE Lisp_Object
3682 make_uninit_vector (ptrdiff_t size)
3683 {
3684 Lisp_Object v;
3685 struct Lisp_Vector *p;
3686
3687 p = allocate_vector (size);
3688 XSETVECTOR (v, p);
3689 return v;
3690 }
3691
3692 /* Like above, but special for sub char-tables. */
3693
3694 INLINE Lisp_Object
3695 make_uninit_sub_char_table (int depth, int min_char)
3696 {
3697 int slots = SUB_CHAR_TABLE_OFFSET + chartab_size[depth];
3698 Lisp_Object v = make_uninit_vector (slots);
3699
3700 XSETPVECTYPE (XVECTOR (v), PVEC_SUB_CHAR_TABLE);
3701 XSUB_CHAR_TABLE (v)->depth = depth;
3702 XSUB_CHAR_TABLE (v)->min_char = min_char;
3703 return v;
3704 }
3705
3706 extern struct Lisp_Vector *allocate_pseudovector (int, int, int,
3707 enum pvec_type);
3708
3709 /* Allocate partially initialized pseudovector where all Lisp_Object
3710 slots are set to Qnil but the rest (if any) is left uninitialized. */
3711
3712 #define ALLOCATE_PSEUDOVECTOR(type, field, tag) \
3713 ((type *) allocate_pseudovector (VECSIZE (type), \
3714 PSEUDOVECSIZE (type, field), \
3715 PSEUDOVECSIZE (type, field), tag))
3716
3717 /* Allocate fully initialized pseudovector where all Lisp_Object
3718 slots are set to Qnil and the rest (if any) is zeroed. */
3719
3720 #define ALLOCATE_ZEROED_PSEUDOVECTOR(type, field, tag) \
3721 ((type *) allocate_pseudovector (VECSIZE (type), \
3722 PSEUDOVECSIZE (type, field), \
3723 VECSIZE (type), tag))
3724
3725 extern bool gc_in_progress;
3726 extern bool abort_on_gc;
3727 extern Lisp_Object make_float (double);
3728 extern void display_malloc_warning (void);
3729 extern ptrdiff_t inhibit_garbage_collection (void);
3730 extern Lisp_Object make_save_int_int_int (ptrdiff_t, ptrdiff_t, ptrdiff_t);
3731 extern Lisp_Object make_save_obj_obj_obj_obj (Lisp_Object, Lisp_Object,
3732 Lisp_Object, Lisp_Object);
3733 extern Lisp_Object make_save_ptr (void *);
3734 extern Lisp_Object make_save_ptr_int (void *, ptrdiff_t);
3735 extern Lisp_Object make_save_ptr_ptr (void *, void *);
3736 extern Lisp_Object make_save_funcptr_ptr_obj (void (*) (void), void *,
3737 Lisp_Object);
3738 extern Lisp_Object make_save_memory (Lisp_Object *, ptrdiff_t);
3739 extern void free_save_value (Lisp_Object);
3740 extern Lisp_Object build_overlay (Lisp_Object, Lisp_Object, Lisp_Object);
3741 extern void free_marker (Lisp_Object);
3742 extern void free_cons (struct Lisp_Cons *);
3743 extern void init_alloc_once (void);
3744 extern void init_alloc (void);
3745 extern void syms_of_alloc (void);
3746 extern struct buffer * allocate_buffer (void);
3747 extern int valid_lisp_object_p (Lisp_Object);
3748 #ifdef GC_CHECK_CONS_LIST
3749 extern void check_cons_list (void);
3750 #else
3751 INLINE void (check_cons_list) (void) { lisp_h_check_cons_list (); }
3752 #endif
3753
3754 #ifdef REL_ALLOC
3755 /* Defined in ralloc.c. */
3756 extern void *r_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3757 extern void r_alloc_free (void **);
3758 extern void *r_re_alloc (void **, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
3759 extern void r_alloc_reset_variable (void **, void **);
3760 extern void r_alloc_inhibit_buffer_relocation (int);
3761 #endif
3762
3763 /* Defined in chartab.c. */
3764 extern Lisp_Object copy_char_table (Lisp_Object);
3765 extern Lisp_Object char_table_ref_and_range (Lisp_Object, int,
3766 int *, int *);
3767 extern void char_table_set_range (Lisp_Object, int, int, Lisp_Object);
3768 extern void map_char_table (void (*) (Lisp_Object, Lisp_Object,
3769 Lisp_Object),
3770 Lisp_Object, Lisp_Object, Lisp_Object);
3771 extern void map_char_table_for_charset (void (*c_function) (Lisp_Object, Lisp_Object),
3772 Lisp_Object, Lisp_Object,
3773 Lisp_Object, struct charset *,
3774 unsigned, unsigned);
3775 extern Lisp_Object uniprop_table (Lisp_Object);
3776 extern void syms_of_chartab (void);
3777
3778 /* Defined in print.c. */
3779 extern Lisp_Object Vprin1_to_string_buffer;
3780 extern void debug_print (Lisp_Object) EXTERNALLY_VISIBLE;
3781 extern void temp_output_buffer_setup (const char *);
3782 extern int print_level;
3783 extern void write_string (const char *);
3784 extern void print_error_message (Lisp_Object, Lisp_Object, const char *,
3785 Lisp_Object);
3786 extern Lisp_Object internal_with_output_to_temp_buffer
3787 (const char *, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3788 #define FLOAT_TO_STRING_BUFSIZE 350
3789 extern int float_to_string (char *, double);
3790 extern void init_print_once (void);
3791 extern void syms_of_print (void);
3792
3793 /* Defined in doprnt.c. */
3794 extern ptrdiff_t doprnt (char *, ptrdiff_t, const char *, const char *,
3795 va_list);
3796 extern ptrdiff_t esprintf (char *, char const *, ...)
3797 ATTRIBUTE_FORMAT_PRINTF (2, 3);
3798 extern ptrdiff_t exprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3799 char const *, ...)
