]> code.delx.au - gnu-emacs/blob - src/alloc.c
Make add_to_log varargs
[gnu-emacs] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
55
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
59
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
64 #endif
65
66 #if USE_VALGRIND
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p;
70 #endif
71
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
74 #if ! GC_MARK_STACK
75 # undef GC_CHECK_MARKED_OBJECTS
76 #endif
77
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
81
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
86
87 #include <unistd.h>
88 #include <fcntl.h>
89
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
97
98 #ifdef DOUG_LEA_MALLOC
99
100 #include <malloc.h>
101
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
104
105 #define MMAP_MAX_AREAS 100000000
106
107 #endif /* not DOUG_LEA_MALLOC */
108
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
111
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
115
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
119
120 /* Default value of gc_cons_threshold (see below). */
121
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
123
124 /* Global variables. */
125 struct emacs_globals globals;
126
127 /* Number of bytes of consing done since the last gc. */
128
129 EMACS_INT consing_since_gc;
130
131 /* Similar minimum, computed from Vgc_cons_percentage. */
132
133 EMACS_INT gc_relative_threshold;
134
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
137
138 EMACS_INT memory_full_cons_threshold;
139
140 /* True during GC. */
141
142 bool gc_in_progress;
143
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
147
148 bool abort_on_gc;
149
150 /* Number of live and free conses etc. */
151
152 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
153 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
154 static EMACS_INT total_free_floats, total_floats;
155
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
159
160 static char *spare_memory[7];
161
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
164
165 #define SPARE_MEMORY (1 << 14)
166
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
172
173 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
174 #define PUREBEG (char *) pure
175
176 /* Pointer to the pure area, and its size. */
177
178 static char *purebeg;
179 static ptrdiff_t pure_size;
180
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
183
184 static ptrdiff_t pure_bytes_used_before_overflow;
185
186 /* True if P points into pure space. */
187
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
190
191 /* Index in pure at which next pure Lisp object will be allocated.. */
192
193 static ptrdiff_t pure_bytes_used_lisp;
194
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
196
197 static ptrdiff_t pure_bytes_used_non_lisp;
198
199 /* If nonzero, this is a warning delivered by malloc and not yet
200 displayed. */
201
202 const char *pending_malloc_warning;
203
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
207 #endif
208 #endif
209
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
213
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
216 {
217 void *suspicious_object;
218 void *backtrace[128];
219 };
220 static void *suspicious_objects[32];
221 static int suspicious_object_index;
222 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
223 static int suspicious_free_history_index;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin, void *end);
227 static void detect_suspicious_free (void *ptr);
228 #else
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
231 #endif
232
233 /* Maximum amount of C stack to save when a GC happens. */
234
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
238
239 /* Buffer in which we save a copy of the C stack at each GC. */
240
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy;
243 static ptrdiff_t stack_copy_size;
244
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
247
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest, void const *src, size_t size)
250 {
251 if (! ADDRESS_SANITIZER)
252 return memcpy (dest, src, size);
253 else
254 {
255 size_t i;
256 char *d = dest;
257 char const *s = src;
258 for (i = 0; i < size; i++)
259 d[i] = s[i];
260 return dest;
261 }
262 }
263
264 #endif /* MAX_SAVE_STACK > 0 */
265
266 static void mark_terminals (void);
267 static void gc_sweep (void);
268 static Lisp_Object make_pure_vector (ptrdiff_t);
269 static void mark_buffer (struct buffer *);
270
271 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
272 static void refill_memory_reserve (void);
273 #endif
274 static void compact_small_strings (void);
275 static void free_large_strings (void);
276 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
277
278 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
279 what memory allocated via lisp_malloc and lisp_align_malloc is intended
280 for what purpose. This enumeration specifies the type of memory. */
281
282 enum mem_type
283 {
284 MEM_TYPE_NON_LISP,
285 MEM_TYPE_BUFFER,
286 MEM_TYPE_CONS,
287 MEM_TYPE_STRING,
288 MEM_TYPE_MISC,
289 MEM_TYPE_SYMBOL,
290 MEM_TYPE_FLOAT,
291 /* Since all non-bool pseudovectors are small enough to be
292 allocated from vector blocks, this memory type denotes
293 large regular vectors and large bool pseudovectors. */
294 MEM_TYPE_VECTORLIKE,
295 /* Special type to denote vector blocks. */
296 MEM_TYPE_VECTOR_BLOCK,
297 /* Special type to denote reserved memory. */
298 MEM_TYPE_SPARE
299 };
300
301 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
302
303 /* A unique object in pure space used to make some Lisp objects
304 on free lists recognizable in O(1). */
305
306 static Lisp_Object Vdead;
307 #define DEADP(x) EQ (x, Vdead)
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312
313 #endif /* GC_MALLOC_CHECK */
314
315 /* A node in the red-black tree describing allocated memory containing
316 Lisp data. Each such block is recorded with its start and end
317 address when it is allocated, and removed from the tree when it
318 is freed.
319
320 A red-black tree is a balanced binary tree with the following
321 properties:
322
323 1. Every node is either red or black.
324 2. Every leaf is black.
325 3. If a node is red, then both of its children are black.
326 4. Every simple path from a node to a descendant leaf contains
327 the same number of black nodes.
328 5. The root is always black.
329
330 When nodes are inserted into the tree, or deleted from the tree,
331 the tree is "fixed" so that these properties are always true.
332
333 A red-black tree with N internal nodes has height at most 2
334 log(N+1). Searches, insertions and deletions are done in O(log N).
335 Please see a text book about data structures for a detailed
336 description of red-black trees. Any book worth its salt should
337 describe them. */
338
339 struct mem_node
340 {
341 /* Children of this node. These pointers are never NULL. When there
342 is no child, the value is MEM_NIL, which points to a dummy node. */
343 struct mem_node *left, *right;
344
345 /* The parent of this node. In the root node, this is NULL. */
346 struct mem_node *parent;
347
348 /* Start and end of allocated region. */
349 void *start, *end;
350
351 /* Node color. */
352 enum {MEM_BLACK, MEM_RED} color;
353
354 /* Memory type. */
355 enum mem_type type;
356 };
357
358 /* Base address of stack. Set in main. */
359
360 Lisp_Object *stack_base;
361
362 /* Root of the tree describing allocated Lisp memory. */
363
364 static struct mem_node *mem_root;
365
366 /* Lowest and highest known address in the heap. */
367
368 static void *min_heap_address, *max_heap_address;
369
370 /* Sentinel node of the tree. */
371
372 static struct mem_node mem_z;
373 #define MEM_NIL &mem_z
374
375 static struct mem_node *mem_insert (void *, void *, enum mem_type);
376 static void mem_insert_fixup (struct mem_node *);
377 static void mem_rotate_left (struct mem_node *);
378 static void mem_rotate_right (struct mem_node *);
379 static void mem_delete (struct mem_node *);
380 static void mem_delete_fixup (struct mem_node *);
381 static struct mem_node *mem_find (void *);
382
383 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
384
385 #ifndef DEADP
386 # define DEADP(x) 0
387 #endif
388
389 /* Recording what needs to be marked for gc. */
390
391 struct gcpro *gcprolist;
392
393 /* Addresses of staticpro'd variables. Initialize it to a nonzero
394 value; otherwise some compilers put it into BSS. */
395
396 enum { NSTATICS = 2048 };
397 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
398
399 /* Index of next unused slot in staticvec. */
400
401 static int staticidx;
402
403 static void *pure_alloc (size_t, int);
404
405 /* Return X rounded to the next multiple of Y. Arguments should not
406 have side effects, as they are evaluated more than once. Assume X
407 + Y - 1 does not overflow. Tune for Y being a power of 2. */
408
409 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
410 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
411 : ((x) + (y) - 1) & ~ ((y) - 1))
412
413 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
414
415 static void *
416 ALIGN (void *ptr, int alignment)
417 {
418 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
419 }
420
421 static void
422 XFLOAT_INIT (Lisp_Object f, double n)
423 {
424 XFLOAT (f)->u.data = n;
425 }
426
427 static bool
428 pointers_fit_in_lispobj_p (void)
429 {
430 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
431 }
432
433 static bool
434 mmap_lisp_allowed_p (void)
435 {
436 /* If we can't store all memory addresses in our lisp objects, it's
437 risky to let the heap use mmap and give us addresses from all
438 over our address space. We also can't use mmap for lisp objects
439 if we might dump: unexec doesn't preserve the contents of mmapped
440 regions. */
441 return pointers_fit_in_lispobj_p () && !might_dump;
442 }
443
444 /* Head of a circularly-linked list of extant finalizers. */
445 static struct Lisp_Finalizer finalizers;
446
447 /* Head of a circularly-linked list of finalizers that must be invoked
448 because we deemed them unreachable. This list must be global, and
449 not a local inside garbage_collect_1, in case we GC again while
450 running finalizers. */
451 static struct Lisp_Finalizer doomed_finalizers;
452
453 \f
454 /************************************************************************
455 Malloc
456 ************************************************************************/
457
458 /* Function malloc calls this if it finds we are near exhausting storage. */
459
460 void
461 malloc_warning (const char *str)
462 {
463 pending_malloc_warning = str;
464 }
465
466
467 /* Display an already-pending malloc warning. */
468
469 void
470 display_malloc_warning (void)
471 {
472 call3 (intern ("display-warning"),
473 intern ("alloc"),
474 build_string (pending_malloc_warning),
475 intern ("emergency"));
476 pending_malloc_warning = 0;
477 }
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (ptrdiff_t nbytes)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full (nbytes);
493 #else
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 #endif
498 }
499
500 /* A common multiple of the positive integers A and B. Ideally this
501 would be the least common multiple, but there's no way to do that
502 as a constant expression in C, so do the best that we can easily do. */
503 #define COMMON_MULTIPLE(a, b) \
504 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
505
506 #ifndef XMALLOC_OVERRUN_CHECK
507 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
508 #else
509
510 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
511 around each block.
512
513 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
514 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
515 block size in little-endian order. The trailer consists of
516 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
517
518 The header is used to detect whether this block has been allocated
519 through these functions, as some low-level libc functions may
520 bypass the malloc hooks. */
521
522 #define XMALLOC_OVERRUN_CHECK_SIZE 16
523 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
524 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
525
526 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
527 hold a size_t value and (2) the header size is a multiple of the
528 alignment that Emacs needs for C types and for USE_LSB_TAG. */
529 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
530
531 #define XMALLOC_HEADER_ALIGNMENT \
532 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
533 #define XMALLOC_OVERRUN_SIZE_SIZE \
534 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
535 + XMALLOC_HEADER_ALIGNMENT - 1) \
536 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
537 - XMALLOC_OVERRUN_CHECK_SIZE)
538
539 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
540 { '\x9a', '\x9b', '\xae', '\xaf',
541 '\xbf', '\xbe', '\xce', '\xcf',
542 '\xea', '\xeb', '\xec', '\xed',
543 '\xdf', '\xde', '\x9c', '\x9d' };
544
545 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
546 { '\xaa', '\xab', '\xac', '\xad',
547 '\xba', '\xbb', '\xbc', '\xbd',
548 '\xca', '\xcb', '\xcc', '\xcd',
549 '\xda', '\xdb', '\xdc', '\xdd' };
550
551 /* Insert and extract the block size in the header. */
552
553 static void
554 xmalloc_put_size (unsigned char *ptr, size_t size)
555 {
556 int i;
557 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
558 {
559 *--ptr = size & ((1 << CHAR_BIT) - 1);
560 size >>= CHAR_BIT;
561 }
562 }
563
564 static size_t
565 xmalloc_get_size (unsigned char *ptr)
566 {
567 size_t size = 0;
568 int i;
569 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
570 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
571 {
572 size <<= CHAR_BIT;
573 size += *ptr++;
574 }
575 return size;
576 }
577
578
579 /* Like malloc, but wraps allocated block with header and trailer. */
580
581 static void *
582 overrun_check_malloc (size_t size)
583 {
584 register unsigned char *val;
585 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
586 emacs_abort ();
587
588 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
589 if (val)
590 {
591 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
592 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
593 xmalloc_put_size (val, size);
594 memcpy (val + size, xmalloc_overrun_check_trailer,
595 XMALLOC_OVERRUN_CHECK_SIZE);
596 }
597 return val;
598 }
599
600
601 /* Like realloc, but checks old block for overrun, and wraps new block
602 with header and trailer. */
603
604 static void *
605 overrun_check_realloc (void *block, size_t size)
606 {
607 register unsigned char *val = (unsigned char *) block;
608 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
609 emacs_abort ();
610
611 if (val
612 && memcmp (xmalloc_overrun_check_header,
613 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
614 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
615 {
616 size_t osize = xmalloc_get_size (val);
617 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
618 XMALLOC_OVERRUN_CHECK_SIZE))
619 emacs_abort ();
620 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
621 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
622 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
623 }
624
625 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
626
627 if (val)
628 {
629 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
630 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
631 xmalloc_put_size (val, size);
632 memcpy (val + size, xmalloc_overrun_check_trailer,
633 XMALLOC_OVERRUN_CHECK_SIZE);
634 }
635 return val;
636 }
637
638 /* Like free, but checks block for overrun. */
639
640 static void
641 overrun_check_free (void *block)
642 {
643 unsigned char *val = (unsigned char *) block;
644
645 if (val
646 && memcmp (xmalloc_overrun_check_header,
647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
649 {
650 size_t osize = xmalloc_get_size (val);
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
653 emacs_abort ();
654 #ifdef XMALLOC_CLEAR_FREE_MEMORY
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
657 #else
658 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
659 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
660 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
661 #endif
662 }
663
664 free (val);
665 }
666
667 #undef malloc
668 #undef realloc
669 #undef free
670 #define malloc overrun_check_malloc
671 #define realloc overrun_check_realloc
672 #define free overrun_check_free
673 #endif
674
675 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
676 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
677 If that variable is set, block input while in one of Emacs's memory
678 allocation functions. There should be no need for this debugging
679 option, since signal handlers do not allocate memory, but Emacs
680 formerly allocated memory in signal handlers and this compile-time
681 option remains as a way to help debug the issue should it rear its
682 ugly head again. */
683 #ifdef XMALLOC_BLOCK_INPUT_CHECK
684 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
685 static void
686 malloc_block_input (void)
687 {
688 if (block_input_in_memory_allocators)
689 block_input ();
690 }
691 static void
692 malloc_unblock_input (void)
693 {
694 if (block_input_in_memory_allocators)
695 unblock_input ();
696 }
697 # define MALLOC_BLOCK_INPUT malloc_block_input ()
698 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
699 #else
700 # define MALLOC_BLOCK_INPUT ((void) 0)
701 # define MALLOC_UNBLOCK_INPUT ((void) 0)
702 #endif
703
704 #define MALLOC_PROBE(size) \
705 do { \
706 if (profiler_memory_running) \
707 malloc_probe (size); \
708 } while (0)
709
710
711 /* Like malloc but check for no memory and block interrupt input.. */
712
713 void *
714 xmalloc (size_t size)
715 {
716 void *val;
717
718 MALLOC_BLOCK_INPUT;
719 val = malloc (size);
720 MALLOC_UNBLOCK_INPUT;
721
722 if (!val && size)
723 memory_full (size);
724 MALLOC_PROBE (size);
725 return val;
726 }
727
728 /* Like the above, but zeroes out the memory just allocated. */
729
730 void *
731 xzalloc (size_t size)
732 {
733 void *val;
734
735 MALLOC_BLOCK_INPUT;
736 val = malloc (size);
737 MALLOC_UNBLOCK_INPUT;
738
739 if (!val && size)
740 memory_full (size);
741 memset (val, 0, size);
742 MALLOC_PROBE (size);
743 return val;
744 }
745
746 /* Like realloc but check for no memory and block interrupt input.. */
747
748 void *
749 xrealloc (void *block, size_t size)
750 {
751 void *val;
752
753 MALLOC_BLOCK_INPUT;
754 /* We must call malloc explicitly when BLOCK is 0, since some
755 reallocs don't do this. */
756 if (! block)
757 val = malloc (size);
758 else
759 val = realloc (block, size);
760 MALLOC_UNBLOCK_INPUT;
761
762 if (!val && size)
763 memory_full (size);
764 MALLOC_PROBE (size);
765 return val;
766 }
767
768
769 /* Like free but block interrupt input. */
770
771 void
772 xfree (void *block)
773 {
774 if (!block)
775 return;
776 MALLOC_BLOCK_INPUT;
777 free (block);
778 MALLOC_UNBLOCK_INPUT;
779 /* We don't call refill_memory_reserve here
780 because in practice the call in r_alloc_free seems to suffice. */
781 }
782
783
784 /* Other parts of Emacs pass large int values to allocator functions
785 expecting ptrdiff_t. This is portable in practice, but check it to
786 be safe. */
787 verify (INT_MAX <= PTRDIFF_MAX);
788
789
790 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
791 Signal an error on memory exhaustion, and block interrupt input. */
792
793 void *
794 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
795 {
796 eassert (0 <= nitems && 0 < item_size);
797 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
798 memory_full (SIZE_MAX);
799 return xmalloc (nitems * item_size);
800 }
801
802
803 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
804 Signal an error on memory exhaustion, and block interrupt input. */
805
806 void *
807 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
808 {
809 eassert (0 <= nitems && 0 < item_size);
810 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
811 memory_full (SIZE_MAX);
812 return xrealloc (pa, nitems * item_size);
813 }
814
815
816 /* Grow PA, which points to an array of *NITEMS items, and return the
817 location of the reallocated array, updating *NITEMS to reflect its
818 new size. The new array will contain at least NITEMS_INCR_MIN more
819 items, but will not contain more than NITEMS_MAX items total.
820 ITEM_SIZE is the size of each item, in bytes.
821
822 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
823 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
824 infinity.
825
826 If PA is null, then allocate a new array instead of reallocating
827 the old one.
828
829 Block interrupt input as needed. If memory exhaustion occurs, set
830 *NITEMS to zero if PA is null, and signal an error (i.e., do not
831 return).
832
833 Thus, to grow an array A without saving its old contents, do
834 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
835 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
836 and signals an error, and later this code is reexecuted and
837 attempts to free A. */
838
839 void *
840 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
841 ptrdiff_t nitems_max, ptrdiff_t item_size)
842 {
843 /* The approximate size to use for initial small allocation
844 requests. This is the largest "small" request for the GNU C
845 library malloc. */
846 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
847
848 /* If the array is tiny, grow it to about (but no greater than)
849 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
850 ptrdiff_t n = *nitems;
851 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
852 ptrdiff_t half_again = n >> 1;
853 ptrdiff_t incr_estimate = max (tiny_max, half_again);
854
855 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
856 NITEMS_MAX, and what the C language can represent safely. */
857 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
858 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
859 ? nitems_max : C_language_max);
860 ptrdiff_t nitems_incr_max = n_max - n;
861 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
862
863 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
864 if (! pa)
865 *nitems = 0;
866 if (nitems_incr_max < incr)
867 memory_full (SIZE_MAX);
868 n += incr;
869 pa = xrealloc (pa, n * item_size);
870 *nitems = n;
871 return pa;
872 }
873
874
875 /* Like strdup, but uses xmalloc. */
876
877 char *
878 xstrdup (const char *s)
879 {
880 ptrdiff_t size;
881 eassert (s);
882 size = strlen (s) + 1;
883 return memcpy (xmalloc (size), s, size);
884 }
885
886 /* Like above, but duplicates Lisp string to C string. */
887
888 char *
889 xlispstrdup (Lisp_Object string)
890 {
891 ptrdiff_t size = SBYTES (string) + 1;
892 return memcpy (xmalloc (size), SSDATA (string), size);
893 }
894
895 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
896 pointed to. If STRING is null, assign it without copying anything.
897 Allocate before freeing, to avoid a dangling pointer if allocation
898 fails. */
899
900 void
901 dupstring (char **ptr, char const *string)
902 {
903 char *old = *ptr;
904 *ptr = string ? xstrdup (string) : 0;
905 xfree (old);
906 }
907
908
909 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
910 argument is a const pointer. */
911
912 void
913 xputenv (char const *string)
914 {
915 if (putenv ((char *) string) != 0)
916 memory_full (0);
917 }
918
919 /* Return a newly allocated memory block of SIZE bytes, remembering
920 to free it when unwinding. */
921 void *
922 record_xmalloc (size_t size)
923 {
924 void *p = xmalloc (size);
925 record_unwind_protect_ptr (xfree, p);
926 return p;
927 }
928
929
930 /* Like malloc but used for allocating Lisp data. NBYTES is the
931 number of bytes to allocate, TYPE describes the intended use of the
932 allocated memory block (for strings, for conses, ...). */
933
934 #if ! USE_LSB_TAG
935 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
936 #endif
937
938 static void *
939 lisp_malloc (size_t nbytes, enum mem_type type)
940 {
941 register void *val;
942
943 MALLOC_BLOCK_INPUT;
944
945 #ifdef GC_MALLOC_CHECK
946 allocated_mem_type = type;
947 #endif
948
949 val = malloc (nbytes);
950
951 #if ! USE_LSB_TAG
952 /* If the memory just allocated cannot be addressed thru a Lisp
953 object's pointer, and it needs to be,
954 that's equivalent to running out of memory. */
955 if (val && type != MEM_TYPE_NON_LISP)
956 {
957 Lisp_Object tem;
958 XSETCONS (tem, (char *) val + nbytes - 1);
959 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
960 {
961 lisp_malloc_loser = val;
962 free (val);
963 val = 0;
964 }
965 }
966 #endif
967
968 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
969 if (val && type != MEM_TYPE_NON_LISP)
970 mem_insert (val, (char *) val + nbytes, type);
971 #endif
972
973 MALLOC_UNBLOCK_INPUT;
974 if (!val && nbytes)
975 memory_full (nbytes);
976 MALLOC_PROBE (nbytes);
977 return val;
978 }
979
980 /* Free BLOCK. This must be called to free memory allocated with a
981 call to lisp_malloc. */
982
983 static void
984 lisp_free (void *block)
985 {
986 MALLOC_BLOCK_INPUT;
987 free (block);
988 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
989 mem_delete (mem_find (block));
990 #endif
991 MALLOC_UNBLOCK_INPUT;
992 }
993
994 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
995
996 /* The entry point is lisp_align_malloc which returns blocks of at most
997 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
998
999 /* Use aligned_alloc if it or a simple substitute is available.
1000 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1001 clang 3.3 anyway. */
1002
1003 #if ! ADDRESS_SANITIZER
1004 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1005 # define USE_ALIGNED_ALLOC 1
1006 /* Defined in gmalloc.c. */
1007 void *aligned_alloc (size_t, size_t);
1008 # elif defined HYBRID_MALLOC
1009 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1010 # define USE_ALIGNED_ALLOC 1
1011 # define aligned_alloc hybrid_aligned_alloc
1012 /* Defined in gmalloc.c. */
1013 void *aligned_alloc (size_t, size_t);
1014 # endif
1015 # elif defined HAVE_ALIGNED_ALLOC
1016 # define USE_ALIGNED_ALLOC 1
1017 # elif defined HAVE_POSIX_MEMALIGN
1018 # define USE_ALIGNED_ALLOC 1
1019 static void *
1020 aligned_alloc (size_t alignment, size_t size)
1021 {
1022 void *p;
1023 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1024 }
1025 # endif
1026 #endif
1027
1028 /* BLOCK_ALIGN has to be a power of 2. */
1029 #define BLOCK_ALIGN (1 << 10)
1030
1031 /* Padding to leave at the end of a malloc'd block. This is to give
1032 malloc a chance to minimize the amount of memory wasted to alignment.
1033 It should be tuned to the particular malloc library used.
1034 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1035 aligned_alloc on the other hand would ideally prefer a value of 4
1036 because otherwise, there's 1020 bytes wasted between each ablocks.
1037 In Emacs, testing shows that those 1020 can most of the time be
1038 efficiently used by malloc to place other objects, so a value of 0 can
1039 still preferable unless you have a lot of aligned blocks and virtually
1040 nothing else. */
1041 #define BLOCK_PADDING 0
1042 #define BLOCK_BYTES \
1043 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1044
1045 /* Internal data structures and constants. */
1046
1047 #define ABLOCKS_SIZE 16
1048
1049 /* An aligned block of memory. */
1050 struct ablock
1051 {
1052 union
1053 {
1054 char payload[BLOCK_BYTES];
1055 struct ablock *next_free;
1056 } x;
1057 /* `abase' is the aligned base of the ablocks. */
1058 /* It is overloaded to hold the virtual `busy' field that counts
1059 the number of used ablock in the parent ablocks.
1060 The first ablock has the `busy' field, the others have the `abase'
1061 field. To tell the difference, we assume that pointers will have
1062 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1063 is used to tell whether the real base of the parent ablocks is `abase'
1064 (if not, the word before the first ablock holds a pointer to the
1065 real base). */
1066 struct ablocks *abase;
1067 /* The padding of all but the last ablock is unused. The padding of
1068 the last ablock in an ablocks is not allocated. */
1069 #if BLOCK_PADDING
1070 char padding[BLOCK_PADDING];
1071 #endif
1072 };
1073
1074 /* A bunch of consecutive aligned blocks. */
1075 struct ablocks
1076 {
1077 struct ablock blocks[ABLOCKS_SIZE];
1078 };
1079
1080 /* Size of the block requested from malloc or aligned_alloc. */
1081 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1082
1083 #define ABLOCK_ABASE(block) \
1084 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1085 ? (struct ablocks *)(block) \
1086 : (block)->abase)
1087
1088 /* Virtual `busy' field. */
1089 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1090
1091 /* Pointer to the (not necessarily aligned) malloc block. */
1092 #ifdef USE_ALIGNED_ALLOC
1093 #define ABLOCKS_BASE(abase) (abase)
1094 #else
1095 #define ABLOCKS_BASE(abase) \
1096 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1097 #endif
1098
1099 /* The list of free ablock. */
1100 static struct ablock *free_ablock;
1101
1102 /* Allocate an aligned block of nbytes.
1103 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1104 smaller or equal to BLOCK_BYTES. */
1105 static void *
1106 lisp_align_malloc (size_t nbytes, enum mem_type type)
1107 {
1108 void *base, *val;
1109 struct ablocks *abase;
1110
1111 eassert (nbytes <= BLOCK_BYTES);
1112
1113 MALLOC_BLOCK_INPUT;
1114
1115 #ifdef GC_MALLOC_CHECK
1116 allocated_mem_type = type;
1117 #endif
1118
1119 if (!free_ablock)
1120 {
1121 int i;
1122 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1123
1124 #ifdef DOUG_LEA_MALLOC
1125 if (!mmap_lisp_allowed_p ())
1126 mallopt (M_MMAP_MAX, 0);
1127 #endif
1128
1129 #ifdef USE_ALIGNED_ALLOC
1130 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1131 #else
1132 base = malloc (ABLOCKS_BYTES);
1133 abase = ALIGN (base, BLOCK_ALIGN);
1134 #endif
1135
1136 if (base == 0)
1137 {
1138 MALLOC_UNBLOCK_INPUT;
1139 memory_full (ABLOCKS_BYTES);
1140 }
1141
1142 aligned = (base == abase);
1143 if (!aligned)
1144 ((void **) abase)[-1] = base;
1145
1146 #ifdef DOUG_LEA_MALLOC
1147 if (!mmap_lisp_allowed_p ())
1148 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1149 #endif
1150
1151 #if ! USE_LSB_TAG
1152 /* If the memory just allocated cannot be addressed thru a Lisp
1153 object's pointer, and it needs to be, that's equivalent to
1154 running out of memory. */
1155 if (type != MEM_TYPE_NON_LISP)
1156 {
1157 Lisp_Object tem;
1158 char *end = (char *) base + ABLOCKS_BYTES - 1;
1159 XSETCONS (tem, end);
1160 if ((char *) XCONS (tem) != end)
1161 {
1162 lisp_malloc_loser = base;
1163 free (base);
1164 MALLOC_UNBLOCK_INPUT;
1165 memory_full (SIZE_MAX);
1166 }
1167 }
1168 #endif
1169
1170 /* Initialize the blocks and put them on the free list.
1171 If `base' was not properly aligned, we can't use the last block. */
1172 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1173 {
1174 abase->blocks[i].abase = abase;
1175 abase->blocks[i].x.next_free = free_ablock;
1176 free_ablock = &abase->blocks[i];
1177 }
1178 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1179
1180 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1181 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1182 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1183 eassert (ABLOCKS_BASE (abase) == base);
1184 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1185 }
1186
1187 abase = ABLOCK_ABASE (free_ablock);
1188 ABLOCKS_BUSY (abase)
1189 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1190 val = free_ablock;
1191 free_ablock = free_ablock->x.next_free;
1192
1193 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1194 if (type != MEM_TYPE_NON_LISP)
1195 mem_insert (val, (char *) val + nbytes, type);
1196 #endif
1197
1198 MALLOC_UNBLOCK_INPUT;
1199
1200 MALLOC_PROBE (nbytes);
1201
1202 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1203 return val;
1204 }
1205
1206 static void
1207 lisp_align_free (void *block)
1208 {
1209 struct ablock *ablock = block;
1210 struct ablocks *abase = ABLOCK_ABASE (ablock);
1211
1212 MALLOC_BLOCK_INPUT;
1213 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1214 mem_delete (mem_find (block));
1215 #endif
1216 /* Put on free list. */
1217 ablock->x.next_free = free_ablock;
1218 free_ablock = ablock;
1219 /* Update busy count. */
1220 ABLOCKS_BUSY (abase)
1221 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1222
1223 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1224 { /* All the blocks are free. */
1225 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1226 struct ablock **tem = &free_ablock;
1227 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1228
1229 while (*tem)
1230 {
1231 if (*tem >= (struct ablock *) abase && *tem < atop)
1232 {
1233 i++;
1234 *tem = (*tem)->x.next_free;
1235 }
1236 else
1237 tem = &(*tem)->x.next_free;
1238 }
1239 eassert ((aligned & 1) == aligned);
1240 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1241 #ifdef USE_POSIX_MEMALIGN
1242 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1243 #endif
1244 free (ABLOCKS_BASE (abase));
1245 }
1246 MALLOC_UNBLOCK_INPUT;
1247 }
1248
1249 \f
1250 /***********************************************************************
1251 Interval Allocation
1252 ***********************************************************************/
1253
1254 /* Number of intervals allocated in an interval_block structure.
1255 The 1020 is 1024 minus malloc overhead. */
1256
1257 #define INTERVAL_BLOCK_SIZE \
1258 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1259
1260 /* Intervals are allocated in chunks in the form of an interval_block
1261 structure. */
1262
1263 struct interval_block
1264 {
1265 /* Place `intervals' first, to preserve alignment. */
1266 struct interval intervals[INTERVAL_BLOCK_SIZE];
1267 struct interval_block *next;
1268 };
1269
1270 /* Current interval block. Its `next' pointer points to older
1271 blocks. */
1272
1273 static struct interval_block *interval_block;
1274
1275 /* Index in interval_block above of the next unused interval
1276 structure. */
1277
1278 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1279
1280 /* Number of free and live intervals. */
1281
1282 static EMACS_INT total_free_intervals, total_intervals;
1283
1284 /* List of free intervals. */
1285
1286 static INTERVAL interval_free_list;
1287
1288 /* Return a new interval. */
1289
1290 INTERVAL
1291 make_interval (void)
1292 {
1293 INTERVAL val;
1294
1295 MALLOC_BLOCK_INPUT;
1296
1297 if (interval_free_list)
1298 {
1299 val = interval_free_list;
1300 interval_free_list = INTERVAL_PARENT (interval_free_list);
1301 }
1302 else
1303 {
1304 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1305 {
1306 struct interval_block *newi
1307 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1308
1309 newi->next = interval_block;
1310 interval_block = newi;
1311 interval_block_index = 0;
1312 total_free_intervals += INTERVAL_BLOCK_SIZE;
1313 }
1314 val = &interval_block->intervals[interval_block_index++];
1315 }
1316
1317 MALLOC_UNBLOCK_INPUT;
1318
1319 consing_since_gc += sizeof (struct interval);
1320 intervals_consed++;
1321 total_free_intervals--;
1322 RESET_INTERVAL (val);
1323 val->gcmarkbit = 0;
1324 return val;
1325 }
1326
1327
1328 /* Mark Lisp objects in interval I. */
1329
1330 static void
1331 mark_interval (register INTERVAL i, Lisp_Object dummy)
1332 {
1333 /* Intervals should never be shared. So, if extra internal checking is
1334 enabled, GC aborts if it seems to have visited an interval twice. */
1335 eassert (!i->gcmarkbit);
1336 i->gcmarkbit = 1;
1337 mark_object (i->plist);
1338 }
1339
1340 /* Mark the interval tree rooted in I. */
1341
1342 #define MARK_INTERVAL_TREE(i) \
1343 do { \
1344 if (i && !i->gcmarkbit) \
1345 traverse_intervals_noorder (i, mark_interval, Qnil); \
1346 } while (0)
1347
1348 /***********************************************************************
1349 String Allocation
1350 ***********************************************************************/
1351
1352 /* Lisp_Strings are allocated in string_block structures. When a new
1353 string_block is allocated, all the Lisp_Strings it contains are
1354 added to a free-list string_free_list. When a new Lisp_String is
1355 needed, it is taken from that list. During the sweep phase of GC,
1356 string_blocks that are entirely free are freed, except two which
1357 we keep.
1358
1359 String data is allocated from sblock structures. Strings larger
1360 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1361 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1362
1363 Sblocks consist internally of sdata structures, one for each
1364 Lisp_String. The sdata structure points to the Lisp_String it
1365 belongs to. The Lisp_String points back to the `u.data' member of
1366 its sdata structure.