3800 ATTRIBUTE_FORMAT_PRINTF (5, 6);
3801 extern ptrdiff_t evxprintf (char **, ptrdiff_t *, char const *, ptrdiff_t,
3802 char const *, va_list)
3803 ATTRIBUTE_FORMAT_PRINTF (5, 0);
3804
3805 /* Defined in lread.c. */
3806 extern Lisp_Object check_obarray (Lisp_Object);
3807 extern Lisp_Object intern_1 (const char *, ptrdiff_t);
3808 extern Lisp_Object intern_c_string_1 (const char *, ptrdiff_t);
3809 extern Lisp_Object intern_driver (Lisp_Object, Lisp_Object, Lisp_Object);
3810 extern void init_symbol (Lisp_Object, Lisp_Object);
3811 extern Lisp_Object oblookup (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t);
3812 INLINE void
3813 LOADHIST_ATTACH (Lisp_Object x)
3814 {
3815 if (initialized)
3816 Vcurrent_load_list = Fcons (x, Vcurrent_load_list);
3817 }
3818 extern int openp (Lisp_Object, Lisp_Object, Lisp_Object,
3819 Lisp_Object *, Lisp_Object, bool);
3820 extern Lisp_Object string_to_number (char const *, int, bool);
3821 extern void map_obarray (Lisp_Object, void (*) (Lisp_Object, Lisp_Object),
3822 Lisp_Object);
3823 extern void dir_warning (const char *, Lisp_Object);
3824 extern void init_obarray (void);
3825 extern void init_lread (void);
3826 extern void syms_of_lread (void);
3827
3828 INLINE Lisp_Object
3829 intern (const char *str)
3830 {
3831 return intern_1 (str, strlen (str));
3832 }
3833
3834 INLINE Lisp_Object
3835 intern_c_string (const char *str)
3836 {
3837 return intern_c_string_1 (str, strlen (str));
3838 }
3839
3840 /* Defined in eval.c. */
3841 extern EMACS_INT lisp_eval_depth;
3842 extern Lisp_Object Vautoload_queue;
3843 extern Lisp_Object Vrun_hooks;
3844 extern Lisp_Object Vsignaling_function;
3845 extern Lisp_Object inhibit_lisp_code;
3846 extern struct handler *handlerlist;
3847
3848 /* To run a normal hook, use the appropriate function from the list below.
3849 The calling convention:
3850
3851 if (!NILP (Vrun_hooks))
3852 call1 (Vrun_hooks, Qmy_funny_hook);
3853
3854 should no longer be used. */
3855 extern void run_hook (Lisp_Object);
3856 extern void run_hook_with_args_2 (Lisp_Object, Lisp_Object, Lisp_Object);
3857 extern Lisp_Object run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
3858 Lisp_Object (*funcall)
3859 (ptrdiff_t nargs, Lisp_Object *args));
3860 extern _Noreturn void xsignal (Lisp_Object, Lisp_Object);
3861 extern _Noreturn void xsignal0 (Lisp_Object);
3862 extern _Noreturn void xsignal1 (Lisp_Object, Lisp_Object);
3863 extern _Noreturn void xsignal2 (Lisp_Object, Lisp_Object, Lisp_Object);
3864 extern _Noreturn void xsignal3 (Lisp_Object, Lisp_Object, Lisp_Object,
3865 Lisp_Object);
3866 extern _Noreturn void signal_error (const char *, Lisp_Object);
3867 extern Lisp_Object eval_sub (Lisp_Object form);
3868 extern Lisp_Object apply1 (Lisp_Object, Lisp_Object);
3869 extern Lisp_Object call0 (Lisp_Object);
3870 extern Lisp_Object call1 (Lisp_Object, Lisp_Object);
3871 extern Lisp_Object call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3872 extern Lisp_Object call3 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3873 extern Lisp_Object call4 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3874 extern Lisp_Object call5 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3875 extern Lisp_Object call6 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3876 extern Lisp_Object call7 (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
3877 extern Lisp_Object internal_catch (Lisp_Object, Lisp_Object (*) (Lisp_Object), Lisp_Object);
3878 extern Lisp_Object internal_lisp_condition_case (Lisp_Object, Lisp_Object, Lisp_Object);
3879 extern Lisp_Object internal_condition_case (Lisp_Object (*) (void), Lisp_Object, Lisp_Object (*) (Lisp_Object));
3880 extern Lisp_Object internal_condition_case_1 (Lisp_Object (*) (Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3881 extern Lisp_Object internal_condition_case_2 (Lisp_Object (*) (Lisp_Object, Lisp_Object), Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object (*) (Lisp_Object));
3882 extern Lisp_Object internal_condition_case_n
3883 (Lisp_Object (*) (ptrdiff_t, Lisp_Object *), ptrdiff_t, Lisp_Object *,
3884 Lisp_Object, Lisp_Object (*) (Lisp_Object, ptrdiff_t, Lisp_Object *));
3885 extern void specbind (Lisp_Object, Lisp_Object);
3886 extern void record_unwind_protect (void (*) (Lisp_Object), Lisp_Object);
3887 extern void record_unwind_protect_ptr (void (*) (void *), void *);
3888 extern void record_unwind_protect_int (void (*) (int), int);
3889 extern void record_unwind_protect_void (void (*) (void));
3890 extern void record_unwind_protect_nothing (void);
3891 extern void clear_unwind_protect (ptrdiff_t);
3892 extern void set_unwind_protect (ptrdiff_t, void (*) (Lisp_Object), Lisp_Object);
3893 extern void set_unwind_protect_ptr (ptrdiff_t, void (*) (void *), void *);
3894 extern Lisp_Object unbind_to (ptrdiff_t, Lisp_Object);
3895 extern _Noreturn void error (const char *, ...) ATTRIBUTE_FORMAT_PRINTF (1, 2);
3896 extern _Noreturn void verror (const char *, va_list)
3897 ATTRIBUTE_FORMAT_PRINTF (1, 0);
3898 extern void un_autoload (Lisp_Object);
3899 extern Lisp_Object call_debugger (Lisp_Object arg);
3900 extern void *near_C_stack_top (void);
3901 extern void init_eval_once (void);