1367
1368 When a Lisp_String is freed during GC, it is put back on
1369 string_free_list, and its `data' member and its sdata's `string'
1370 pointer is set to null. The size of the string is recorded in the
1371 `n.nbytes' member of the sdata. So, sdata structures that are no
1372 longer used, can be easily recognized, and it's easy to compact the
1373 sblocks of small strings which we do in compact_small_strings. */
1374
1375 /* Size in bytes of an sblock structure used for small strings. This
1376 is 8192 minus malloc overhead. */
1377
1378 #define SBLOCK_SIZE 8188
1379
1380 /* Strings larger than this are considered large strings. String data
1381 for large strings is allocated from individual sblocks. */
1382
1383 #define LARGE_STRING_BYTES 1024
1384
1385 /* The SDATA typedef is a struct or union describing string memory
1386 sub-allocated from an sblock. This is where the contents of Lisp
1387 strings are stored. */
1388
1389 struct sdata
1390 {
1391 /* Back-pointer to the string this sdata belongs to. If null, this
1392 structure is free, and NBYTES (in this structure or in the union below)
1393 contains the string's byte size (the same value that STRING_BYTES
1394 would return if STRING were non-null). If non-null, STRING_BYTES
1395 (STRING) is the size of the data, and DATA contains the string's
1396 contents. */
1397 struct Lisp_String *string;
1398
1399 #ifdef GC_CHECK_STRING_BYTES
1400 ptrdiff_t nbytes;
1401 #endif
1402
1403 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1404 };
1405
1406 #ifdef GC_CHECK_STRING_BYTES
1407
1408 typedef struct sdata sdata;
1409 #define SDATA_NBYTES(S) (S)->nbytes
1410 #define SDATA_DATA(S) (S)->data
1411
1412 #else
1413
1414 typedef union
1415 {
1416 struct Lisp_String *string;
1417
1418 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1419 which has a flexible array member. However, if implemented by
1420 giving this union a member of type 'struct sdata', the union
1421 could not be the last (flexible) member of 'struct sblock',
1422 because C99 prohibits a flexible array member from having a type
1423 that is itself a flexible array. So, comment this member out here,
1424 but remember that the option's there when using this union. */
1425 #if 0
1426 struct sdata u;
1427 #endif
1428
1429 /* When STRING is null. */
1430 struct
1431 {
1432 struct Lisp_String *string;
1433 ptrdiff_t nbytes;
1434 } n;
1435 } sdata;
1436
1437 #define SDATA_NBYTES(S) (S)->n.nbytes
1438 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1439
1440 #endif /* not GC_CHECK_STRING_BYTES */
1441
1442 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1443
1444 /* Structure describing a block of memory which is sub-allocated to
1445 obtain string data memory for strings. Blocks for small strings
1446 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1447 as large as needed. */
1448
1449 struct sblock
1450 {
1451 /* Next in list. */
1452 struct sblock *next;
1453
1454 /* Pointer to the next free sdata block. This points past the end
1455 of the sblock if there isn't any space left in this block. */
1456 sdata *next_free;
1457
1458 /* String data. */
1459 sdata data[FLEXIBLE_ARRAY_MEMBER];
1460 };
1461
1462 /* Number of Lisp strings in a string_block structure. The 1020 is
1463 1024 minus malloc overhead. */
1464
1465 #define STRING_BLOCK_SIZE \
1466 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1467
1468 /* Structure describing a block from which Lisp_String structures
1469 are allocated. */
1470
1471 struct string_block
1472 {
1473 /* Place `strings' first, to preserve alignment. */
1474 struct Lisp_String strings[STRING_BLOCK_SIZE];
1475 struct string_block *next;
1476 };
1477
1478 /* Head and tail of the list of sblock structures holding Lisp string
1479 data. We always allocate from current_sblock. The NEXT pointers
1480 in the sblock structures go from oldest_sblock to current_sblock. */
1481
1482 static struct sblock *oldest_sblock, *current_sblock;
1483
1484 /* List of sblocks for large strings. */
1485
1486 static struct sblock *large_sblocks;
1487
1488 /* List of string_block structures. */
1489
1490 static struct string_block *string_blocks;
1491
1492 /* Free-list of Lisp_Strings. */
1493
1494 static struct Lisp_String *string_free_list;
1495
1496 /* Number of live and free Lisp_Strings. */
1497
1498 static EMACS_INT total_strings, total_free_strings;
1499
1500 /* Number of bytes used by live strings. */
1501
1502 static EMACS_INT total_string_bytes;
1503
1504 /* Given a pointer to a Lisp_String S which is on the free-list
1505 string_free_list, return a pointer to its successor in the
1506 free-list. */
1507
1508 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1509
1510 /* Return a pointer to the sdata structure belonging to Lisp string S.
1511 S must be live, i.e. S->data must not be null. S->data is actually
1512 a pointer to the `u.data' member of its sdata structure; the
1513 structure starts at a constant offset in front of that. */
1514
1515 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1516
1517
1518 #ifdef GC_CHECK_STRING_OVERRUN
1519
1520 /* We check for overrun in string data blocks by appending a small
1521 "cookie" after each allocated string data block, and check for the
1522 presence of this cookie during GC. */
1523
1524 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1525 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1526 { '\xde', '\xad', '\xbe', '\xef' };
1527
1528 #else
1529 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1530 #endif
1531
1532 /* Value is the size of an sdata structure large enough to hold NBYTES
1533 bytes of string data. The value returned includes a terminating
1534 NUL byte, the size of the sdata structure, and padding. */
1535
1536 #ifdef GC_CHECK_STRING_BYTES
1537
1538 #define SDATA_SIZE(NBYTES) \
1539 ((SDATA_DATA_OFFSET \
1540 + (NBYTES) + 1 \
1541 + sizeof (ptrdiff_t) - 1) \
1542 & ~(sizeof (ptrdiff_t) - 1))
1543
1544 #else /* not GC_CHECK_STRING_BYTES */
1545
1546 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1547 less than the size of that member. The 'max' is not needed when
1548 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1549 alignment code reserves enough space. */
1550
1551 #define SDATA_SIZE(NBYTES) \
1552 ((SDATA_DATA_OFFSET \
1553 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1554 ? NBYTES \
1555 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1556 + 1 \
1557 + sizeof (ptrdiff_t) - 1) \
1558 & ~(sizeof (ptrdiff_t) - 1))
1559
1560 #endif /* not GC_CHECK_STRING_BYTES */
1561
1562 /* Extra bytes to allocate for each string. */
1563
1564 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1565
1566 /* Exact bound on the number of bytes in a string, not counting the
1567 terminating null. A string cannot contain more bytes than
1568 STRING_BYTES_BOUND, nor can it be so long that the size_t
1569 arithmetic in allocate_string_data would overflow while it is
1570 calculating a value to be passed to malloc. */
1571 static ptrdiff_t const STRING_BYTES_MAX =
1572 min (STRING_BYTES_BOUND,
1573 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1574 - GC_STRING_EXTRA
1575 - offsetof (struct sblock, data)
1576 - SDATA_DATA_OFFSET)
1577 & ~(sizeof (EMACS_INT) - 1)));
1578
1579 /* Initialize string allocation. Called from init_alloc_once. */
1580
1581 static void
1582 init_strings (void)
1583 {
1584 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1585 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1586 }
1587
1588
1589 #ifdef GC_CHECK_STRING_BYTES
1590
1591 static int check_string_bytes_count;
1592
1593 /* Like STRING_BYTES, but with debugging check. Can be
1594 called during GC, so pay attention to the mark bit. */
1595
1596 ptrdiff_t
1597 string_bytes (struct Lisp_String *s)
1598 {
1599 ptrdiff_t nbytes =
1600 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1601
1602 if (!PURE_POINTER_P (s)
1603 && s->data
1604 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1605 emacs_abort ();
1606 return nbytes;
1607 }
1608
1609 /* Check validity of Lisp strings' string_bytes member in B. */
1610
1611 static void
1612 check_sblock (struct sblock *b)
1613 {
1614 sdata *from, *end, *from_end;
1615
1616 end = b->next_free;
1617
1618 for (from = b->data; from < end; from = from_end)
1619 {
1620 /* Compute the next FROM here because copying below may
1621 overwrite data we need to compute it. */
1622 ptrdiff_t nbytes;
1623
1624 /* Check that the string size recorded in the string is the
1625 same as the one recorded in the sdata structure. */
1626 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1627 : SDATA_NBYTES (from));
1628 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1629 }
1630 }
1631
1632
1633 /* Check validity of Lisp strings' string_bytes member. ALL_P
1634 means check all strings, otherwise check only most
1635 recently allocated strings. Used for hunting a bug. */
1636
1637 static void
1638 check_string_bytes (bool all_p)
1639 {
1640 if (all_p)
1641 {
1642 struct sblock *b;
1643
1644 for (b = large_sblocks; b; b = b->next)
1645 {
1646 struct Lisp_String *s = b->data[0].string;
1647 if (s)
1648 string_bytes (s);
1649 }
1650
1651 for (b = oldest_sblock; b; b = b->next)
1652 check_sblock (b);
1653 }
1654 else if (current_sblock)
1655 check_sblock (current_sblock);
1656 }
1657
1658 #else /* not GC_CHECK_STRING_BYTES */
1659
1660 #define check_string_bytes(all) ((void) 0)
1661
1662 #endif /* GC_CHECK_STRING_BYTES */
1663
1664 #ifdef GC_CHECK_STRING_FREE_LIST
1665
1666 /* Walk through the string free list looking for bogus next pointers.
1667 This may catch buffer overrun from a previous string. */
1668
1669 static void
1670 check_string_free_list (void)
1671 {
1672 struct Lisp_String *s;
1673
1674 /* Pop a Lisp_String off the free-list. */
1675 s = string_free_list;
1676 while (s != NULL)
1677 {
1678 if ((uintptr_t) s < 1024)
1679 emacs_abort ();
1680 s = NEXT_FREE_LISP_STRING (s);
1681 }
1682 }
1683 #else
1684 #define check_string_free_list()
1685 #endif
1686
1687 /* Return a new Lisp_String. */
1688
1689 static struct Lisp_String *
1690 allocate_string (void)
1691 {
1692 struct Lisp_String *s;
1693
1694 MALLOC_BLOCK_INPUT;
1695
1696 /* If the free-list is empty, allocate a new string_block, and
1697 add all the Lisp_Strings in it to the free-list. */
1698 if (string_free_list == NULL)
1699 {
1700 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1701 int i;
1702
1703 b->next = string_blocks;
1704 string_blocks = b;
1705
1706 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1707 {
1708 s = b->strings + i;
1709 /* Every string on a free list should have NULL data pointer. */
1710 s->data = NULL;
1711 NEXT_FREE_LISP_STRING (s) = string_free_list;
1712 string_free_list = s;
1713 }
1714
1715 total_free_strings += STRING_BLOCK_SIZE;
1716 }
1717
1718 check_string_free_list ();
1719
1720 /* Pop a Lisp_String off the free-list. */
1721 s = string_free_list;
1722 string_free_list = NEXT_FREE_LISP_STRING (s);
1723
1724 MALLOC_UNBLOCK_INPUT;
1725
1726 --total_free_strings;
1727 ++total_strings;
1728 ++strings_consed;
1729 consing_since_gc += sizeof *s;
1730
1731 #ifdef GC_CHECK_STRING_BYTES
1732 if (!noninteractive)
1733 {
1734 if (++check_string_bytes_count == 200)
1735 {
1736 check_string_bytes_count = 0;
1737 check_string_bytes (1);
1738 }
1739 else
1740 check_string_bytes (0);
1741 }
1742 #endif /* GC_CHECK_STRING_BYTES */
1743
1744 return s;
1745 }
1746
1747
1748 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1749 plus a NUL byte at the end. Allocate an sdata structure for S, and
1750 set S->data to its `u.data' member. Store a NUL byte at the end of
1751 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1752 S->data if it was initially non-null. */
1753
1754 void
1755 allocate_string_data (struct Lisp_String *s,
1756 EMACS_INT nchars, EMACS_INT nbytes)
1757 {
1758 sdata *data, *old_data;
1759 struct sblock *b;
1760 ptrdiff_t needed, old_nbytes;
1761
1762 if (STRING_BYTES_MAX < nbytes)
1763 string_overflow ();
1764
1765 /* Determine the number of bytes needed to store NBYTES bytes
1766 of string data. */
1767 needed = SDATA_SIZE (nbytes);
1768 if (s->data)
1769 {
1770 old_data = SDATA_OF_STRING (s);
1771 old_nbytes = STRING_BYTES (s);
1772 }
1773 else
1774 old_data = NULL;
1775
1776 MALLOC_BLOCK_INPUT;
1777
1778 if (nbytes > LARGE_STRING_BYTES)
1779 {
1780 size_t size = offsetof (struct sblock, data) + needed;
1781
1782 #ifdef DOUG_LEA_MALLOC
1783 if (!mmap_lisp_allowed_p ())
1784 mallopt (M_MMAP_MAX, 0);
1785 #endif
1786
1787 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1788
1789 #ifdef DOUG_LEA_MALLOC
1790 if (!mmap_lisp_allowed_p ())
1791 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1792 #endif
1793
1794 b->next_free = b->data;
1795 b->data[0].string = NULL;
1796 b->next = large_sblocks;
1797 large_sblocks = b;
1798 }
1799 else if (current_sblock == NULL
1800 || (((char *) current_sblock + SBLOCK_SIZE
1801 - (char *) current_sblock->next_free)
1802 < (needed + GC_STRING_EXTRA)))
1803 {
1804 /* Not enough room in the current sblock. */
1805 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1806 b->next_free = b->data;
1807 b->data[0].string = NULL;
1808 b->next = NULL;
1809
1810 if (current_sblock)
1811 current_sblock->next = b;
1812 else
1813 oldest_sblock = b;
1814 current_sblock = b;
1815 }
1816 else
1817 b = current_sblock;
1818
1819 data = b->next_free;
1820 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1821
1822 MALLOC_UNBLOCK_INPUT;
1823
1824 data->string = s;
1825 s->data = SDATA_DATA (data);
1826 #ifdef GC_CHECK_STRING_BYTES
1827 SDATA_NBYTES (data) = nbytes;
1828 #endif
1829 s->size = nchars;
1830 s->size_byte = nbytes;
1831 s->data[nbytes] = '\0';
1832 #ifdef GC_CHECK_STRING_OVERRUN
1833 memcpy ((char *) data + needed, string_overrun_cookie,
1834 GC_STRING_OVERRUN_COOKIE_SIZE);
1835 #endif
1836
1837 /* Note that Faset may call to this function when S has already data
1838 assigned. In this case, mark data as free by setting it's string
1839 back-pointer to null, and record the size of the data in it. */
1840 if (old_data)
1841 {
1842 SDATA_NBYTES (old_data) = old_nbytes;
1843 old_data->string = NULL;
1844 }
1845
1846 consing_since_gc += needed;
1847 }
1848
1849
1850 /* Sweep and compact strings. */
1851
1852 NO_INLINE /* For better stack traces */
1853 static void
1854 sweep_strings (void)
1855 {
1856 struct string_block *b, *next;
1857 struct string_block *live_blocks = NULL;
1858
1859 string_free_list = NULL;
1860 total_strings = total_free_strings = 0;
1861 total_string_bytes = 0;
1862
1863 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1864 for (b = string_blocks; b; b = next)
1865 {
1866 int i, nfree = 0;
1867 struct Lisp_String *free_list_before = string_free_list;
1868
1869 next = b->next;
1870
1871 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1872 {
1873 struct Lisp_String *s = b->strings + i;
1874
1875 if (s->data)
1876 {
1877 /* String was not on free-list before. */
1878 if (STRING_MARKED_P (s))
1879 {
1880 /* String is live; unmark it and its intervals. */
1881 UNMARK_STRING (s);
1882
1883 /* Do not use string_(set|get)_intervals here. */
1884 s->intervals = balance_intervals (s->intervals);
1885
1886 ++total_strings;
1887 total_string_bytes += STRING_BYTES (s);
1888 }
1889 else
1890 {
1891 /* String is dead. Put it on the free-list. */
1892 sdata *data = SDATA_OF_STRING (s);
1893
1894 /* Save the size of S in its sdata so that we know
1895 how large that is. Reset the sdata's string
1896 back-pointer so that we know it's free. */
1897 #ifdef GC_CHECK_STRING_BYTES
1898 if (string_bytes (s) != SDATA_NBYTES (data))
1899 emacs_abort ();
1900 #else
1901 data->n.nbytes = STRING_BYTES (s);
1902 #endif
1903 data->string = NULL;
1904
1905 /* Reset the strings's `data' member so that we
1906 know it's free. */
1907 s->data = NULL;
1908
1909 /* Put the string on the free-list. */
1910 NEXT_FREE_LISP_STRING (s) = string_free_list;
1911 string_free_list = s;
1912 ++nfree;
1913 }
1914 }
1915 else
1916 {
1917 /* S was on the free-list before. Put it there again. */
1918 NEXT_FREE_LISP_STRING (s) = string_free_list;
1919 string_free_list = s;
1920 ++nfree;
1921 }
1922 }
1923
1924 /* Free blocks that contain free Lisp_Strings only, except
1925 the first two of them. */
1926 if (nfree == STRING_BLOCK_SIZE
1927 && total_free_strings > STRING_BLOCK_SIZE)
1928 {
1929 lisp_free (b);
1930 string_free_list = free_list_before;
1931 }
1932 else
1933 {
1934 total_free_strings += nfree;
1935 b->next = live_blocks;
1936 live_blocks = b;
1937 }
1938 }
1939
1940 check_string_free_list ();
1941
1942 string_blocks = live_blocks;
1943 free_large_strings ();
1944 compact_small_strings ();
1945
1946 check_string_free_list ();
1947 }
1948
1949
1950 /* Free dead large strings. */
1951
1952 static void
1953 free_large_strings (void)
1954 {
1955 struct sblock *b, *next;
1956 struct sblock *live_blocks = NULL;
1957
1958 for (b = large_sblocks; b; b = next)
1959 {
1960 next = b->next;
1961
1962 if (b->data[0].string == NULL)
1963 lisp_free (b);
1964 else
1965 {
1966 b->next = live_blocks;
1967 live_blocks = b;
1968 }
1969 }
1970
1971 large_sblocks = live_blocks;
1972 }
1973
1974
1975 /* Compact data of small strings. Free sblocks that don't contain
1976 data of live strings after compaction. */
1977
1978 static void
1979 compact_small_strings (void)
1980 {
1981 struct sblock *b, *tb, *next;
1982 sdata *from, *to, *end, *tb_end;
1983 sdata *to_end, *from_end;
1984
1985 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1986 to, and TB_END is the end of TB. */
1987 tb = oldest_sblock;
1988 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1989 to = tb->data;
1990
1991 /* Step through the blocks from the oldest to the youngest. We
1992 expect that old blocks will stabilize over time, so that less
1993 copying will happen this way. */
1994 for (b = oldest_sblock; b; b = b->next)
1995 {
1996 end = b->next_free;
1997 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1998
1999 for (from = b->data; from < end; from = from_end)
2000 {
2001 /* Compute the next FROM here because copying below may
2002 overwrite data we need to compute it. */
2003 ptrdiff_t nbytes;
2004 struct Lisp_String *s = from->string;
2005
2006 #ifdef GC_CHECK_STRING_BYTES
2007 /* Check that the string size recorded in the string is the
2008 same as the one recorded in the sdata structure. */
2009 if (s && string_bytes (s) != SDATA_NBYTES (from))
2010 emacs_abort ();
2011 #endif /* GC_CHECK_STRING_BYTES */
2012
2013 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2014 eassert (nbytes <= LARGE_STRING_BYTES);
2015
2016 nbytes = SDATA_SIZE (nbytes);
2017 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2018
2019 #ifdef GC_CHECK_STRING_OVERRUN
2020 if (memcmp (string_overrun_cookie,
2021 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2022 GC_STRING_OVERRUN_COOKIE_SIZE))
2023 emacs_abort ();
2024 #endif
2025
2026 /* Non-NULL S means it's alive. Copy its data. */
2027 if (s)
2028 {
2029 /* If TB is full, proceed with the next sblock. */
2030 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2031 if (to_end > tb_end)
2032 {
2033 tb->next_free = to;
2034 tb = tb->next;
2035 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2036 to = tb->data;
2037 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2038 }
2039
2040 /* Copy, and update the string's `data' pointer. */
2041 if (from != to)
2042 {
2043 eassert (tb != b || to < from);
2044 memmove (to, from, nbytes + GC_STRING_EXTRA);
2045 to->string->data = SDATA_DATA (to);
2046 }
2047
2048 /* Advance past the sdata we copied to. */
2049 to = to_end;
2050 }
2051 }
2052 }
2053
2054 /* The rest of the sblocks following TB don't contain live data, so
2055 we can free them. */
2056 for (b = tb->next; b; b = next)
2057 {
2058 next = b->next;
2059 lisp_free (b);
2060 }
2061
2062 tb->next_free = to;
2063 tb->next = NULL;
2064 current_sblock = tb;
2065 }
2066
2067 void
2068 string_overflow (void)
2069 {
2070 error ("Maximum string size exceeded");
2071 }
2072
2073 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2074 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2075 LENGTH must be an integer.