3902 extern Lisp_Object safe_call (ptrdiff_t, Lisp_Object, ...);
3903 extern Lisp_Object safe_call1 (Lisp_Object, Lisp_Object);
3904 extern Lisp_Object safe_call2 (Lisp_Object, Lisp_Object, Lisp_Object);
3905 extern void init_eval (void);
3906 extern void syms_of_eval (void);
3907 extern void unwind_body (Lisp_Object);
3908 extern ptrdiff_t record_in_backtrace (Lisp_Object, Lisp_Object *, ptrdiff_t);
3909 extern void mark_specpdl (void);
3910 extern void get_backtrace (Lisp_Object array);
3911 Lisp_Object backtrace_top_function (void);
3912 extern bool let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol);
3913 extern bool let_shadows_global_binding_p (Lisp_Object symbol);
3914
3915 #ifdef HAVE_MODULES
3916 /* Defined in alloc.c. */
3917 extern Lisp_Object make_user_ptr (void (*finalizer) (void*), void *p);
3918
3919 #endif
3920
3921 /* Defined in editfns.c. */
3922 extern void insert1 (Lisp_Object);
3923 extern Lisp_Object save_excursion_save (void);
3924 extern Lisp_Object save_restriction_save (void);
3925 extern void save_excursion_restore (Lisp_Object);
3926 extern void save_restriction_restore (Lisp_Object);
3927 extern _Noreturn void time_overflow (void);
3928 extern Lisp_Object make_buffer_string (ptrdiff_t, ptrdiff_t, bool);
3929 extern Lisp_Object make_buffer_string_both (ptrdiff_t, ptrdiff_t, ptrdiff_t,
3930 ptrdiff_t, bool);
3931 extern void init_editfns (bool);
3932 extern void syms_of_editfns (void);
3933
3934 /* Defined in buffer.c. */
3935 extern bool mouse_face_overlay_overlaps (Lisp_Object);
3936 extern _Noreturn void nsberror (Lisp_Object);
3937 extern void adjust_overlays_for_insert (ptrdiff_t, ptrdiff_t);
3938 extern void adjust_overlays_for_delete (ptrdiff_t, ptrdiff_t);
3939 extern void fix_start_end_in_overlays (ptrdiff_t, ptrdiff_t);
3940 extern void report_overlay_modification (Lisp_Object, Lisp_Object, bool,
3941 Lisp_Object, Lisp_Object, Lisp_Object);
3942 extern bool overlay_touches_p (ptrdiff_t);
3943 extern Lisp_Object other_buffer_safely (Lisp_Object);
3944 extern Lisp_Object get_truename_buffer (Lisp_Object);
3945 extern void init_buffer_once (void);
3946 extern void init_buffer (int);
3947 extern void syms_of_buffer (void);
3948 extern void keys_of_buffer (void);
3949
3950 /* Defined in marker.c. */
3951
3952 extern ptrdiff_t marker_position (Lisp_Object);
3953 extern ptrdiff_t marker_byte_position (Lisp_Object);
3954 extern void clear_charpos_cache (struct buffer *);
3955 extern ptrdiff_t buf_charpos_to_bytepos (struct buffer *, ptrdiff_t);
3956 extern ptrdiff_t buf_bytepos_to_charpos (struct buffer *, ptrdiff_t);
3957 extern void unchain_marker (struct Lisp_Marker *marker);
3958 extern Lisp_Object set_marker_restricted (Lisp_Object, Lisp_Object, Lisp_Object);
3959 extern Lisp_Object set_marker_both (Lisp_Object, Lisp_Object, ptrdiff_t, ptrdiff_t);
3960 extern Lisp_Object set_marker_restricted_both (Lisp_Object, Lisp_Object,
3961 ptrdiff_t, ptrdiff_t);
3962 extern Lisp_Object build_marker (struct buffer *, ptrdiff_t, ptrdiff_t);
3963 extern void syms_of_marker (void);
3964
3965 /* Defined in fileio.c. */
3966
3967 extern Lisp_Object expand_and_dir_to_file (Lisp_Object, Lisp_Object);
3968 extern Lisp_Object write_region (Lisp_Object, Lisp_Object, Lisp_Object,
3969 Lisp_Object, Lisp_Object, Lisp_Object,
3970 Lisp_Object, int);
3971 extern void close_file_unwind (int);
3972 extern void fclose_unwind (void *);
3973 extern void restore_point_unwind (Lisp_Object);
3974 extern _Noreturn void report_file_errno (const char *, Lisp_Object, int);
3975 extern _Noreturn void report_file_error (const char *, Lisp_Object);
3976 extern _Noreturn void report_file_notify_error (const char *, Lisp_Object);
3977 extern bool internal_delete_file (Lisp_Object);
3978 extern Lisp_Object emacs_readlinkat (int, const char *);
3979 extern bool file_directory_p (const char *);
3980 extern bool file_accessible_directory_p (Lisp_Object);
3981 extern void init_fileio (void);
3982 extern void syms_of_fileio (void);
3983 extern Lisp_Object make_temp_name (Lisp_Object, bool);
3984
3985 /* Defined in search.c. */
3986 extern void shrink_regexp_cache (void);
3987 extern void restore_search_regs (void);
3988 extern void record_unwind_save_match_data (void);
3989 struct re_registers;
3990 extern struct re_pattern_buffer *compile_pattern (Lisp_Object,
3991 struct re_registers *,
3992 Lisp_Object, bool, bool);
3993 extern ptrdiff_t fast_string_match_internal (Lisp_Object, Lisp_Object,
3994 Lisp_Object);
3995
3996 INLINE ptrdiff_t
3997 fast_string_match (Lisp_Object regexp, Lisp_Object string)
3998 {
3999 return fast_string_match_internal (regexp, string, Qnil);
4000 }
4001
4002 INLINE ptrdiff_t
4003 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
4004 {
4005 return fast_string_match_internal (regexp, string, Vascii_canon_table);
4006 }
4007
4008 extern ptrdiff_t fast_c_string_match_ignore_case (Lisp_Object, const char *,
4009 ptrdiff_t);
4010 extern ptrdiff_t fast_looking_at (Lisp_Object, ptrdiff_t, ptrdiff_t,
4011 ptrdiff_t, ptrdiff_t, Lisp_Object);
4012 extern ptrdiff_t find_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4013 ptrdiff_t, ptrdiff_t *, ptrdiff_t *, bool);
4014 extern ptrdiff_t scan_newline (ptrdiff_t, ptrdiff_t, ptrdiff_t, ptrdiff_t,