2076 INIT must be an integer that represents a character. */)
2077 (Lisp_Object length, Lisp_Object init)
2078 {
2079 register Lisp_Object val;
2080 int c;
2081 EMACS_INT nbytes;
2082
2083 CHECK_NATNUM (length);
2084 CHECK_CHARACTER (init);
2085
2086 c = XFASTINT (init);
2087 if (ASCII_CHAR_P (c))
2088 {
2089 nbytes = XINT (length);
2090 val = make_uninit_string (nbytes);
2091 memset (SDATA (val), c, nbytes);
2092 SDATA (val)[nbytes] = 0;
2093 }
2094 else
2095 {
2096 unsigned char str[MAX_MULTIBYTE_LENGTH];
2097 ptrdiff_t len = CHAR_STRING (c, str);
2098 EMACS_INT string_len = XINT (length);
2099 unsigned char *p, *beg, *end;
2100
2101 if (string_len > STRING_BYTES_MAX / len)
2102 string_overflow ();
2103 nbytes = len * string_len;
2104 val = make_uninit_multibyte_string (string_len, nbytes);
2105 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2106 {
2107 /* First time we just copy `str' to the data of `val'. */
2108 if (p == beg)
2109 memcpy (p, str, len);
2110 else
2111 {
2112 /* Next time we copy largest possible chunk from
2113 initialized to uninitialized part of `val'. */
2114 len = min (p - beg, end - p);
2115 memcpy (p, beg, len);
2116 }
2117 }
2118 *p = 0;
2119 }
2120
2121 return val;
2122 }
2123
2124 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2125 Return A. */
2126
2127 Lisp_Object
2128 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2129 {
2130 EMACS_INT nbits = bool_vector_size (a);
2131 if (0 < nbits)
2132 {
2133 unsigned char *data = bool_vector_uchar_data (a);
2134 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2135 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2136 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2137 memset (data, pattern, nbytes - 1);
2138 data[nbytes - 1] = pattern & last_mask;
2139 }
2140 return a;
2141 }
2142
2143 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2144
2145 Lisp_Object
2146 make_uninit_bool_vector (EMACS_INT nbits)
2147 {
2148 Lisp_Object val;
2149 EMACS_INT words = bool_vector_words (nbits);
2150 EMACS_INT word_bytes = words * sizeof (bits_word);
2151 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2152 + word_size - 1)
2153 / word_size);
2154 struct Lisp_Bool_Vector *p
2155 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2156 XSETVECTOR (val, p);
2157 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2158 p->size = nbits;
2159
2160 /* Clear padding at the end. */
2161 if (words)
2162 p->data[words - 1] = 0;
2163
2164 return val;
2165 }
2166
2167 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2168 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2169 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2170 (Lisp_Object length, Lisp_Object init)
2171 {
2172 Lisp_Object val;
2173
2174 CHECK_NATNUM (length);
2175 val = make_uninit_bool_vector (XFASTINT (length));
2176 return bool_vector_fill (val, init);
2177 }
2178
2179 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2180 doc: /* Return a new bool-vector with specified arguments as elements.
2181 Any number of arguments, even zero arguments, are allowed.
2182 usage: (bool-vector &rest OBJECTS) */)
2183 (ptrdiff_t nargs, Lisp_Object *args)
2184 {
2185 ptrdiff_t i;
2186 Lisp_Object vector;
2187
2188 vector = make_uninit_bool_vector (nargs);
2189 for (i = 0; i < nargs; i++)
2190 bool_vector_set (vector, i, !NILP (args[i]));
2191
2192 return vector;
2193 }
2194
2195 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2196 of characters from the contents. This string may be unibyte or
2197 multibyte, depending on the contents. */
2198
2199 Lisp_Object
2200 make_string (const char *contents, ptrdiff_t nbytes)
2201 {
2202 register Lisp_Object val;
2203 ptrdiff_t nchars, multibyte_nbytes;
2204
2205 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2206 &nchars, &multibyte_nbytes);
2207 if (nbytes == nchars || nbytes != multibyte_nbytes)
2208 /* CONTENTS contains no multibyte sequences or contains an invalid
2209 multibyte sequence. We must make unibyte string. */
2210 val = make_unibyte_string (contents, nbytes);
2211 else
2212 val = make_multibyte_string (contents, nchars, nbytes);
2213 return val;
2214 }
2215
2216 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2217
2218 Lisp_Object
2219 make_unibyte_string (const char *contents, ptrdiff_t length)
2220 {
2221 register Lisp_Object val;
2222 val = make_uninit_string (length);
2223 memcpy (SDATA (val), contents, length);
2224 return val;
2225 }
2226
2227
2228 /* Make a multibyte string from NCHARS characters occupying NBYTES
2229 bytes at CONTENTS. */
2230
2231 Lisp_Object
2232 make_multibyte_string (const char *contents,
2233 ptrdiff_t nchars, ptrdiff_t nbytes)
2234 {
2235 register Lisp_Object val;
2236 val = make_uninit_multibyte_string (nchars, nbytes);
2237 memcpy (SDATA (val), contents, nbytes);
2238 return val;
2239 }
2240
2241
2242 /* Make a string from NCHARS characters occupying NBYTES bytes at
2243 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2244
2245 Lisp_Object
2246 make_string_from_bytes (const char *contents,
2247 ptrdiff_t nchars, ptrdiff_t nbytes)
2248 {
2249 register Lisp_Object val;
2250 val = make_uninit_multibyte_string (nchars, nbytes);
2251 memcpy (SDATA (val), contents, nbytes);
2252 if (SBYTES (val) == SCHARS (val))
2253 STRING_SET_UNIBYTE (val);
2254 return val;
2255 }
2256
2257
2258 /* Make a string from NCHARS characters occupying NBYTES bytes at
2259 CONTENTS. The argument MULTIBYTE controls whether to label the
2260 string as multibyte. If NCHARS is negative, it counts the number of
2261 characters by itself. */
2262
2263 Lisp_Object
2264 make_specified_string (const char *contents,
2265 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2266 {
2267 Lisp_Object val;
2268
2269 if (nchars < 0)
2270 {
2271 if (multibyte)
2272 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2273 nbytes);
2274 else
2275 nchars = nbytes;
2276 }
2277 val = make_uninit_multibyte_string (nchars, nbytes);
2278 memcpy (SDATA (val), contents, nbytes);
2279 if (!multibyte)
2280 STRING_SET_UNIBYTE (val);
2281 return val;
2282 }
2283
2284
2285 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2286 occupying LENGTH bytes. */
2287
2288 Lisp_Object
2289 make_uninit_string (EMACS_INT length)
2290 {
2291 Lisp_Object val;
2292
2293 if (!length)
2294 return empty_unibyte_string;
2295 val = make_uninit_multibyte_string (length, length);
2296 STRING_SET_UNIBYTE (val);
2297 return val;
2298 }
2299
2300
2301 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2302 which occupy NBYTES bytes. */
2303
2304 Lisp_Object
2305 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2306 {
2307 Lisp_Object string;
2308 struct Lisp_String *s;
2309
2310 if (nchars < 0)
2311 emacs_abort ();
2312 if (!nbytes)
2313 return empty_multibyte_string;
2314
2315 s = allocate_string ();
2316 s->intervals = NULL;
2317 allocate_string_data (s, nchars, nbytes);
2318 XSETSTRING (string, s);
2319 string_chars_consed += nbytes;
2320 return string;
2321 }
2322
2323 /* Print arguments to BUF according to a FORMAT, then return
2324 a Lisp_String initialized with the data from BUF. */
2325
2326 Lisp_Object
2327 make_formatted_string (char *buf, const char *format, ...)
2328 {
2329 va_list ap;
2330 int length;
2331
2332 va_start (ap, format);
2333 length = vsprintf (buf, format, ap);
2334 va_end (ap);
2335 return make_string (buf, length);
2336 }
2337
2338 \f
2339 /***********************************************************************
2340 Float Allocation
2341 ***********************************************************************/
2342
2343 /* We store float cells inside of float_blocks, allocating a new
2344 float_block with malloc whenever necessary. Float cells reclaimed
2345 by GC are put on a free list to be reallocated before allocating
2346 any new float cells from the latest float_block. */
2347
2348 #define FLOAT_BLOCK_SIZE \
2349 (((BLOCK_BYTES - sizeof (struct float_block *) \
2350 /* The compiler might add padding at the end. */ \
2351 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2352 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2353
2354 #define GETMARKBIT(block,n) \
2355 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2356 >> ((n) % BITS_PER_BITS_WORD)) \
2357 & 1)
2358
2359 #define SETMARKBIT(block,n) \
2360 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2361 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2362
2363 #define UNSETMARKBIT(block,n) \
2364 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2365 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2366
2367 #define FLOAT_BLOCK(fptr) \
2368 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2369
2370 #define FLOAT_INDEX(fptr) \
2371 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2372
2373 struct float_block
2374 {
2375 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2376 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2377 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2378 struct float_block *next;
2379 };
2380
2381 #define FLOAT_MARKED_P(fptr) \
2382 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2383
2384 #define FLOAT_MARK(fptr) \
2385 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2386
2387 #define FLOAT_UNMARK(fptr) \
2388 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2389
2390 /* Current float_block. */
2391
2392 static struct float_block *float_block;
2393
2394 /* Index of first unused Lisp_Float in the current float_block. */
2395
2396 static int float_block_index = FLOAT_BLOCK_SIZE;
2397
2398 /* Free-list of Lisp_Floats. */
2399
2400 static struct Lisp_Float *float_free_list;
2401
2402 /* Return a new float object with value FLOAT_VALUE. */
2403
2404 Lisp_Object
2405 make_float (double float_value)
2406 {
2407 register Lisp_Object val;
2408
2409 MALLOC_BLOCK_INPUT;
2410
2411 if (float_free_list)
2412 {
2413 /* We use the data field for chaining the free list
2414 so that we won't use the same field that has the mark bit. */
2415 XSETFLOAT (val, float_free_list);
2416 float_free_list = float_free_list->u.chain;
2417 }
2418 else
2419 {
2420 if (float_block_index == FLOAT_BLOCK_SIZE)
2421 {
2422 struct float_block *new
2423 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2424 new->next = float_block;
2425 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2426 float_block = new;
2427 float_block_index = 0;
2428 total_free_floats += FLOAT_BLOCK_SIZE;
2429 }
2430 XSETFLOAT (val, &float_block->floats[float_block_index]);
2431 float_block_index++;
2432 }
2433
2434 MALLOC_UNBLOCK_INPUT;
2435
2436 XFLOAT_INIT (val, float_value);
2437 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2438 consing_since_gc += sizeof (struct Lisp_Float);
2439 floats_consed++;
2440 total_free_floats--;
2441 return val;
2442 }
2443
2444
2445 \f
2446 /***********************************************************************
2447 Cons Allocation
2448 ***********************************************************************/
2449
2450 /* We store cons cells inside of cons_blocks, allocating a new
2451 cons_block with malloc whenever necessary. Cons cells reclaimed by
2452 GC are put on a free list to be reallocated before allocating
2453 any new cons cells from the latest cons_block. */
2454
2455 #define CONS_BLOCK_SIZE \
2456 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2457 /* The compiler might add padding at the end. */ \
2458 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2459 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2460
2461 #define CONS_BLOCK(fptr) \
2462 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2463
2464 #define CONS_INDEX(fptr) \
2465 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2466
2467 struct cons_block
2468 {
2469 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2470 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2471 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2472 struct cons_block *next;
2473 };
2474
2475 #define CONS_MARKED_P(fptr) \
2476 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2477
2478 #define CONS_MARK(fptr) \
2479 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2480
2481 #define CONS_UNMARK(fptr) \
2482 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2483
2484 /* Current cons_block. */
2485
2486 static struct cons_block *cons_block;
2487
2488 /* Index of first unused Lisp_Cons in the current block. */
2489
2490 static int cons_block_index = CONS_BLOCK_SIZE;
2491
2492 /* Free-list of Lisp_Cons structures. */
2493
2494 static struct Lisp_Cons *cons_free_list;
2495
2496 /* Explicitly free a cons cell by putting it on the free-list. */
2497
2498 void
2499 free_cons (struct Lisp_Cons *ptr)
2500 {
2501 ptr->u.chain = cons_free_list;
2502 #if GC_MARK_STACK
2503 ptr->car = Vdead;
2504 #endif
2505 cons_free_list = ptr;
2506 consing_since_gc -= sizeof *ptr;
2507 total_free_conses++;
2508 }
2509
2510 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2511 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2512 (Lisp_Object car, Lisp_Object cdr)
2513 {
2514 register Lisp_Object val;
2515
2516 MALLOC_BLOCK_INPUT;
2517
2518 if (cons_free_list)
2519 {
2520 /* We use the cdr for chaining the free list
2521 so that we won't use the same field that has the mark bit. */
2522 XSETCONS (val, cons_free_list);
2523 cons_free_list = cons_free_list->u.chain;
2524 }
2525 else
2526 {
2527 if (cons_block_index == CONS_BLOCK_SIZE)
2528 {
2529 struct cons_block *new
2530 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2531 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2532 new->next = cons_block;
2533 cons_block = new;
2534 cons_block_index = 0;
2535 total_free_conses += CONS_BLOCK_SIZE;
2536 }
2537 XSETCONS (val, &cons_block->conses[cons_block_index]);
2538 cons_block_index++;
2539 }
2540
2541 MALLOC_UNBLOCK_INPUT;
2542
2543 XSETCAR (val, car);
2544 XSETCDR (val, cdr);
2545 eassert (!CONS_MARKED_P (XCONS (val)));
2546 consing_since_gc += sizeof (struct Lisp_Cons);
2547 total_free_conses--;
2548 cons_cells_consed++;
2549 return val;
2550 }
2551
2552 #ifdef GC_CHECK_CONS_LIST
2553 /* Get an error now if there's any junk in the cons free list. */
2554 void
2555 check_cons_list (void)
2556 {
2557 struct Lisp_Cons *tail = cons_free_list;
2558
2559 while (tail)
2560 tail = tail->u.chain;
2561 }
2562 #endif
2563
2564 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2565
2566 Lisp_Object
2567 list1 (Lisp_Object arg1)
2568 {
2569 return Fcons (arg1, Qnil);
2570 }
2571
2572 Lisp_Object
2573 list2 (Lisp_Object arg1, Lisp_Object arg2)
2574 {
2575 return Fcons (arg1, Fcons (arg2, Qnil));
2576 }
2577
2578
2579 Lisp_Object
2580 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2581 {
2582 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2583 }
2584
2585
2586 Lisp_Object
2587 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2588 {
2589 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2590 }
2591
2592
2593 Lisp_Object
2594 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2595 {
2596 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2597 Fcons (arg5, Qnil)))));
2598 }
2599
2600 /* Make a list of COUNT Lisp_Objects, where ARG is the
2601 first one. Allocate conses from pure space if TYPE
2602 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2603
2604 Lisp_Object
2605 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2606 {
2607 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2608 switch (type)
2609 {
2610 case CONSTYPE_PURE: cons = pure_cons; break;
2611 case CONSTYPE_HEAP: cons = Fcons; break;
2612 default: emacs_abort ();
2613 }
2614
2615 eassume (0 < count);
2616 Lisp_Object val = cons (arg, Qnil);
2617 Lisp_Object tail = val;
2618
2619 va_list ap;
2620 va_start (ap, arg);
2621 for (ptrdiff_t i = 1; i < count; i++)
2622 {
2623 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2624 XSETCDR (tail, elem);
2625 tail = elem;
2626 }
2627 va_end (ap);
2628
2629 return val;
2630 }
2631
2632 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2633 doc: /* Return a newly created list with specified arguments as elements.
2634 Any number of arguments, even zero arguments, are allowed.
2635 usage: (list &rest OBJECTS) */)
2636 (ptrdiff_t nargs, Lisp_Object *args)
2637 {
2638 register Lisp_Object val;
2639 val = Qnil;
2640
2641 while (nargs > 0)
2642 {
2643 nargs--;
2644 val = Fcons (args[nargs], val);
2645 }
2646 return val;
2647 }
2648
2649
2650 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2651 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2652 (register Lisp_Object length, Lisp_Object init)
2653 {
2654 register Lisp_Object val;
2655 register EMACS_INT size;
2656
2657 CHECK_NATNUM (length);
2658 size = XFASTINT (length);
2659
2660 val = Qnil;
2661 while (size > 0)
2662 {
2663 val = Fcons (init, val);
2664 --size;
2665
2666 if (size > 0)
2667 {
2668 val = Fcons (init, val);
2669 --size;
2670
2671 if (size > 0)
2672 {
2673 val = Fcons (init, val);
2674 --size;
2675
2676 if (size > 0)
2677 {
2678 val = Fcons (init, val);
2679 --size;
2680
2681 if (size > 0)
2682 {
2683 val = Fcons (init, val);
2684 --size;
2685 }
2686 }
2687 }
2688 }
2689
2690 QUIT;
2691 }
2692
2693 return val;
2694 }
2695
2696
2697 \f
2698 /***********************************************************************
2699 Vector Allocation
2700 ***********************************************************************/
2701
2702 /* Sometimes a vector's contents are merely a pointer internally used
2703 in vector allocation code. On the rare platforms where a null
2704 pointer cannot be tagged, represent it with a Lisp 0.