4015 ptrdiff_t, bool);
4016 extern ptrdiff_t scan_newline_from_point (ptrdiff_t, ptrdiff_t *, ptrdiff_t *);
4017 extern ptrdiff_t find_newline_no_quit (ptrdiff_t, ptrdiff_t,
4018 ptrdiff_t, ptrdiff_t *);
4019 extern ptrdiff_t find_before_next_newline (ptrdiff_t, ptrdiff_t,
4020 ptrdiff_t, ptrdiff_t *);
4021 extern void syms_of_search (void);
4022 extern void clear_regexp_cache (void);
4023
4024 /* Defined in minibuf.c. */
4025
4026 extern Lisp_Object Vminibuffer_list;
4027 extern Lisp_Object last_minibuf_string;
4028 extern Lisp_Object get_minibuffer (EMACS_INT);
4029 extern void init_minibuf_once (void);
4030 extern void syms_of_minibuf (void);
4031
4032 /* Defined in callint.c. */
4033
4034 extern void syms_of_callint (void);
4035
4036 /* Defined in casefiddle.c. */
4037
4038 extern void syms_of_casefiddle (void);
4039 extern void keys_of_casefiddle (void);
4040
4041 /* Defined in casetab.c. */
4042
4043 extern void init_casetab_once (void);
4044 extern void syms_of_casetab (void);
4045
4046 /* Defined in keyboard.c. */
4047
4048 extern Lisp_Object echo_message_buffer;
4049 extern struct kboard *echo_kboard;
4050 extern void cancel_echoing (void);
4051 extern bool input_pending;
4052 #ifdef HAVE_STACK_OVERFLOW_HANDLING
4053 extern sigjmp_buf return_to_command_loop;
4054 #endif
4055 extern Lisp_Object menu_bar_items (Lisp_Object);
4056 extern Lisp_Object tool_bar_items (Lisp_Object, int *);
4057 extern void discard_mouse_events (void);
4058 #ifdef USABLE_SIGIO
4059 void handle_input_available_signal (int);
4060 #endif
4061 extern Lisp_Object pending_funcalls;
4062 extern bool detect_input_pending (void);
4063 extern bool detect_input_pending_ignore_squeezables (void);
4064 extern bool detect_input_pending_run_timers (bool);
4065 extern void safe_run_hooks (Lisp_Object);
4066 extern void cmd_error_internal (Lisp_Object, const char *);
4067 extern Lisp_Object command_loop_1 (void);
4068 extern Lisp_Object read_menu_command (void);
4069 extern Lisp_Object recursive_edit_1 (void);
4070 extern void record_auto_save (void);
4071 extern void force_auto_save_soon (void);
4072 extern void init_keyboard (void);
4073 extern void syms_of_keyboard (void);
4074 extern void keys_of_keyboard (void);
4075
4076 /* Defined in indent.c. */
4077 extern ptrdiff_t current_column (void);
4078 extern void invalidate_current_column (void);
4079 extern bool indented_beyond_p (ptrdiff_t, ptrdiff_t, EMACS_INT);
4080 extern void syms_of_indent (void);
4081
4082 /* Defined in frame.c. */
4083 extern void store_frame_param (struct frame *, Lisp_Object, Lisp_Object);
4084 extern void store_in_alist (Lisp_Object *, Lisp_Object, Lisp_Object);
4085 extern Lisp_Object do_switch_frame (Lisp_Object, int, int, Lisp_Object);
4086 extern Lisp_Object get_frame_param (struct frame *, Lisp_Object);
4087 extern void frames_discard_buffer (Lisp_Object);
4088 extern void syms_of_frame (void);
4089
4090 /* Defined in emacs.c. */
4091 extern char **initial_argv;
4092 extern int initial_argc;
4093 #if defined (HAVE_X_WINDOWS) || defined (HAVE_NS)
4094 extern bool display_arg;
4095 #endif
4096 extern Lisp_Object decode_env_path (const char *, const char *, bool);
4097 extern Lisp_Object empty_unibyte_string, empty_multibyte_string;
4098 extern _Noreturn void terminate_due_to_signal (int, int);
4099 #ifdef WINDOWSNT
4100 extern Lisp_Object Vlibrary_cache;
4101 #endif
4102 #if HAVE_SETLOCALE
4103 void fixup_locale (void);
4104 void synchronize_system_messages_locale (void);
4105 void synchronize_system_time_locale (void);
4106 #else
4107 INLINE void fixup_locale (void) {}
4108 INLINE void synchronize_system_messages_locale (void) {}
4109 INLINE void synchronize_system_time_locale (void) {}
4110 #endif
4111 extern void shut_down_emacs (int, Lisp_Object);
4112
4113 /* True means don't do interactive redisplay and don't change tty modes. */
4114 extern bool noninteractive;
4115
4116 /* True means remove site-lisp directories from load-path. */
4117 extern bool no_site_lisp;
4118
4119 /* Pipe used to send exit notification to the daemon parent at
4120 startup. On Windows, we use a kernel event instead. */
4121 #ifndef WINDOWSNT
4122 extern int daemon_pipe[2];
4123 #define IS_DAEMON (daemon_pipe[1] != 0)
4124 #define DAEMON_RUNNING (daemon_pipe[1] >= 0)
4125 #else /* WINDOWSNT */
4126 extern void *w32_daemon_event;
4127 #define IS_DAEMON (w32_daemon_event != NULL)
4128 #define DAEMON_RUNNING (w32_daemon_event != INVALID_HANDLE_VALUE)
4129 #endif
4130
4131 /* True if handling a fatal error already. */
4132 extern bool fatal_error_in_progress;
4133
4134 /* True means don't do use window-system-specific display code. */
4135 extern bool inhibit_window_system;
4136 /* True means that a filter or a sentinel is running. */
4137 extern bool running_asynch_code;
4138
4139 /* Defined in process.c. */
4140 extern void kill_buffer_processes (Lisp_Object);
4141 extern int wait_reading_process_output (intmax_t, int, int, bool, Lisp_Object,
4142 struct Lisp_Process *, int);
4143 /* Max value for the first argument of wait_reading_process_output. */
4144 #if __GNUC__ == 3 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 5)
4145 /* Work around a bug in GCC 3.4.2, known to be fixed in GCC 4.6.3.
4146 The bug merely causes a bogus warning, but the warning is annoying. */
4147 # define WAIT_READING_MAX min (TYPE_MAXIMUM (time_t), INTMAX_MAX)
4148 #else
4149 # define WAIT_READING_MAX INTMAX_MAX
4150 #endif
4151 #ifdef HAVE_TIMERFD
4152 extern void add_timer_wait_descriptor (int);
4153 #endif
4154 extern void add_keyboard_wait_descriptor (int);
4155 extern void delete_keyboard_wait_descriptor (int);
4156 #ifdef HAVE_GPM
4157 extern void add_gpm_wait_descriptor (int);
4158 extern void delete_gpm_wait_descriptor (int);
4159 #endif
4160 extern void init_process_emacs (void);
4161 extern void syms_of_process (void);
4162 extern void setup_process_coding_systems (Lisp_Object);
4163
4164 /* Defined in callproc.c. */
4165 #ifndef DOS_NT
4166 _Noreturn
4167 #endif
4168 extern int child_setup (int, int, int, char **, bool, Lisp_Object);
4169 extern void init_callproc_1 (void);
4170 extern void init_callproc (void);
4171 extern void set_initial_environment (void);
4172 extern void syms_of_callproc (void);
4173
4174 /* Defined in doc.c. */
4175 enum text_quoting_style
4176 {
4177 /* Use curved single quotes ‘like this’. */
4178 CURVE_QUOTING_STYLE,
4179
4180 /* Use grave accent and apostrophe `like this'. */
4181 GRAVE_QUOTING_STYLE,
4182
4183 /* Use apostrophes 'like this'. */
4184 STRAIGHT_QUOTING_STYLE
4185 };
4186 extern enum text_quoting_style text_quoting_style (void);
4187 extern Lisp_Object read_doc_string (Lisp_Object);
4188 extern Lisp_Object get_doc_string (Lisp_Object, bool, bool);
4189 extern void syms_of_doc (void);
4190 extern int read_bytecode_char (bool);
4191
4192 /* Defined in bytecode.c. */
4193 extern void syms_of_bytecode (void);
4194 extern struct byte_stack *byte_stack_list;
4195 extern void relocate_byte_stack (void);
4196 extern Lisp_Object exec_byte_code (Lisp_Object, Lisp_Object, Lisp_Object,
4197 Lisp_Object, ptrdiff_t, Lisp_Object *);
4198
4199 /* Defined in macros.c. */
4200 extern void init_macros (void);
4201 extern void syms_of_macros (void);
4202
4203 /* Defined in undo.c. */
4204 extern void truncate_undo_list (struct buffer *);
4205 extern void record_insert (ptrdiff_t, ptrdiff_t);
4206 extern void record_delete (ptrdiff_t, Lisp_Object, bool);
4207 extern void record_first_change (void);
4208 extern void record_change (ptrdiff_t, ptrdiff_t);
4209 extern void record_property_change (ptrdiff_t, ptrdiff_t,
4210 Lisp_Object, Lisp_Object,
4211 Lisp_Object);
4212 extern void syms_of_undo (void);
4213
4214 /* Defined in textprop.c. */
4215 extern void report_interval_modification (Lisp_Object, Lisp_Object);
4216
4217 /* Defined in menu.c. */
4218 extern void syms_of_menu (void);
4219
4220 /* Defined in xmenu.c. */
4221 extern void syms_of_xmenu (void);
4222
4223 /* Defined in termchar.h. */
4224 struct tty_display_info;
4225
4226 /* Defined in termhooks.h. */
4227 struct terminal;
4228
4229 /* Defined in sysdep.c. */
4230 #ifndef HAVE_GET_CURRENT_DIR_NAME
4231 extern char *get_current_dir_name (void);
4232 #endif
4233 extern void stuff_char (char c);
4234 extern void init_foreground_group (void);
4235 extern void sys_subshell (void);
4236 extern void sys_suspend (void);
4237 extern void discard_tty_input (void);
4238 extern void init_sys_modes (struct tty_display_info *);
4239 extern void reset_sys_modes (struct tty_display_info *);
4240 extern void init_all_sys_modes (void);
4241 extern void reset_all_sys_modes (void);
4242 extern void child_setup_tty (int);
4243 extern void setup_pty (int);
4244 extern int set_window_size (int, int, int);
4245 extern EMACS_INT get_random (void);
4246 extern void seed_random (void *, ptrdiff_t);
4247 extern void init_random (void);
4248 extern void emacs_backtrace (int);
4249 extern _Noreturn void emacs_abort (void) NO_INLINE;
4250 extern int emacs_open (const char *, int, int);
4251 extern int emacs_pipe (int[2]);
4252 extern int emacs_close (int);
4253 extern ptrdiff_t emacs_read (int, void *, ptrdiff_t);
4254 extern ptrdiff_t emacs_write (int, void const *, ptrdiff_t);
4255 extern ptrdiff_t emacs_write_sig (int, void const *, ptrdiff_t);
4256 extern void emacs_perror (char const *);
4257
4258 extern void unlock_all_files (void);
4259 extern void lock_file (Lisp_Object);
4260 extern void unlock_file (Lisp_Object);
4261 extern void unlock_buffer (struct buffer *);
4262 extern void syms_of_filelock (void);
4263 extern int str_collate (Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object);
4264
4265 /* Defined in sound.c. */
4266 extern void syms_of_sound (void);
4267
4268 /* Defined in category.c. */
4269 extern void init_category_once (void);
4270 extern Lisp_Object char_category_set (int);
4271 extern void syms_of_category (void);
4272
4273 /* Defined in ccl.c. */
4274 extern void syms_of_ccl (void);
4275
4276 /* Defined in dired.c. */
4277 extern void syms_of_dired (void);
4278 extern Lisp_Object directory_files_internal (Lisp_Object, Lisp_Object,
4279 Lisp_Object, Lisp_Object,
4280 bool, Lisp_Object);
4281
4282 /* Defined in term.c. */
4283 extern int *char_ins_del_vector;
4284 extern void syms_of_term (void);
4285 extern _Noreturn void fatal (const char *msgid, ...)