2705 Usually you don't want to touch this. */
2706
2707 static struct Lisp_Vector *
2708 next_vector (struct Lisp_Vector *v)
2709 {
2710 return XUNTAG (v->contents[0], Lisp_Int0);
2711 }
2712
2713 static void
2714 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2715 {
2716 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2717 }
2718
2719 /* This value is balanced well enough to avoid too much internal overhead
2720 for the most common cases; it's not required to be a power of two, but
2721 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2722
2723 #define VECTOR_BLOCK_SIZE 4096
2724
2725 enum
2726 {
2727 /* Alignment of struct Lisp_Vector objects. */
2728 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2729 GCALIGNMENT),
2730
2731 /* Vector size requests are a multiple of this. */
2732 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2733 };
2734
2735 /* Verify assumptions described above. */
2736 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2737 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2738
2739 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2740 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2741 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2742 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2743
2744 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2745
2746 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2747
2748 /* Size of the minimal vector allocated from block. */
2749
2750 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2751
2752 /* Size of the largest vector allocated from block. */
2753
2754 #define VBLOCK_BYTES_MAX \
2755 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2756
2757 /* We maintain one free list for each possible block-allocated
2758 vector size, and this is the number of free lists we have. */
2759
2760 #define VECTOR_MAX_FREE_LIST_INDEX \
2761 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2762
2763 /* Common shortcut to advance vector pointer over a block data. */
2764
2765 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2766
2767 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2768
2769 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2770
2771 /* Common shortcut to setup vector on a free list. */
2772
2773 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2774 do { \
2775 (tmp) = ((nbytes - header_size) / word_size); \
2776 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2777 eassert ((nbytes) % roundup_size == 0); \
2778 (tmp) = VINDEX (nbytes); \
2779 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2780 set_next_vector (v, vector_free_lists[tmp]); \
2781 vector_free_lists[tmp] = (v); \
2782 total_free_vector_slots += (nbytes) / word_size; \
2783 } while (0)
2784
2785 /* This internal type is used to maintain the list of large vectors
2786 which are allocated at their own, e.g. outside of vector blocks.
2787
2788 struct large_vector itself cannot contain a struct Lisp_Vector, as
2789 the latter contains a flexible array member and C99 does not allow
2790 such structs to be nested. Instead, each struct large_vector
2791 object LV is followed by a struct Lisp_Vector, which is at offset
2792 large_vector_offset from LV, and whose address is therefore
2793 large_vector_vec (&LV). */
2794
2795 struct large_vector
2796 {
2797 struct large_vector *next;
2798 };
2799
2800 enum
2801 {
2802 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2803 };
2804
2805 static struct Lisp_Vector *
2806 large_vector_vec (struct large_vector *p)
2807 {
2808 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2809 }
2810
2811 /* This internal type is used to maintain an underlying storage
2812 for small vectors. */
2813
2814 struct vector_block
2815 {
2816 char data[VECTOR_BLOCK_BYTES];
2817 struct vector_block *next;
2818 };
2819
2820 /* Chain of vector blocks. */
2821
2822 static struct vector_block *vector_blocks;
2823
2824 /* Vector free lists, where NTH item points to a chain of free
2825 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2826
2827 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2828
2829 /* Singly-linked list of large vectors. */
2830
2831 static struct large_vector *large_vectors;
2832
2833 /* The only vector with 0 slots, allocated from pure space. */
2834
2835 Lisp_Object zero_vector;
2836
2837 /* Number of live vectors. */
2838
2839 static EMACS_INT total_vectors;
2840
2841 /* Total size of live and free vectors, in Lisp_Object units. */
2842
2843 static EMACS_INT total_vector_slots, total_free_vector_slots;
2844
2845 /* Get a new vector block. */
2846
2847 static struct vector_block *
2848 allocate_vector_block (void)
2849 {
2850 struct vector_block *block = xmalloc (sizeof *block);
2851
2852 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2853 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2854 MEM_TYPE_VECTOR_BLOCK);
2855 #endif
2856
2857 block->next = vector_blocks;
2858 vector_blocks = block;
2859 return block;
2860 }
2861
2862 /* Called once to initialize vector allocation. */
2863
2864 static void
2865 init_vectors (void)
2866 {
2867 zero_vector = make_pure_vector (0);
2868 }
2869
2870 /* Allocate vector from a vector block. */
2871
2872 static struct Lisp_Vector *
2873 allocate_vector_from_block (size_t nbytes)
2874 {
2875 struct Lisp_Vector *vector;
2876 struct vector_block *block;
2877 size_t index, restbytes;
2878
2879 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2880 eassert (nbytes % roundup_size == 0);
2881
2882 /* First, try to allocate from a free list
2883 containing vectors of the requested size. */
2884 index = VINDEX (nbytes);
2885 if (vector_free_lists[index])
2886 {
2887 vector = vector_free_lists[index];
2888 vector_free_lists[index] = next_vector (vector);
2889 total_free_vector_slots -= nbytes / word_size;
2890 return vector;
2891 }
2892
2893 /* Next, check free lists containing larger vectors. Since
2894 we will split the result, we should have remaining space
2895 large enough to use for one-slot vector at least. */
2896 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2897 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2898 if (vector_free_lists[index])
2899 {
2900 /* This vector is larger than requested. */
2901 vector = vector_free_lists[index];
2902 vector_free_lists[index] = next_vector (vector);
2903 total_free_vector_slots -= nbytes / word_size;
2904
2905 /* Excess bytes are used for the smaller vector,
2906 which should be set on an appropriate free list. */
2907 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2908 eassert (restbytes % roundup_size == 0);
2909 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2910 return vector;
2911 }
2912
2913 /* Finally, need a new vector block. */
2914 block = allocate_vector_block ();
2915
2916 /* New vector will be at the beginning of this block. */
2917 vector = (struct Lisp_Vector *) block->data;
2918
2919 /* If the rest of space from this block is large enough
2920 for one-slot vector at least, set up it on a free list. */
2921 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2922 if (restbytes >= VBLOCK_BYTES_MIN)
2923 {
2924 eassert (restbytes % roundup_size == 0);
2925 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2926 }
2927 return vector;
2928 }
2929
2930 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2931
2932 #define VECTOR_IN_BLOCK(vector, block) \
2933 ((char *) (vector) <= (block)->data \
2934 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2935
2936 /* Return the memory footprint of V in bytes. */
2937
2938 static ptrdiff_t
2939 vector_nbytes (struct Lisp_Vector *v)
2940 {
2941 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2942 ptrdiff_t nwords;
2943
2944 if (size & PSEUDOVECTOR_FLAG)
2945 {
2946 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2947 {
2948 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2949 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2950 * sizeof (bits_word));
2951 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2952 verify (header_size <= bool_header_size);
2953 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2954 }
2955 else
2956 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2957 + ((size & PSEUDOVECTOR_REST_MASK)
2958 >> PSEUDOVECTOR_SIZE_BITS));
2959 }
2960 else
2961 nwords = size;
2962 return vroundup (header_size + word_size * nwords);
2963 }
2964
2965 /* Release extra resources still in use by VECTOR, which may be any
2966 vector-like object. For now, this is used just to free data in
2967 font objects. */
2968
2969 static void
2970 cleanup_vector (struct Lisp_Vector *vector)
2971 {
2972 detect_suspicious_free (vector);
2973 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2974 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2975 == FONT_OBJECT_MAX))
2976 {
2977 struct font_driver *drv = ((struct font *) vector)->driver;
2978
2979 /* The font driver might sometimes be NULL, e.g. if Emacs was
2980 interrupted before it had time to set it up. */
2981 if (drv)
2982 {
2983 /* Attempt to catch subtle bugs like Bug#16140. */
2984 eassert (valid_font_driver (drv));
2985 drv->close ((struct font *) vector);
2986 }
2987 }
2988 }
2989
2990 /* Reclaim space used by unmarked vectors. */
2991
2992 NO_INLINE /* For better stack traces */
2993 static void
2994 sweep_vectors (void)
2995 {
2996 struct vector_block *block, **bprev = &vector_blocks;
2997 struct large_vector *lv, **lvprev = &large_vectors;
2998 struct Lisp_Vector *vector, *next;
2999
3000 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3001 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3002
3003 /* Looking through vector blocks. */
3004
3005 for (block = vector_blocks; block; block = *bprev)
3006 {
3007 bool free_this_block = 0;
3008 ptrdiff_t nbytes;
3009
3010 for (vector = (struct Lisp_Vector *) block->data;
3011 VECTOR_IN_BLOCK (vector, block); vector = next)
3012 {
3013 if (VECTOR_MARKED_P (vector))
3014 {
3015 VECTOR_UNMARK (vector);
3016 total_vectors++;
3017 nbytes = vector_nbytes (vector);
3018 total_vector_slots += nbytes / word_size;
3019 next = ADVANCE (vector, nbytes);
3020 }
3021 else
3022 {
3023 ptrdiff_t total_bytes;
3024
3025 cleanup_vector (vector);
3026 nbytes = vector_nbytes (vector);
3027 total_bytes = nbytes;
3028 next = ADVANCE (vector, nbytes);
3029
3030 /* While NEXT is not marked, try to coalesce with VECTOR,
3031 thus making VECTOR of the largest possible size. */
3032
3033 while (VECTOR_IN_BLOCK (next, block))
3034 {
3035 if (VECTOR_MARKED_P (next))
3036 break;
3037 cleanup_vector (next);
3038 nbytes = vector_nbytes (next);
3039 total_bytes += nbytes;
3040 next = ADVANCE (next, nbytes);
3041 }
3042
3043 eassert (total_bytes % roundup_size == 0);
3044
3045 if (vector == (struct Lisp_Vector *) block->data
3046 && !VECTOR_IN_BLOCK (next, block))
3047 /* This block should be freed because all of its
3048 space was coalesced into the only free vector. */
3049 free_this_block = 1;
3050 else
3051 {
3052 size_t tmp;
3053 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3054 }
3055 }
3056 }
3057
3058 if (free_this_block)
3059 {
3060 *bprev = block->next;
3061 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3062 mem_delete (mem_find (block->data));
3063 #endif
3064 xfree (block);
3065 }
3066 else
3067 bprev = &block->next;
3068 }
3069
3070 /* Sweep large vectors. */
3071
3072 for (lv = large_vectors; lv; lv = *lvprev)
3073 {
3074 vector = large_vector_vec (lv);
3075 if (VECTOR_MARKED_P (vector))
3076 {
3077 VECTOR_UNMARK (vector);
3078 total_vectors++;
3079 if (vector->header.size & PSEUDOVECTOR_FLAG)
3080 {
3081 /* All non-bool pseudovectors are small enough to be allocated
3082 from vector blocks. This code should be redesigned if some
3083 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3084 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3085 total_vector_slots += vector_nbytes (vector) / word_size;
3086 }
3087 else
3088 total_vector_slots
3089 += header_size / word_size + vector->header.size;
3090 lvprev = &lv->next;
3091 }
3092 else
3093 {
3094 *lvprev = lv->next;
3095 lisp_free (lv);
3096 }
3097 }
3098 }
3099
3100 /* Value is a pointer to a newly allocated Lisp_Vector structure
3101 with room for LEN Lisp_Objects. */
3102
3103 static struct Lisp_Vector *
3104 allocate_vectorlike (ptrdiff_t len)
3105 {
3106 struct Lisp_Vector *p;
3107
3108 MALLOC_BLOCK_INPUT;
3109
3110 if (len == 0)
3111 p = XVECTOR (zero_vector);
3112 else
3113 {
3114 size_t nbytes = header_size + len * word_size;
3115
3116 #ifdef DOUG_LEA_MALLOC
3117 if (!mmap_lisp_allowed_p ())
3118 mallopt (M_MMAP_MAX, 0);
3119 #endif
3120
3121 if (nbytes <= VBLOCK_BYTES_MAX)
3122 p = allocate_vector_from_block (vroundup (nbytes));
3123 else
3124 {
3125 struct large_vector *lv
3126 = lisp_malloc ((large_vector_offset + header_size
3127 + len * word_size),
3128 MEM_TYPE_VECTORLIKE);
3129 lv->next = large_vectors;
3130 large_vectors = lv;
3131 p = large_vector_vec (lv);
3132 }
3133
3134 #ifdef DOUG_LEA_MALLOC
3135 if (!mmap_lisp_allowed_p ())
3136 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3137 #endif
3138
3139 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3140 emacs_abort ();
3141
3142 consing_since_gc += nbytes;
3143 vector_cells_consed += len;
3144 }
3145
3146 MALLOC_UNBLOCK_INPUT;
3147
3148 return p;
3149 }
3150
3151
3152 /* Allocate a vector with LEN slots. */
3153
3154 struct Lisp_Vector *
3155 allocate_vector (EMACS_INT len)
3156 {
3157 struct Lisp_Vector *v;
3158 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3159
3160 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3161 memory_full (SIZE_MAX);
3162 v = allocate_vectorlike (len);
3163 v->header.size = len;
3164 return v;
3165 }
3166
3167
3168 /* Allocate other vector-like structures. */
3169
3170 struct Lisp_Vector *
3171 allocate_pseudovector (int memlen, int lisplen,
3172 int zerolen, enum pvec_type tag)
3173 {
3174 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3175
3176 /* Catch bogus values. */
3177 eassert (0 <= tag && tag <= PVEC_FONT);
3178 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3179 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3180 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3181
3182 /* Only the first LISPLEN slots will be traced normally by the GC. */
3183 memclear (v->contents, zerolen * word_size);
3184 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3185 return v;
3186 }
3187
3188 struct buffer *
3189 allocate_buffer (void)
3190 {
3191 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3192
3193 BUFFER_PVEC_INIT (b);
3194 /* Put B on the chain of all buffers including killed ones. */
3195 b->next = all_buffers;
3196 all_buffers = b;
3197 /* Note that the rest fields of B are not initialized. */
3198 return b;
3199 }
3200
3201 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3202 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3203 See also the function `vector'. */)
3204 (register Lisp_Object length, Lisp_Object init)
3205 {
3206 Lisp_Object vector;
3207 register ptrdiff_t sizei;
3208 register ptrdiff_t i;
3209 register struct Lisp_Vector *p;
3210
3211 CHECK_NATNUM (length);
3212
3213 p = allocate_vector (XFASTINT (length));
3214 sizei = XFASTINT (length);
3215 for (i = 0; i < sizei; i++)
3216 p->contents[i] = init;
3217
3218 XSETVECTOR (vector, p);
3219 return vector;
3220 }
3221
3222 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3223 doc: /* Return a newly created vector with specified arguments as elements.
3224 Any number of arguments, even zero arguments, are allowed.
3225 usage: (vector &rest OBJECTS) */)
3226 (ptrdiff_t nargs, Lisp_Object *args)
3227 {
3228 ptrdiff_t i;
3229 register Lisp_Object val = make_uninit_vector (nargs);
3230 register struct Lisp_Vector *p = XVECTOR (val);
3231
3232 for (i = 0; i < nargs; i++)
3233 p->contents[i] = args[i];
3234 return val;
3235 }
3236
3237 void
3238 make_byte_code (struct Lisp_Vector *v)
3239 {
3240 /* Don't allow the global zero_vector to become a byte code object. */
3241 eassert (0 < v->header.size);
3242
3243 if (v->header.size > 1 && STRINGP (v->contents[1])
3244 && STRING_MULTIBYTE (v->contents[1]))
3245 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3246 earlier because they produced a raw 8-bit string for byte-code
3247 and now such a byte-code string is loaded as multibyte while
3248 raw 8-bit characters converted to multibyte form. Thus, now we
3249 must convert them back to the original unibyte form. */
3250 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3251 XSETPVECTYPE (v, PVEC_COMPILED);
3252 }
3253
3254 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3255 doc: /* Create a byte-code object with specified arguments as elements.
3256 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3257 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3258 and (optional) INTERACTIVE-SPEC.
3259 The first four arguments are required; at most six have any
3260 significance.
3261 The ARGLIST can be either like the one of `lambda', in which case the arguments
3262 will be dynamically bound before executing the byte code, or it can be an
3263 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3264 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3265 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3266 argument to catch the left-over arguments. If such an integer is used, the
3267 arguments will not be dynamically bound but will be instead pushed on the
3268 stack before executing the byte-code.
3269 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3270 (ptrdiff_t nargs, Lisp_Object *args)
3271 {
3272 ptrdiff_t i;
3273 register Lisp_Object val = make_uninit_vector (nargs);
3274 register struct Lisp_Vector *p = XVECTOR (val);
3275
3276 /* We used to purecopy everything here, if purify-flag was set. This worked
3277 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3278 dangerous, since make-byte-code is used during execution to build
3279 closures, so any closure built during the preload phase would end up
3280 copied into pure space, including its free variables, which is sometimes
3281 just wasteful and other times plainly wrong (e.g. those free vars may want
3282 to be setcar'd). */
3283
3284 for (i = 0; i < nargs; i++)
3285 p->contents[i] = args[i];
3286 make_byte_code (p);
3287 XSETCOMPILED (val, p);
3288 return val;
3289 }
3290
3291
3292 \f
3293 /***********************************************************************
3294 Symbol Allocation
3295 ***********************************************************************/
3296
3297 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3298 of the required alignment. */
3299
3300 union aligned_Lisp_Symbol
3301 {
3302 struct Lisp_Symbol s;
3303 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3304 & -GCALIGNMENT];
3305 };
3306
3307 /* Each symbol_block is just under 1020 bytes long, since malloc
3308 really allocates in units of powers of two and uses 4 bytes for its
3309 own overhead. */
3310
3311 #define SYMBOL_BLOCK_SIZE \
3312 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3313
3314 struct symbol_block
3315 {
3316 /* Place `symbols' first, to preserve alignment. */
3317 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3318 struct symbol_block *next;
3319 };
3320
3321 /* Current symbol block and index of first unused Lisp_Symbol
3322 structure in it. */
3323
3324 static struct symbol_block *symbol_block;
3325 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3326 /* Pointer to the first symbol_block that contains pinned symbols.