4286 ATTRIBUTE_FORMAT_PRINTF (1, 2);
4287
4288 /* Defined in terminal.c. */
4289 extern void syms_of_terminal (void);
4290
4291 /* Defined in font.c. */
4292 extern void syms_of_font (void);
4293 extern void init_font (void);
4294
4295 #ifdef HAVE_WINDOW_SYSTEM
4296 /* Defined in fontset.c. */
4297 extern void syms_of_fontset (void);
4298 #endif
4299
4300 /* Defined in gfilenotify.c */
4301 #ifdef HAVE_GFILENOTIFY
4302 extern void globals_of_gfilenotify (void);
4303 extern void syms_of_gfilenotify (void);
4304 #endif
4305
4306 /* Defined in inotify.c */
4307 #ifdef HAVE_INOTIFY
4308 extern void syms_of_inotify (void);
4309 #endif
4310
4311 #ifdef HAVE_W32NOTIFY
4312 /* Defined on w32notify.c. */
4313 extern void syms_of_w32notify (void);
4314 #endif
4315
4316 /* Defined in xfaces.c. */
4317 extern Lisp_Object Vface_alternative_font_family_alist;
4318 extern Lisp_Object Vface_alternative_font_registry_alist;
4319 extern void syms_of_xfaces (void);
4320
4321 #ifdef HAVE_X_WINDOWS
4322 /* Defined in xfns.c. */
4323 extern void syms_of_xfns (void);
4324
4325 /* Defined in xsmfns.c. */
4326 extern void syms_of_xsmfns (void);
4327
4328 /* Defined in xselect.c. */
4329 extern void syms_of_xselect (void);
4330
4331 /* Defined in xterm.c. */
4332 extern void init_xterm (void);
4333 extern void syms_of_xterm (void);
4334 #endif /* HAVE_X_WINDOWS */
4335
4336 #ifdef HAVE_WINDOW_SYSTEM
4337 /* Defined in xterm.c, nsterm.m, w32term.c. */
4338 extern char *x_get_keysym_name (int);
4339 #endif /* HAVE_WINDOW_SYSTEM */
4340
4341 #ifdef HAVE_LIBXML2
4342 /* Defined in xml.c. */
4343 extern void syms_of_xml (void);
4344 extern void xml_cleanup_parser (void);
4345 #endif
4346
4347 #ifdef HAVE_ZLIB
4348 /* Defined in decompress.c. */
4349 extern void syms_of_decompress (void);
4350 #endif
4351
4352 #ifdef HAVE_DBUS
4353 /* Defined in dbusbind.c. */
4354 void init_dbusbind (void);
4355 void syms_of_dbusbind (void);
4356 #endif
4357
4358
4359 /* Defined in profiler.c. */
4360 extern bool profiler_memory_running;
4361 extern void malloc_probe (size_t);
4362 extern void syms_of_profiler (void);
4363
4364
4365 #ifdef DOS_NT
4366 /* Defined in msdos.c, w32.c. */
4367 extern char *emacs_root_dir (void);
4368 #endif /* DOS_NT */
4369
4370 /* Defined in lastfile.c. */
4371 extern char my_edata[];
4372 extern char my_endbss[];
4373 extern char *my_endbss_static;
4374
4375 /* True means ^G can quit instantly. */
4376 extern bool immediate_quit;
4377
4378 extern void *xmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4379 extern void *xzalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
4380 extern void *xrealloc (void *, size_t) ATTRIBUTE_ALLOC_SIZE ((2));
4381 extern void xfree (void *);
4382 extern void *xnmalloc (ptrdiff_t, ptrdiff_t) ATTRIBUTE_MALLOC_SIZE ((1,2));
4383 extern void *xnrealloc (void *, ptrdiff_t, ptrdiff_t)
4384 ATTRIBUTE_ALLOC_SIZE ((2,3));
4385 extern void *xpalloc (void *, ptrdiff_t *, ptrdiff_t, ptrdiff_t, ptrdiff_t);
4386
4387 extern char *xstrdup (const char *) ATTRIBUTE_MALLOC;
4388 extern char *xlispstrdup (Lisp_Object) ATTRIBUTE_MALLOC;
4389 extern void dupstring (char **, char const *);
4390
4391 /* Make DEST a copy of STRING's data. Return a pointer to DEST's terminating
4392 null byte. This is like stpcpy, except the source is a Lisp string. */
4393
4394 INLINE char *
4395 lispstpcpy (char *dest, Lisp_Object string)
4396 {
4397 ptrdiff_t len = SBYTES (string);
4398 memcpy (dest, SDATA (string), len + 1);
4399 return dest + len;
4400 }
4401
4402 extern void xputenv (const char *);
4403
4404 extern char *egetenv_internal (const char *, ptrdiff_t);
4405
4406 INLINE char *
4407 egetenv (const char *var)
4408 {
4409 /* When VAR is a string literal, strlen can be optimized away. */
4410 return egetenv_internal (var, strlen (var));
4411 }
4412
4413 /* Set up the name of the machine we're running on. */
4414 extern void init_system_name (void);
4415
4416 /* Return the absolute value of X. X should be a signed integer