3327 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3328 10K of which are pinned (and all but 250 of them are interned in obarray),
3329 whereas a "typical session" has in the order of 30K symbols.
3330 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3331 than 30K to find the 10K symbols we need to mark. */
3332 static struct symbol_block *symbol_block_pinned;
3333
3334 /* List of free symbols. */
3335
3336 static struct Lisp_Symbol *symbol_free_list;
3337
3338 static void
3339 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3340 {
3341 XSYMBOL (sym)->name = name;
3342 }
3343
3344 void
3345 init_symbol (Lisp_Object val, Lisp_Object name)
3346 {
3347 struct Lisp_Symbol *p = XSYMBOL (val);
3348 set_symbol_name (val, name);
3349 set_symbol_plist (val, Qnil);
3350 p->redirect = SYMBOL_PLAINVAL;
3351 SET_SYMBOL_VAL (p, Qunbound);
3352 set_symbol_function (val, Qnil);
3353 set_symbol_next (val, NULL);
3354 p->gcmarkbit = false;
3355 p->interned = SYMBOL_UNINTERNED;
3356 p->constant = 0;
3357 p->declared_special = false;
3358 p->pinned = false;
3359 }
3360
3361 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3362 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3363 Its value is void, and its function definition and property list are nil. */)
3364 (Lisp_Object name)
3365 {
3366 Lisp_Object val;
3367
3368 CHECK_STRING (name);
3369
3370 MALLOC_BLOCK_INPUT;
3371
3372 if (symbol_free_list)
3373 {
3374 XSETSYMBOL (val, symbol_free_list);
3375 symbol_free_list = symbol_free_list->next;
3376 }
3377 else
3378 {
3379 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3380 {
3381 struct symbol_block *new
3382 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3383 new->next = symbol_block;
3384 symbol_block = new;
3385 symbol_block_index = 0;
3386 total_free_symbols += SYMBOL_BLOCK_SIZE;
3387 }
3388 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3389 symbol_block_index++;
3390 }
3391
3392 MALLOC_UNBLOCK_INPUT;
3393
3394 init_symbol (val, name);
3395 consing_since_gc += sizeof (struct Lisp_Symbol);
3396 symbols_consed++;
3397 total_free_symbols--;
3398 return val;
3399 }
3400
3401
3402 \f
3403 /***********************************************************************
3404 Marker (Misc) Allocation
3405 ***********************************************************************/
3406
3407 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3408 the required alignment. */
3409
3410 union aligned_Lisp_Misc
3411 {
3412 union Lisp_Misc m;
3413 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3414 & -GCALIGNMENT];
3415 };
3416
3417 /* Allocation of markers and other objects that share that structure.
3418 Works like allocation of conses. */
3419
3420 #define MARKER_BLOCK_SIZE \
3421 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3422
3423 struct marker_block
3424 {
3425 /* Place `markers' first, to preserve alignment. */
3426 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3427 struct marker_block *next;
3428 };
3429
3430 static struct marker_block *marker_block;
3431 static int marker_block_index = MARKER_BLOCK_SIZE;
3432
3433 static union Lisp_Misc *marker_free_list;
3434
3435 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3436
3437 static Lisp_Object
3438 allocate_misc (enum Lisp_Misc_Type type)
3439 {
3440 Lisp_Object val;
3441
3442 MALLOC_BLOCK_INPUT;
3443
3444 if (marker_free_list)
3445 {
3446 XSETMISC (val, marker_free_list);
3447 marker_free_list = marker_free_list->u_free.chain;
3448 }
3449 else
3450 {
3451 if (marker_block_index == MARKER_BLOCK_SIZE)
3452 {
3453 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3454 new->next = marker_block;
3455 marker_block = new;
3456 marker_block_index = 0;
3457 total_free_markers += MARKER_BLOCK_SIZE;
3458 }
3459 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3460 marker_block_index++;
3461 }
3462
3463 MALLOC_UNBLOCK_INPUT;
3464
3465 --total_free_markers;
3466 consing_since_gc += sizeof (union Lisp_Misc);
3467 misc_objects_consed++;
3468 XMISCANY (val)->type = type;
3469 XMISCANY (val)->gcmarkbit = 0;
3470 return val;
3471 }
3472
3473 /* Free a Lisp_Misc object. */
3474
3475 void
3476 free_misc (Lisp_Object misc)
3477 {
3478 XMISCANY (misc)->type = Lisp_Misc_Free;
3479 XMISC (misc)->u_free.chain = marker_free_list;
3480 marker_free_list = XMISC (misc);
3481 consing_since_gc -= sizeof (union Lisp_Misc);
3482 total_free_markers++;
3483 }
3484
3485 /* Verify properties of Lisp_Save_Value's representation
3486 that are assumed here and elsewhere. */
3487
3488 verify (SAVE_UNUSED == 0);
3489 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3490 >> SAVE_SLOT_BITS)
3491 == 0);
3492
3493 /* Return Lisp_Save_Value objects for the various combinations
3494 that callers need. */
3495
3496 Lisp_Object
3497 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3498 {
3499 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3500 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3501 p->save_type = SAVE_TYPE_INT_INT_INT;
3502 p->data[0].integer = a;
3503 p->data[1].integer = b;
3504 p->data[2].integer = c;
3505 return val;
3506 }
3507
3508 Lisp_Object
3509 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3510 Lisp_Object d)
3511 {
3512 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3513 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3514 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3515 p->data[0].object = a;
3516 p->data[1].object = b;
3517 p->data[2].object = c;
3518 p->data[3].object = d;
3519 return val;
3520 }
3521
3522 Lisp_Object
3523 make_save_ptr (void *a)
3524 {
3525 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3526 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3527 p->save_type = SAVE_POINTER;
3528 p->data[0].pointer = a;
3529 return val;
3530 }
3531
3532 Lisp_Object
3533 make_save_ptr_int (void *a, ptrdiff_t b)
3534 {
3535 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3536 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3537 p->save_type = SAVE_TYPE_PTR_INT;
3538 p->data[0].pointer = a;
3539 p->data[1].integer = b;
3540 return val;
3541 }
3542
3543 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3544 Lisp_Object
3545 make_save_ptr_ptr (void *a, void *b)
3546 {
3547 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3548 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3549 p->save_type = SAVE_TYPE_PTR_PTR;
3550 p->data[0].pointer = a;
3551 p->data[1].pointer = b;
3552 return val;
3553 }
3554 #endif
3555
3556 Lisp_Object
3557 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3558 {
3559 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3560 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3561 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3562 p->data[0].funcpointer = a;
3563 p->data[1].pointer = b;
3564 p->data[2].object = c;
3565 return val;
3566 }
3567
3568 /* Return a Lisp_Save_Value object that represents an array A
3569 of N Lisp objects. */
3570
3571 Lisp_Object
3572 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3573 {
3574 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3575 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3576 p->save_type = SAVE_TYPE_MEMORY;
3577 p->data[0].pointer = a;
3578 p->data[1].integer = n;
3579 return val;
3580 }
3581
3582 /* Free a Lisp_Save_Value object. Do not use this function
3583 if SAVE contains pointer other than returned by xmalloc. */
3584
3585 void
3586 free_save_value (Lisp_Object save)
3587 {
3588 xfree (XSAVE_POINTER (save, 0));
3589 free_misc (save);
3590 }
3591
3592 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3593
3594 Lisp_Object
3595 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3596 {
3597 register Lisp_Object overlay;
3598
3599 overlay = allocate_misc (Lisp_Misc_Overlay);
3600 OVERLAY_START (overlay) = start;
3601 OVERLAY_END (overlay) = end;
3602 set_overlay_plist (overlay, plist);
3603 XOVERLAY (overlay)->next = NULL;
3604 return overlay;
3605 }
3606
3607 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3608 doc: /* Return a newly allocated marker which does not point at any place. */)
3609 (void)
3610 {
3611 register Lisp_Object val;
3612 register struct Lisp_Marker *p;
3613
3614 val = allocate_misc (Lisp_Misc_Marker);
3615 p = XMARKER (val);
3616 p->buffer = 0;
3617 p->bytepos = 0;
3618 p->charpos = 0;
3619 p->next = NULL;
3620 p->insertion_type = 0;
3621 p->need_adjustment = 0;
3622 return val;
3623 }
3624
3625 /* Return a newly allocated marker which points into BUF
3626 at character position CHARPOS and byte position BYTEPOS. */
3627
3628 Lisp_Object
3629 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3630 {
3631 Lisp_Object obj;
3632 struct Lisp_Marker *m;
3633
3634 /* No dead buffers here. */
3635 eassert (BUFFER_LIVE_P (buf));
3636
3637 /* Every character is at least one byte. */
3638 eassert (charpos <= bytepos);
3639
3640 obj = allocate_misc (Lisp_Misc_Marker);
3641 m = XMARKER (obj);
3642 m->buffer = buf;
3643 m->charpos = charpos;
3644 m->bytepos = bytepos;
3645 m->insertion_type = 0;
3646 m->need_adjustment = 0;
3647 m->next = BUF_MARKERS (buf);
3648 BUF_MARKERS (buf) = m;
3649 return obj;
3650 }
3651
3652 /* Put MARKER back on the free list after using it temporarily. */
3653
3654 void
3655 free_marker (Lisp_Object marker)
3656 {
3657 unchain_marker (XMARKER (marker));
3658 free_misc (marker);
3659 }
3660
3661 \f
3662 /* Return a newly created vector or string with specified arguments as
3663 elements. If all the arguments are characters that can fit
3664 in a string of events, make a string; otherwise, make a vector.
3665
3666 Any number of arguments, even zero arguments, are allowed. */
3667
3668 Lisp_Object
3669 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3670 {
3671 ptrdiff_t i;
3672
3673 for (i = 0; i < nargs; i++)
3674 /* The things that fit in a string
3675 are characters that are in 0...127,
3676 after discarding the meta bit and all the bits above it. */
3677 if (!INTEGERP (args[i])
3678 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3679 return Fvector (nargs, args);
3680
3681 /* Since the loop exited, we know that all the things in it are
3682 characters, so we can make a string. */
3683 {
3684 Lisp_Object result;
3685
3686 result = Fmake_string (make_number (nargs), make_number (0));
3687 for (i = 0; i < nargs; i++)
3688 {
3689 SSET (result, i, XINT (args[i]));
3690 /* Move the meta bit to the right place for a string char. */
3691 if (XINT (args[i]) & CHAR_META)
3692 SSET (result, i, SREF (result, i) | 0x80);
3693 }
3694
3695 return result;
3696 }
3697 }
3698
3699 static void
3700 init_finalizer_list (struct Lisp_Finalizer *head)
3701 {
3702 head->prev = head->next = head;
3703 }
3704
3705 /* Insert FINALIZER before ELEMENT. */
3706
3707 static void
3708 finalizer_insert (struct Lisp_Finalizer *element,
3709 struct Lisp_Finalizer *finalizer)
3710 {
3711 eassert (finalizer->prev == NULL);
3712 eassert (finalizer->next == NULL);
3713 finalizer->next = element;
3714 finalizer->prev = element->prev;
3715 finalizer->prev->next = finalizer;
3716 element->prev = finalizer;
3717 }
3718
3719 static void
3720 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3721 {
3722 if (finalizer->prev != NULL)
3723 {
3724 eassert (finalizer->next != NULL);
3725 finalizer->prev->next = finalizer->next;
3726 finalizer->next->prev = finalizer->prev;
3727 finalizer->prev = finalizer->next = NULL;
3728 }
3729 }
3730
3731 static void
3732 mark_finalizer_list (struct Lisp_Finalizer *head)
3733 {
3734 for (struct Lisp_Finalizer *finalizer = head->next;
3735 finalizer != head;
3736 finalizer = finalizer->next)
3737 {
3738 finalizer->base.gcmarkbit = true;
3739 mark_object (finalizer->function);
3740 }
3741 }
3742
3743 /* Move doomed finalizers to list DEST from list SRC. A doomed
3744 finalizer is one that is not GC-reachable and whose
3745 finalizer->function is non-nil. */
3746
3747 static void
3748 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3749 struct Lisp_Finalizer *src)
3750 {
3751 struct Lisp_Finalizer *finalizer = src->next;
3752 while (finalizer != src)
3753 {
3754 struct Lisp_Finalizer *next = finalizer->next;
3755 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3756 {
3757 unchain_finalizer (finalizer);
3758 finalizer_insert (dest, finalizer);
3759 }
3760
3761 finalizer = next;
3762 }
3763 }
3764
3765 static Lisp_Object
3766 run_finalizer_handler (Lisp_Object args)
3767 {
3768 add_to_log ("finalizer failed: %S", args);
3769 return Qnil;
3770 }
3771
3772 static void
3773 run_finalizer_function (Lisp_Object function)
3774 {
3775 struct gcpro gcpro1;
3776 ptrdiff_t count = SPECPDL_INDEX ();
3777
3778 GCPRO1 (function);
3779 specbind (Qinhibit_quit, Qt);
3780 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3781 unbind_to (count, Qnil);
3782 UNGCPRO;
3783 }
3784
3785 static void
3786 run_finalizers (struct Lisp_Finalizer *finalizers)
3787 {
3788 struct Lisp_Finalizer *finalizer;
3789 Lisp_Object function;
3790
3791 while (finalizers->next != finalizers)
3792 {
3793 finalizer = finalizers->next;
3794 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3795 unchain_finalizer (finalizer);
3796 function = finalizer->function;
3797 if (!NILP (function))
3798 {
3799 finalizer->function = Qnil;
3800 run_finalizer_function (function);
3801 }
3802 }
3803 }
3804
3805 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3806 doc: /* Make a finalizer that will run FUNCTION.
3807 FUNCTION will be called after garbage collection when the returned
3808 finalizer object becomes unreachable. If the finalizer object is
3809 reachable only through references from finalizer objects, it does not
3810 count as reachable for the purpose of deciding whether to run
3811 FUNCTION. FUNCTION will be run once per finalizer object. */)
3812 (Lisp_Object function)
3813 {
3814 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3815 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3816 finalizer->function = function;
3817 finalizer->prev = finalizer->next = NULL;
3818 finalizer_insert (&finalizers, finalizer);
3819 return val;
3820 }
3821
3822 \f
3823 /************************************************************************
3824 Memory Full Handling
3825 ************************************************************************/
3826
3827
3828 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3829 there may have been size_t overflow so that malloc was never
3830 called, or perhaps malloc was invoked successfully but the
3831 resulting pointer had problems fitting into a tagged EMACS_INT. In
3832 either case this counts as memory being full even though malloc did
3833 not fail. */
3834
3835 void
3836 memory_full (size_t nbytes)
3837 {
3838 /* Do not go into hysterics merely because a large request failed. */
3839 bool enough_free_memory = 0;
3840 if (SPARE_MEMORY < nbytes)
3841 {
3842 void *p;
3843
3844 MALLOC_BLOCK_INPUT;
3845 p = malloc (SPARE_MEMORY);
3846 if (p)
3847 {
3848 free (p);
3849 enough_free_memory = 1;
3850 }
3851 MALLOC_UNBLOCK_INPUT;
3852 }
3853
3854 if (! enough_free_memory)
3855 {
3856 int i;
3857
3858 Vmemory_full = Qt;
3859
3860 memory_full_cons_threshold = sizeof (struct cons_block);
3861
3862 /* The first time we get here, free the spare memory. */
3863 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3864 if (spare_memory[i])
3865 {
3866 if (i == 0)
3867 free (spare_memory[i]);
3868 else if (i >= 1 && i <= 4)
3869 lisp_align_free (spare_memory[i]);
3870 else
3871 lisp_free (spare_memory[i]);
3872 spare_memory[i] = 0;
3873 }
3874 }
3875
3876 /* This used to call error, but if we've run out of memory, we could
3877 get infinite recursion trying to build the string. */
3878 xsignal (Qnil, Vmemory_signal_data);
3879 }
3880
3881 /* If we released our reserve (due to running out of memory),
3882 and we have a fair amount free once again,
3883 try to set aside another reserve in case we run out once more.