4417 expression without side effects, and X's absolute value should not
4418 exceed the maximum for its promoted type. This is called 'eabs'
4419 because 'abs' is reserved by the C standard. */
4420 #define eabs(x) ((x) < 0 ? -(x) : (x))
4421
4422 /* Return a fixnum or float, depending on whether VAL fits in a Lisp
4423 fixnum. */
4424
4425 #define make_fixnum_or_float(val) \
4426 (FIXNUM_OVERFLOW_P (val) ? make_float (val) : make_number (val))
4427
4428 /* SAFE_ALLOCA normally allocates memory on the stack, but if size is
4429 larger than MAX_ALLOCA, use xmalloc to avoid overflowing the stack. */
4430
4431 enum MAX_ALLOCA { MAX_ALLOCA = 16 * 1024 };
4432
4433 extern void *record_xmalloc (size_t) ATTRIBUTE_ALLOC_SIZE ((1));
4434
4435 #define USE_SAFE_ALLOCA \
4436 ptrdiff_t sa_avail = MAX_ALLOCA; \
4437 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
4438
4439 #define AVAIL_ALLOCA(size) (sa_avail -= (size), alloca (size))
4440
4441 /* SAFE_ALLOCA allocates a simple buffer. */
4442
4443 #define SAFE_ALLOCA(size) ((size) <= sa_avail \
4444 ? AVAIL_ALLOCA (size) \
4445 : (sa_must_free = true, record_xmalloc (size)))
4446
4447 /* SAFE_NALLOCA sets BUF to a newly allocated array of MULTIPLIER *
4448 NITEMS items, each of the same type as *BUF. MULTIPLIER must
4449 positive. The code is tuned for MULTIPLIER being a constant. */
4450
4451 #define SAFE_NALLOCA(buf, multiplier, nitems) \
4452 do { \
4453 if ((nitems) <= sa_avail / sizeof *(buf) / (multiplier)) \
4454 (buf) = AVAIL_ALLOCA (sizeof *(buf) * (multiplier) * (nitems)); \
4455 else \
4456 { \
4457 (buf) = xnmalloc (nitems, sizeof *(buf) * (multiplier)); \
4458 sa_must_free = true; \
4459 record_unwind_protect_ptr (xfree, buf); \
4460 } \
4461 } while (false)
4462
4463 /* SAFE_ALLOCA_STRING allocates a C copy of a Lisp string. */
4464
4465 #define SAFE_ALLOCA_STRING(ptr, string) \
4466 do { \
4467 (ptr) = SAFE_ALLOCA (SBYTES (string) + 1); \
4468 memcpy (ptr, SDATA (string), SBYTES (string) + 1); \
4469 } while (false)
4470
4471 /* SAFE_FREE frees xmalloced memory and enables GC as needed. */
4472
4473 #define SAFE_FREE() \
4474 do { \
4475 if (sa_must_free) { \
4476 sa_must_free = false; \
4477 unbind_to (sa_count, Qnil); \
4478 } \
4479 } while (false)
4480
4481 /* SAFE_ALLOCA_LISP allocates an array of Lisp_Objects. */
4482
4483 #define SAFE_ALLOCA_LISP(buf, nelt) \
4484 do { \
4485 ptrdiff_t alloca_nbytes; \
4486 if (INT_MULTIPLY_WRAPV (nelt, word_size, &alloca_nbytes) \
4487 || SIZE_MAX < alloca_nbytes) \
4488 memory_full (SIZE_MAX); \
4489 else if (alloca_nbytes <= sa_avail) \
4490 (buf) = AVAIL_ALLOCA (alloca_nbytes); \
4491 else \
4492 { \
4493 Lisp_Object arg_; \
4494 (buf) = xmalloc (alloca_nbytes); \
4495 arg_ = make_save_memory (buf, nelt); \
4496 sa_must_free = true; \
4497 record_unwind_protect (free_save_value, arg_); \
4498 } \
4499 } while (false)
4500
4501
4502 /* If USE_STACK_LISP_OBJECTS, define macros that and functions that allocate
4503 block-scoped conses and strings. These objects are not
4504 managed by the garbage collector, so they are dangerous: passing them
4505 out of their scope (e.g., to user code) results in undefined behavior.
4506 Conversely, they have better performance because GC is not involved.
4507
4508 This feature is experimental and requires careful debugging.
4509 Build with CPPFLAGS='-DUSE_STACK_LISP_OBJECTS=0' to disable it. */
4510
4511 #ifndef USE_STACK_LISP_OBJECTS
4512 # define USE_STACK_LISP_OBJECTS true
4513 #endif
4514
4515 #ifdef GC_CHECK_STRING_BYTES
4516 enum { defined_GC_CHECK_STRING_BYTES = true };
4517 #else
4518 enum { defined_GC_CHECK_STRING_BYTES = false };
4519 #endif
4520
4521 /* Struct inside unions that are typically no larger and aligned enough. */
4522
4523 union Aligned_Cons
4524 {
4525 struct Lisp_Cons s;
4526 double d; intmax_t i; void *p;
4527 };
4528
4529 union Aligned_String
4530 {
4531 struct Lisp_String s;
4532 double d; intmax_t i; void *p;
4533 };
4534
4535 /* True for stack-based cons and string implementations, respectively.
4536 Use stack-based strings only if stack-based cons also works.
4537 Otherwise, STACK_CONS would create heap-based cons cells that
4538 could point to stack-based strings, which is a no-no. */
4539
4540 enum
4541 {
4542 USE_STACK_CONS = (USE_STACK_LISP_OBJECTS
4543 && alignof (union Aligned_Cons) % GCALIGNMENT == 0),
4544 USE_STACK_STRING = (USE_STACK_CONS
4545 && !defined_GC_CHECK_STRING_BYTES
4546 && alignof (union Aligned_String) % GCALIGNMENT == 0)
4547 };
4548
4549 /* Auxiliary macros used for auto allocation of Lisp objects. Please
4550 use these only in macros like AUTO_CONS that declare a local
4551 variable whose lifetime will be clear to the programmer. */
4552 #define STACK_CONS(a, b) \
4553 make_lisp_ptr (&(union Aligned_Cons) { { a, { b } } }.s, Lisp_Cons)
4554 #define AUTO_CONS_EXPR(a, b) \
4555 (USE_STACK_CONS ? STACK_CONS (a, b) : Fcons (a, b))
4556
4557 /* Declare NAME as an auto Lisp cons or short list if possible, a
4558 GC-based one otherwise. This is in the sense of the C keyword
4559 'auto'; i.e., the object has the lifetime of the containing block.
4560 The resulting object should not be made visible to user Lisp code. */
4561
4562 #define AUTO_CONS(name, a, b) Lisp_Object name = AUTO_CONS_EXPR (a, b)
4563 #define AUTO_LIST1(name, a) \
4564 Lisp_Object name = (USE_STACK_CONS ? STACK_CONS (a, Qnil) : list1 (a))
4565 #define AUTO_LIST2(name, a, b) \
4566 Lisp_Object name = (USE_STACK_CONS \
4567 ? STACK_CONS (a, STACK_CONS (b, Qnil)) \
4568 : list2 (a, b))
4569 #define AUTO_LIST3(name, a, b, c) \
4570 Lisp_Object name = (USE_STACK_CONS \
4571 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, Qnil))) \
4572 : list3 (a, b, c))
4573 #define AUTO_LIST4(name, a, b, c, d) \
4574 Lisp_Object name \
4575 = (USE_STACK_CONS \
4576 ? STACK_CONS (a, STACK_CONS (b, STACK_CONS (c, \
4577 STACK_CONS (d, Qnil)))) \
4578 : list4 (a, b, c, d))
4579
4580 /* Check whether stack-allocated strings are ASCII-only. */
4581
4582 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
4583 extern const char *verify_ascii (const char *);
4584 #else
4585 # define verify_ascii(str) (str)
4586 #endif
4587
4588 /* Declare NAME as an auto Lisp string if possible, a GC-based one if not.
4589 Take its value from STR. STR is not necessarily copied and should
4590 contain only ASCII characters. The resulting Lisp string should
4591 not be modified or made visible to user code. */
4592
4593 #define AUTO_STRING(name, str) \
4594 Lisp_Object name = \
4595 (USE_STACK_STRING \
4596 ? (make_lisp_ptr \
4597 ((&(union Aligned_String) \
4598 {{strlen (str), -1, 0, (unsigned char *) verify_ascii (str)}}.s), \
4599 Lisp_String)) \
4600 : build_string (verify_ascii (str)))
4601
4602 /* Loop over all tails of a list, checking for cycles.
4603 FIXME: Make tortoise and n internal declarations.
4604 FIXME: Unroll the loop body so we don't need `n'. */
4605 #define FOR_EACH_TAIL(hare, list, tortoise, n) \
4606 for ((tortoise) = (hare) = (list), (n) = true; \
4607 CONSP (hare); \
4608 (hare = XCDR (hare), (n) = !(n), \
4609 ((n) \
4610 ? (EQ (hare, tortoise) \
4611 ? xsignal1 (Qcircular_list, list) \
4612 : (void) 0) \
4613 /* Move tortoise before the next iteration, in case */ \
4614 /* the next iteration does an Fsetcdr. */ \
4615 : (void) ((tortoise) = XCDR (tortoise)))))
4616
4617 /* Do a `for' loop over alist values. */
4618
4619 #define FOR_EACH_ALIST_VALUE(head_var, list_var, value_var) \
4620 for ((list_var) = (head_var); \
4621 (CONSP (list_var) && ((value_var) = XCDR (XCAR (list_var)), true)); \
4622 (list_var) = XCDR (list_var))
4623
4624 /* Check whether it's time for GC, and run it if so. */
4625
4626 INLINE void
4627 maybe_gc (void)
4628 {
4629 if ((consing_since_gc > gc_cons_threshold
4630 && consing_since_gc > gc_relative_threshold)
4631 || (!NILP (Vmemory_full)
4632 && consing_since_gc > memory_full_cons_threshold))
4633 Fgarbage_collect ();
4634 }
4635
4636 INLINE bool
4637 functionp (Lisp_Object object)
4638 {
4639 if (SYMBOLP (object) && !NILP (Ffboundp (object)))
4640 {
4641 object = Findirect_function (object, Qt);
4642
4643 if (CONSP (object) && EQ (XCAR (object), Qautoload))
4644 {
4645 /* Autoloaded symbols are functions, except if they load
4646 macros or keymaps. */
4647 int i;
4648 for (i = 0; i < 4 && CONSP (object); i++)
4649 object = XCDR (object);
4650
4651 return ! (CONSP (object) && !NILP (XCAR (object)));
4652 }
4653 }
4654
4655 if (SUBRP (object))
4656 return XSUBR (object)->max_args != UNEVALLED;
4657 else if (COMPILEDP (object))
4658 return true;
4659 else if (CONSP (object))
4660 {
4661 Lisp_Object car = XCAR (object);
4662 return EQ (car, Qlambda) || EQ (car, Qclosure);
4663 }
4664 else
4665 return false;
4666 }
4667
4668 INLINE_HEADER_END
4669
4670 #endif /* EMACS_LISP_H */