3884
3885 This is called when a relocatable block is freed in ralloc.c,
3886 and also directly from this file, in case we're not using ralloc.c. */
3887
3888 void
3889 refill_memory_reserve (void)
3890 {
3891 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3892 if (spare_memory[0] == 0)
3893 spare_memory[0] = malloc (SPARE_MEMORY);
3894 if (spare_memory[1] == 0)
3895 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3896 MEM_TYPE_SPARE);
3897 if (spare_memory[2] == 0)
3898 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3899 MEM_TYPE_SPARE);
3900 if (spare_memory[3] == 0)
3901 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3902 MEM_TYPE_SPARE);
3903 if (spare_memory[4] == 0)
3904 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3905 MEM_TYPE_SPARE);
3906 if (spare_memory[5] == 0)
3907 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3908 MEM_TYPE_SPARE);
3909 if (spare_memory[6] == 0)
3910 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3911 MEM_TYPE_SPARE);
3912 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3913 Vmemory_full = Qnil;
3914 #endif
3915 }
3916 \f
3917 /************************************************************************
3918 C Stack Marking
3919 ************************************************************************/
3920
3921 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3922
3923 /* Conservative C stack marking requires a method to identify possibly
3924 live Lisp objects given a pointer value. We do this by keeping
3925 track of blocks of Lisp data that are allocated in a red-black tree
3926 (see also the comment of mem_node which is the type of nodes in
3927 that tree). Function lisp_malloc adds information for an allocated
3928 block to the red-black tree with calls to mem_insert, and function
3929 lisp_free removes it with mem_delete. Functions live_string_p etc
3930 call mem_find to lookup information about a given pointer in the
3931 tree, and use that to determine if the pointer points to a Lisp
3932 object or not. */
3933
3934 /* Initialize this part of alloc.c. */
3935
3936 static void
3937 mem_init (void)
3938 {
3939 mem_z.left = mem_z.right = MEM_NIL;
3940 mem_z.parent = NULL;
3941 mem_z.color = MEM_BLACK;
3942 mem_z.start = mem_z.end = NULL;
3943 mem_root = MEM_NIL;
3944 }
3945
3946
3947 /* Value is a pointer to the mem_node containing START. Value is
3948 MEM_NIL if there is no node in the tree containing START. */
3949
3950 static struct mem_node *
3951 mem_find (void *start)
3952 {
3953 struct mem_node *p;
3954
3955 if (start < min_heap_address || start > max_heap_address)
3956 return MEM_NIL;
3957
3958 /* Make the search always successful to speed up the loop below. */
3959 mem_z.start = start;
3960 mem_z.end = (char *) start + 1;
3961
3962 p = mem_root;
3963 while (start < p->start || start >= p->end)
3964 p = start < p->start ? p->left : p->right;
3965 return p;
3966 }
3967
3968
3969 /* Insert a new node into the tree for a block of memory with start
3970 address START, end address END, and type TYPE. Value is a
3971 pointer to the node that was inserted. */
3972
3973 static struct mem_node *
3974 mem_insert (void *start, void *end, enum mem_type type)
3975 {
3976 struct mem_node *c, *parent, *x;
3977
3978 if (min_heap_address == NULL || start < min_heap_address)
3979 min_heap_address = start;
3980 if (max_heap_address == NULL || end > max_heap_address)
3981 max_heap_address = end;
3982
3983 /* See where in the tree a node for START belongs. In this
3984 particular application, it shouldn't happen that a node is already
3985 present. For debugging purposes, let's check that. */
3986 c = mem_root;
3987 parent = NULL;
3988
3989 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3990
3991 while (c != MEM_NIL)
3992 {
3993 if (start >= c->start && start < c->end)
3994 emacs_abort ();
3995 parent = c;
3996 c = start < c->start ? c->left : c->right;
3997 }
3998
3999 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
4000
4001 while (c != MEM_NIL)
4002 {
4003 parent = c;
4004 c = start < c->start ? c->left : c->right;
4005 }
4006
4007 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
4008
4009 /* Create a new node. */
4010 #ifdef GC_MALLOC_CHECK
4011 x = malloc (sizeof *x);
4012 if (x == NULL)
4013 emacs_abort ();
4014 #else
4015 x = xmalloc (sizeof *x);
4016 #endif
4017 x->start = start;
4018 x->end = end;
4019 x->type = type;
4020 x->parent = parent;
4021 x->left = x->right = MEM_NIL;
4022 x->color = MEM_RED;
4023
4024 /* Insert it as child of PARENT or install it as root. */
4025 if (parent)
4026 {
4027 if (start < parent->start)
4028 parent->left = x;
4029 else
4030 parent->right = x;
4031 }
4032 else
4033 mem_root = x;
4034
4035 /* Re-establish red-black tree properties. */
4036 mem_insert_fixup (x);
4037
4038 return x;
4039 }
4040
4041
4042 /* Re-establish the red-black properties of the tree, and thereby
4043 balance the tree, after node X has been inserted; X is always red. */
4044
4045 static void
4046 mem_insert_fixup (struct mem_node *x)
4047 {
4048 while (x != mem_root && x->parent->color == MEM_RED)
4049 {
4050 /* X is red and its parent is red. This is a violation of
4051 red-black tree property #3. */
4052
4053 if (x->parent == x->parent->parent->left)
4054 {
4055 /* We're on the left side of our grandparent, and Y is our
4056 "uncle". */
4057 struct mem_node *y = x->parent->parent->right;
4058
4059 if (y->color == MEM_RED)
4060 {
4061 /* Uncle and parent are red but should be black because
4062 X is red. Change the colors accordingly and proceed
4063 with the grandparent. */
4064 x->parent->color = MEM_BLACK;
4065 y->color = MEM_BLACK;
4066 x->parent->parent->color = MEM_RED;
4067 x = x->parent->parent;
4068 }
4069 else
4070 {
4071 /* Parent and uncle have different colors; parent is
4072 red, uncle is black. */
4073 if (x == x->parent->right)
4074 {
4075 x = x->parent;
4076 mem_rotate_left (x);
4077 }
4078
4079 x->parent->color = MEM_BLACK;
4080 x->parent->parent->color = MEM_RED;
4081 mem_rotate_right (x->parent->parent);
4082 }
4083 }
4084 else
4085 {
4086 /* This is the symmetrical case of above. */
4087 struct mem_node *y = x->parent->parent->left;
4088
4089 if (y->color == MEM_RED)
4090 {
4091 x->parent->color = MEM_BLACK;
4092 y->color = MEM_BLACK;
4093 x->parent->parent->color = MEM_RED;
4094 x = x->parent->parent;
4095 }
4096 else
4097 {
4098 if (x == x->parent->left)
4099 {
4100 x = x->parent;
4101 mem_rotate_right (x);
4102 }
4103
4104 x->parent->color = MEM_BLACK;
4105 x->parent->parent->color = MEM_RED;
4106 mem_rotate_left (x->parent->parent);
4107 }
4108 }
4109 }
4110
4111 /* The root may have been changed to red due to the algorithm. Set
4112 it to black so that property #5 is satisfied. */
4113 mem_root->color = MEM_BLACK;
4114 }
4115
4116
4117 /* (x) (y)
4118 / \ / \
4119 a (y) ===> (x) c
4120 / \ / \
4121 b c a b */
4122
4123 static void
4124 mem_rotate_left (struct mem_node *x)
4125 {
4126 struct mem_node *y;
4127
4128 /* Turn y's left sub-tree into x's right sub-tree. */
4129 y = x->right;
4130 x->right = y->left;
4131 if (y->left != MEM_NIL)
4132 y->left->parent = x;
4133
4134 /* Y's parent was x's parent. */
4135 if (y != MEM_NIL)
4136 y->parent = x->parent;
4137
4138 /* Get the parent to point to y instead of x. */
4139 if (x->parent)
4140 {
4141 if (x == x->parent->left)
4142 x->parent->left = y;
4143 else
4144 x->parent->right = y;
4145 }
4146 else
4147 mem_root = y;
4148
4149 /* Put x on y's left. */
4150 y->left = x;
4151 if (x != MEM_NIL)
4152 x->parent = y;
4153 }
4154
4155
4156 /* (x) (Y)
4157 / \ / \
4158 (y) c ===> a (x)
4159 / \ / \
4160 a b b c */
4161
4162 static void
4163 mem_rotate_right (struct mem_node *x)
4164 {
4165 struct mem_node *y = x->left;
4166
4167 x->left = y->right;
4168 if (y->right != MEM_NIL)
4169 y->right->parent = x;
4170
4171 if (y != MEM_NIL)
4172 y->parent = x->parent;
4173 if (x->parent)
4174 {
4175 if (x == x->parent->right)
4176 x->parent->right = y;
4177 else
4178 x->parent->left = y;
4179 }
4180 else
4181 mem_root = y;
4182
4183 y->right = x;
4184 if (x != MEM_NIL)
4185 x->parent = y;
4186 }
4187
4188
4189 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4190
4191 static void
4192 mem_delete (struct mem_node *z)
4193 {
4194 struct mem_node *x, *y;
4195
4196 if (!z || z == MEM_NIL)
4197 return;
4198
4199 if (z->left == MEM_NIL || z->right == MEM_NIL)
4200 y = z;
4201 else
4202 {
4203 y = z->right;
4204 while (y->left != MEM_NIL)
4205 y = y->left;
4206 }
4207
4208 if (y->left != MEM_NIL)
4209 x = y->left;
4210 else
4211 x = y->right;
4212
4213 x->parent = y->parent;
4214 if (y->parent)
4215 {
4216 if (y == y->parent->left)
4217 y->parent->left = x;
4218 else
4219 y->parent->right = x;
4220 }
4221 else
4222 mem_root = x;
4223
4224 if (y != z)
4225 {
4226 z->start = y->start;
4227 z->end = y->end;
4228 z->type = y->type;
4229 }
4230
4231 if (y->color == MEM_BLACK)
4232 mem_delete_fixup (x);
4233
4234 #ifdef GC_MALLOC_CHECK
4235 free (y);
4236 #else
4237 xfree (y);
4238 #endif
4239 }
4240
4241
4242 /* Re-establish the red-black properties of the tree, after a
4243 deletion. */
4244
4245 static void
4246 mem_delete_fixup (struct mem_node *x)
4247 {
4248 while (x != mem_root && x->color == MEM_BLACK)
4249 {
4250 if (x == x->parent->left)
4251 {
4252 struct mem_node *w = x->parent->right;
4253
4254 if (w->color == MEM_RED)
4255 {
4256 w->color = MEM_BLACK;
4257 x->parent->color = MEM_RED;
4258 mem_rotate_left (x->parent);
4259 w = x->parent->right;
4260 }
4261
4262 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4263 {
4264 w->color = MEM_RED;
4265 x = x->parent;
4266 }
4267 else
4268 {
4269 if (w->right->color == MEM_BLACK)
4270 {
4271 w->left->color = MEM_BLACK;
4272 w->color = MEM_RED;
4273 mem_rotate_right (w);
4274 w = x->parent->right;
4275 }
4276 w->color = x->parent->color;
4277 x->parent->color = MEM_BLACK;
4278 w->right->color = MEM_BLACK;
4279 mem_rotate_left (x->parent);
4280 x = mem_root;
4281 }
4282 }
4283 else
4284 {
4285 struct mem_node *w = x->parent->left;
4286
4287 if (w->color == MEM_RED)
4288 {
4289 w->color = MEM_BLACK;
4290 x->parent->color = MEM_RED;
4291 mem_rotate_right (x->parent);
4292 w = x->parent->left;
4293 }
4294
4295 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4296 {
4297 w->color = MEM_RED;
4298 x = x->parent;
4299 }
4300 else
4301 {
4302 if (w->left->color == MEM_BLACK)
4303 {
4304 w->right->color = MEM_BLACK;
4305 w->color = MEM_RED;
4306 mem_rotate_left (w);
4307 w = x->parent->left;
4308 }
4309
4310 w->color = x->parent->color;
4311 x->parent->color = MEM_BLACK;
4312 w->left->color = MEM_BLACK;
4313 mem_rotate_right (x->parent);
4314 x = mem_root;
4315 }
4316 }
4317 }
4318
4319 x->color = MEM_BLACK;
4320 }
4321
4322
4323 /* Value is non-zero if P is a pointer to a live Lisp string on
4324 the heap. M is a pointer to the mem_block for P. */
4325
4326 static bool
4327 live_string_p (struct mem_node *m, void *p)
4328 {
4329 if (m->type == MEM_TYPE_STRING)
4330 {
4331 struct string_block *b = m->start;
4332 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4333
4334 /* P must point to the start of a Lisp_String structure, and it
4335 must not be on the free-list. */
4336 return (offset >= 0
4337 && offset % sizeof b->strings[0] == 0
4338 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4339 && ((struct Lisp_String *) p)->data != NULL);
4340 }
4341 else
4342 return 0;
4343 }
4344
4345
4346 /* Value is non-zero if P is a pointer to a live Lisp cons on
4347 the heap. M is a pointer to the mem_block for P. */
4348
4349 static bool
4350 live_cons_p (struct mem_node *m, void *p)
4351 {
4352 if (m->type == MEM_TYPE_CONS)
4353 {
4354 struct cons_block *b = m->start;
4355 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4356
4357 /* P must point to the start of a Lisp_Cons, not be
4358 one of the unused cells in the current cons block,
4359 and not be on the free-list. */
4360 return (offset >= 0
4361 && offset % sizeof b->conses[0] == 0
4362 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4363 && (b != cons_block
4364 || offset / sizeof b->conses[0] < cons_block_index)
4365 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4366 }
4367 else
4368 return 0;
4369 }
4370
4371
4372 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4373 the heap. M is a pointer to the mem_block for P. */
4374
4375 static bool
4376 live_symbol_p (struct mem_node *m, void *p)
4377 {
4378 if (m->type == MEM_TYPE_SYMBOL)
4379 {
4380 struct symbol_block *b = m->start;
4381 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4382
4383 /* P must point to the start of a Lisp_Symbol, not be
4384 one of the unused cells in the current symbol block,
4385 and not be on the free-list. */
4386 return (offset >= 0
4387 && offset % sizeof b->symbols[0] == 0
4388 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4389 && (b != symbol_block
4390 || offset / sizeof b->symbols[0] < symbol_block_index)
4391 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4392 }
4393 else
4394 return 0;
4395 }
4396
4397
4398 /* Value is non-zero if P is a pointer to a live Lisp float on
4399 the heap. M is a pointer to the mem_block for P. */
4400
4401 static bool
4402 live_float_p (struct mem_node *m, void *p)
4403 {
4404 if (m->type == MEM_TYPE_FLOAT)
4405 {
4406 struct float_block *b = m->start;
4407 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4408
4409 /* P must point to the start of a Lisp_Float and not be
4410 one of the unused cells in the current float block. */
4411 return (offset >= 0
4412 && offset % sizeof b->floats[0] == 0
4413 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4414 && (b != float_block
4415 || offset / sizeof b->floats[0] < float_block_index));
4416 }
4417 else
4418 return 0;
4419 }
4420
4421
4422 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4423 the heap. M is a pointer to the mem_block for P. */
4424
4425 static bool
4426 live_misc_p (struct mem_node *m, void *p)
4427 {
4428 if (m->type == MEM_TYPE_MISC)
4429 {
4430 struct marker_block *b = m->start;
4431 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4432
4433 /* P must point to the start of a Lisp_Misc, not be
4434 one of the unused cells in the current misc block,
4435 and not be on the free-list. */
4436 return (offset >= 0
4437 && offset % sizeof b->markers[0] == 0
4438 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4439 && (b != marker_block
4440 || offset / sizeof b->markers[0] < marker_block_index)
4441 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4442 }
4443 else
4444 return 0;
4445 }
4446
4447
4448 /* Value is non-zero if P is a pointer to a live vector-like object.
4449 M is a pointer to the mem_block for P. */
4450
4451 static bool
4452 live_vector_p (struct mem_node *m, void *p)
4453 {
4454 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4455 {
4456 /* This memory node corresponds to a vector block. */
4457 struct vector_block *block = m->start;
4458 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4459
4460 /* P is in the block's allocation range. Scan the block
4461 up to P and see whether P points to the start of some
4462 vector which is not on a free list. FIXME: check whether
4463 some allocation patterns (probably a lot of short vectors)
4464 may cause a substantial overhead of this loop. */
4465 while (VECTOR_IN_BLOCK (vector, block)
4466 && vector <= (struct Lisp_Vector *) p)
4467 {
4468 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4469 return 1;
4470 else
4471 vector = ADVANCE (vector, vector_nbytes (vector));
4472 }
4473 }
4474 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4475 /* This memory node corresponds to a large vector. */
4476 return 1;
4477 return 0;
4478 }
4479
4480
4481 /* Value is non-zero if P is a pointer to a live buffer. M is a
4482 pointer to the mem_block for P. */
4483
4484 static bool
4485 live_buffer_p (struct mem_node *m, void *p)
4486 {
4487 /* P must point to the start of the block, and the buffer
4488 must not have been killed. */
4489 return (m->type == MEM_TYPE_BUFFER
4490 && p == m->start
4491 && !NILP (((struct buffer *) p)->name_));
4492 }
4493
4494 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4495
4496 #if GC_MARK_STACK
4497
4498 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4499
4500 /* Currently not used, but may be called from gdb. */
4501
4502 void dump_zombies (void) EXTERNALLY_VISIBLE;
4503
4504 /* Array of objects that are kept alive because the C stack contains
4505 a pattern that looks like a reference to them. */
4506
4507 #define MAX_ZOMBIES 10
4508 static Lisp_Object zombies[MAX_ZOMBIES];
4509
4510 /* Number of zombie objects. */
4511
4512 static EMACS_INT nzombies;
4513
4514 /* Number of garbage collections. */
4515
4516 static EMACS_INT ngcs;
4517
4518 /* Average percentage of zombies per collection. */
4519
4520 static double avg_zombies;
4521
4522 /* Max. number of live and zombie objects. */
4523
4524 static EMACS_INT max_live, max_zombies;
4525
4526 /* Average number of live objects per GC. */
4527
4528 static double avg_live;
4529
4530 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4531 doc: /* Show information about live and zombie objects. */)
4532 (void)
4533 {
4534 Lisp_Object zombie_list = Qnil;
4535 for (int i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4536 zombie_list = Fcons (zombies[i], zombie_list);
4537 AUTO_STRING (format, ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%),"
4538 " max %d/%d\nzombies: %S"));
4539 return CALLN (Fmessage, format,
4540 make_number (ngcs), make_float (avg_live),
4541 make_float (avg_zombies),
4542 make_float (avg_zombies / avg_live / 100),
4543 make_number (max_live), make_number (max_zombies),
4544 zombie_list);
4545 }
4546
4547 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4548
4549
4550 /* Mark OBJ if we can prove it's a Lisp_Object. */
4551
4552 static void
4553 mark_maybe_object (Lisp_Object obj)
4554 {
4555 void *po;
4556 struct mem_node *m;
4557
4558 #if USE_VALGRIND
4559 if (valgrind_p)
4560 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4561 #endif
4562
4563 if (INTEGERP (obj))
4564 return;
4565
4566 po = (void *) XPNTR (obj);
4567 m = mem_find (po);
4568
4569 if (m != MEM_NIL)
4570 {
4571 bool mark_p = 0;
4572
4573 switch (XTYPE (obj))
4574 {
4575 case Lisp_String:
4576 mark_p = (live_string_p (m, po)
4577 && !STRING_MARKED_P ((struct Lisp_String *) po));
4578 break;
4579
4580 case Lisp_Cons:
4581 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4582 break;
4583
4584 case Lisp_Symbol:
4585 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4586 break;
4587
4588 case Lisp_Float:
4589 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4590 break;
4591
4592 case Lisp_Vectorlike:
4593 /* Note: can't check BUFFERP before we know it's a
4594 buffer because checking that dereferences the pointer
4595 PO which might point anywhere. */
4596 if (live_vector_p (m, po))
4597 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4598 else if (live_buffer_p (m, po))
4599 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4600 break;
4601
4602 case Lisp_Misc:
4603 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4604 break;
4605
4606 default:
4607 break;
4608 }
4609
4610 if (mark_p)
4611 {
4612 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4613 if (nzombies < MAX_ZOMBIES)
4614 zombies[nzombies] = obj;
4615 ++nzombies;
4616 #endif
4617 mark_object (obj);
4618 }
4619 }
4620 }
4621
4622 /* Return true if P can point to Lisp data, and false otherwise.
4623 Symbols are implemented via offsets not pointers, but the offsets
4624 are also multiples of GCALIGNMENT. */
4625
4626 static bool
4627 maybe_lisp_pointer (void *p)
4628 {
4629 return (uintptr_t) p % GCALIGNMENT == 0;
4630 }
4631
4632 /* If P points to Lisp data, mark that as live if it isn't already
4633 marked. */
4634
4635 static void
4636 mark_maybe_pointer (void *p)
4637 {
4638 struct mem_node *m;
4639
4640 #if USE_VALGRIND
4641 if (valgrind_p)
4642 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4643 #endif
4644
4645 if (!maybe_lisp_pointer (p))
4646 return;
4647
4648 m = mem_find (p);
4649 if (m != MEM_NIL)
4650 {
4651 Lisp_Object obj = Qnil;
4652
4653 switch (m->type)
4654 {
4655 case MEM_TYPE_NON_LISP:
4656 case MEM_TYPE_SPARE:
4657 /* Nothing to do; not a pointer to Lisp memory. */
4658 break;
4659
4660 case MEM_TYPE_BUFFER:
4661 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4662 XSETVECTOR (obj, p);
4663 break;
4664
4665 case MEM_TYPE_CONS:
4666 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4667 XSETCONS (obj, p);
4668 break;
4669
4670 case MEM_TYPE_STRING:
4671 if (live_string_p (m, p)
4672 && !STRING_MARKED_P ((struct Lisp_String *) p))
4673 XSETSTRING (obj, p);
4674 break;
4675
4676 case MEM_TYPE_MISC:
4677 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4678 XSETMISC (obj, p);
4679 break;
4680
4681 case MEM_TYPE_SYMBOL:
4682 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4683 XSETSYMBOL (obj, p);
4684 break;
4685
4686 case MEM_TYPE_FLOAT:
4687 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4688 XSETFLOAT (obj, p);
4689 break;
4690
4691 case MEM_TYPE_VECTORLIKE:
4692 case MEM_TYPE_VECTOR_BLOCK:
4693 if (live_vector_p (m, p))
4694 {
4695 Lisp_Object tem;
4696 XSETVECTOR (tem, p);
4697 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4698 obj = tem;
4699 }
4700 break;
4701
4702 default:
4703 emacs_abort ();
4704 }
4705
4706 if (!NILP (obj))
4707 mark_object (obj);
4708 }
4709 }
4710
4711
4712 /* Alignment of pointer values. Use alignof, as it sometimes returns
4713 a smaller alignment than GCC's __alignof__ and mark_memory might
4714 miss objects if __alignof__ were used. */
4715 #define GC_POINTER_ALIGNMENT alignof (void *)
4716
4717 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4718 or END+OFFSET..START. */
4719
4720 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4721 mark_memory (void *start, void *end)
4722 {
4723 void **pp;
4724 int i;
4725
4726 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4727 nzombies = 0;
4728 #endif
4729
4730 /* Make START the pointer to the start of the memory region,
4731 if it isn't already. */
4732 if (end < start)
4733 {
4734 void *tem = start;
4735 start = end;
4736 end = tem;
4737 }
4738
4739 /* Mark Lisp data pointed to. This is necessary because, in some
4740 situations, the C compiler optimizes Lisp objects away, so that
4741 only a pointer to them remains. Example:
4742
4743 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4744 ()
4745 {
4746 Lisp_Object obj = build_string ("test");
4747 struct Lisp_String *s = XSTRING (obj);
4748 Fgarbage_collect ();
4749 fprintf (stderr, "test '%s'\n", s->data);
4750 return Qnil;
4751 }
4752
4753 Here, `obj' isn't really used, and the compiler optimizes it
4754 away. The only reference to the life string is through the
4755 pointer `s'. */
4756
4757 for (pp = start; (void *) pp < end; pp++)
4758 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4759 {
4760 void *p = *(void **) ((char *) pp + i);
4761 mark_maybe_pointer (p);
4762 mark_maybe_object (XIL ((intptr_t) p));
4763 }
4764 }
4765
4766 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4767
4768 static bool setjmp_tested_p;
4769 static int longjmps_done;
4770
4771 #define SETJMP_WILL_LIKELY_WORK "\
4772 \n\
4773 Emacs garbage collector has been changed to use conservative stack\n\
4774 marking. Emacs has determined that the method it uses to do the\n\
4775 marking will likely work on your system, but this isn't sure.\n\
4776 \n\
4777 If you are a system-programmer, or can get the help of a local wizard\n\
4778 who is, please take a look at the function mark_stack in alloc.c, and\n\
4779 verify that the methods used are appropriate for your system.\n\
4780 \n\
4781 Please mail the result to <emacs-devel@gnu.org>.\n\
4782 "
4783
4784 #define SETJMP_WILL_NOT_WORK "\
4785 \n\
4786 Emacs garbage collector has been changed to use conservative stack\n\
4787 marking. Emacs has determined that the default method it uses to do the\n\
4788 marking will not work on your system. We will need a system-dependent\n\
4789 solution for your system.\n\
4790 \n\
4791 Please take a look at the function mark_stack in alloc.c, and\n\
4792 try to find a way to make it work on your system.\n\
4793 \n\
4794 Note that you may get false negatives, depending on the compiler.\n\
4795 In particular, you need to use -O with GCC for this test.\n\
4796 \n\
4797 Please mail the result to <emacs-devel@gnu.org>.\n\
4798 "
4799
4800
4801 /* Perform a quick check if it looks like setjmp saves registers in a
4802 jmp_buf. Print a message to stderr saying so. When this test
4803 succeeds, this is _not_ a proof that setjmp is sufficient for
4804 conservative stack marking. Only the sources or a disassembly
4805 can prove that. */
4806
4807 static void
4808 test_setjmp (void)
4809 {
4810 char buf[10];
4811 register int x;
4812 sys_jmp_buf jbuf;
4813
4814 /* Arrange for X to be put in a register. */
4815 sprintf (buf, "1");
4816 x = strlen (buf);
4817 x = 2 * x - 1;
4818
4819 sys_setjmp (jbuf);
4820 if (longjmps_done == 1)
4821 {
4822 /* Came here after the longjmp at the end of the function.
4823
4824 If x == 1, the longjmp has restored the register to its
4825 value before the setjmp, and we can hope that setjmp
4826 saves all such registers in the jmp_buf, although that
4827 isn't sure.
4828
4829 For other values of X, either something really strange is
4830 taking place, or the setjmp just didn't save the register. */
4831
4832 if (x == 1)
4833 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4834 else
4835 {
4836 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4837 exit (1);
4838 }
4839 }
4840
4841 ++longjmps_done;
4842 x = 2;
4843 if (longjmps_done == 1)
4844 sys_longjmp (jbuf, 1);
4845 }
4846
4847 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4848
4849
4850 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4851
4852 /* Abort if anything GCPRO'd doesn't survive the GC. */
4853
4854 static void
4855 check_gcpros (void)
4856 {
4857 struct gcpro *p;
4858 ptrdiff_t i;
4859
4860 for (p = gcprolist; p; p = p->next)
4861 for (i = 0; i < p->nvars; ++i)
4862 if (!survives_gc_p (p->var[i]))
4863 /* FIXME: It's not necessarily a bug. It might just be that the
4864 GCPRO is unnecessary or should release the object sooner. */
4865 emacs_abort ();
4866 }
4867
4868 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4869
4870 void
4871 dump_zombies (void)
4872 {
4873 int i;
4874
4875 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4876 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4877 {
4878 fprintf (stderr, " %d = ", i);
4879 debug_print (zombies[i]);
4880 }
4881 }
4882
4883 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4884
4885
4886 /* Mark live Lisp objects on the C stack.
4887
4888 There are several system-dependent problems to consider when
4889 porting this to new architectures:
4890
4891 Processor Registers
4892
4893 We have to mark Lisp objects in CPU registers that can hold local
4894 variables or are used to pass parameters.
4895
4896 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4897 something that either saves relevant registers on the stack, or
4898 calls mark_maybe_object passing it each register's contents.
4899
4900 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4901 implementation assumes that calling setjmp saves registers we need
4902 to see in a jmp_buf which itself lies on the stack. This doesn't
4903 have to be true! It must be verified for each system, possibly
4904 by taking a look at the source code of setjmp.
4905
4906 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4907 can use it as a machine independent method to store all registers
4908 to the stack. In this case the macros described in the previous
4909 two paragraphs are not used.
4910
4911 Stack Layout
4912
4913 Architectures differ in the way their processor stack is organized.
4914 For example, the stack might look like this
4915
4916 +----------------+
4917 | Lisp_Object | size = 4
4918 +----------------+
4919 | something else | size = 2
4920 +----------------+
4921 | Lisp_Object | size = 4
4922 +----------------+
4923 | ... |
4924
4925 In such a case, not every Lisp_Object will be aligned equally. To
4926 find all Lisp_Object on the stack it won't be sufficient to walk
4927 the stack in steps of 4 bytes. Instead, two passes will be
4928 necessary, one starting at the start of the stack, and a second
4929 pass starting at the start of the stack + 2. Likewise, if the
4930 minimal alignment of Lisp_Objects on the stack is 1, four passes
4931 would be necessary, each one starting with one byte more offset
4932 from the stack start. */
4933
4934 static void
4935 mark_stack (void *end)
4936 {
4937
4938 /* This assumes that the stack is a contiguous region in memory. If
4939 that's not the case, something has to be done here to iterate
4940 over the stack segments. */
4941 mark_memory (stack_base, end);
4942
4943 /* Allow for marking a secondary stack, like the register stack on the
4944 ia64. */
4945 #ifdef GC_MARK_SECONDARY_STACK
4946 GC_MARK_SECONDARY_STACK ();
4947 #endif
4948
4949 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4950 check_gcpros ();
4951 #endif
4952 }
4953
4954 #else /* GC_MARK_STACK == 0 */
4955
4956 #define mark_maybe_object(obj) emacs_abort ()
4957
4958 #endif /* GC_MARK_STACK != 0 */
4959
4960 static bool
4961 c_symbol_p (struct Lisp_Symbol *sym)
4962 {
4963 char *lispsym_ptr = (char *) lispsym;
4964 char *sym_ptr = (char *) sym;
4965 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4966 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4967 }
4968
4969 /* Determine whether it is safe to access memory at address P. */
4970 static int
4971 valid_pointer_p (void *p)
4972 {
4973 #ifdef WINDOWSNT
4974 return w32_valid_pointer_p (p, 16);
4975 #else
4976
4977 if (ADDRESS_SANITIZER)
4978 return p ? -1 : 0;
4979
4980 int fd[2];
4981
4982 /* Obviously, we cannot just access it (we would SEGV trying), so we
4983 trick the o/s to tell us whether p is a valid pointer.
4984 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4985 not validate p in that case. */
4986
4987 if (emacs_pipe (fd) == 0)
4988 {
4989 bool valid = emacs_write (fd[1], p, 16) == 16;
4990 emacs_close (fd[1]);
4991 emacs_close (fd[0]);
4992 return valid;
4993 }
4994
4995 return -1;
4996 #endif
4997 }
4998
4999 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5000 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5001 cannot validate OBJ. This function can be quite slow, so its primary
5002 use is the manual debugging. The only exception is print_object, where
5003 we use it to check whether the memory referenced by the pointer of
5004 Lisp_Save_Value object contains valid objects. */
5005
5006 int
5007 valid_lisp_object_p (Lisp_Object obj)
5008 {
5009 void *p;
5010 #if GC_MARK_STACK
5011 struct mem_node *m;
5012 #endif
5013
5014 if (INTEGERP (obj))
5015 return 1;
5016
5017 p = (void *) XPNTR (obj);
5018 if (PURE_POINTER_P (p))
5019 return 1;
5020
5021 if (SYMBOLP (obj) && c_symbol_p (p))
5022 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5023
5024 if (p == &buffer_defaults || p == &buffer_local_symbols)
5025 return 2;
5026
5027 #if !GC_MARK_STACK
5028 return valid_pointer_p (p);
5029 #else
5030
5031 m = mem_find (p);
5032
5033 if (m == MEM_NIL)
5034 {
5035 int valid = valid_pointer_p (p);
5036 if (valid <= 0)
5037 return valid;
5038
5039 if (SUBRP (obj))
5040 return 1;
5041
5042 return 0;
5043 }
5044
5045 switch (m->type)
5046 {
5047 case MEM_TYPE_NON_LISP:
5048 case MEM_TYPE_SPARE:
5049 return 0;
5050
5051 case MEM_TYPE_BUFFER:
5052 return live_buffer_p (m, p) ? 1 : 2;
5053
5054 case MEM_TYPE_CONS:
5055 return live_cons_p (m, p);
5056
5057 case MEM_TYPE_STRING:
5058 return live_string_p (m, p);
5059
5060 case MEM_TYPE_MISC:
5061 return live_misc_p (m, p);
5062
5063 case MEM_TYPE_SYMBOL:
5064 return live_symbol_p (m, p);
5065
5066 case MEM_TYPE_FLOAT:
5067 return live_float_p (m, p);
5068
5069 case MEM_TYPE_VECTORLIKE:
5070 case MEM_TYPE_VECTOR_BLOCK:
5071 return live_vector_p (m, p);
5072
5073 default:
5074 break;
5075 }
5076
5077 return 0;
5078 #endif
5079 }
5080
5081 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5082 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5083 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5084 This function is slow and should be used for debugging purposes. */
5085
5086 int
5087 relocatable_string_data_p (const char *str)
5088 {
5089 if (PURE_POINTER_P (str))
5090 return 0;
5091 #if GC_MARK_STACK
5092 if (str)
5093 {
5094 struct sdata *sdata
5095 = (struct sdata *) (str - offsetof (struct sdata, data));
5096
5097 if (0 < valid_pointer_p (sdata)
5098 && 0 < valid_pointer_p (sdata->string)
5099 && maybe_lisp_pointer (sdata->string))
5100 return (valid_lisp_object_p
5101 (make_lisp_ptr (sdata->string, Lisp_String))
5102 && (const char *) sdata->string->data == str);
5103 }
5104 return 0;
5105 #endif /* GC_MARK_STACK */
5106 return -1;
5107 }
5108
5109 /***********************************************************************
5110 Pure Storage Management
5111 ***********************************************************************/
5112
5113 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5114 pointer to it. TYPE is the Lisp type for which the memory is
5115 allocated. TYPE < 0 means it's not used for a Lisp object. */
5116
5117 static void *
5118 pure_alloc (size_t size, int type)
5119 {
5120 void *result;
5121
5122 again:
5123 if (type >= 0)
5124 {
5125 /* Allocate space for a Lisp object from the beginning of the free
5126 space with taking account of alignment. */
5127 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5128 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5129 }
5130 else
5131 {
5132 /* Allocate space for a non-Lisp object from the end of the free
5133 space. */
5134 pure_bytes_used_non_lisp += size;
5135 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5136 }
5137 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5138
5139 if (pure_bytes_used <= pure_size)
5140 return result;
5141
5142 /* Don't allocate a large amount here,
5143 because it might get mmap'd and then its address
5144 might not be usable. */
5145 purebeg = xmalloc (10000);
5146 pure_size = 10000;
5147 pure_bytes_used_before_overflow += pure_bytes_used - size;
5148 pure_bytes_used = 0;
5149 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5150 goto again;
5151 }
5152
5153
5154 /* Print a warning if PURESIZE is too small. */
5155
5156 void
5157 check_pure_size (void)
5158 {
5159 if (pure_bytes_used_before_overflow)
5160 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5161 " bytes needed)"),
5162 pure_bytes_used + pure_bytes_used_before_overflow);
5163 }
5164
5165
5166 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5167 the non-Lisp data pool of the pure storage, and return its start
5168 address. Return NULL if not found. */
5169
5170 static char *
5171 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5172 {
5173 int i;
5174 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5175 const unsigned char *p;
5176 char *non_lisp_beg;
5177
5178 if (pure_bytes_used_non_lisp <= nbytes)
5179 return NULL;
5180
5181 /* Set up the Boyer-Moore table. */
5182 skip = nbytes + 1;
5183 for (i = 0; i < 256; i++)
5184 bm_skip[i] = skip;
5185
5186 p = (const unsigned char *) data;
5187 while (--skip > 0)
5188 bm_skip[*p++] = skip;
5189
5190 last_char_skip = bm_skip['\0'];
5191
5192 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5193 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5194
5195 /* See the comments in the function `boyer_moore' (search.c) for the
5196 use of `infinity'. */
5197 infinity = pure_bytes_used_non_lisp + 1;
5198 bm_skip['\0'] = infinity;
5199
5200 p = (const unsigned char *) non_lisp_beg + nbytes;
5201 start = 0;
5202 do
5203 {
5204 /* Check the last character (== '\0'). */
5205 do
5206 {
5207 start += bm_skip[*(p + start)];
5208 }
5209 while (start <= start_max);
5210
5211 if (start < infinity)
5212 /* Couldn't find the last character. */
5213 return NULL;
5214
5215 /* No less than `infinity' means we could find the last
5216 character at `p[start - infinity]'. */
5217 start -= infinity;
5218
5219 /* Check the remaining characters. */
5220 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5221 /* Found. */
5222 return non_lisp_beg + start;
5223
5224 start += last_char_skip;
5225 }
5226 while (start <= start_max);
5227
5228 return NULL;
5229 }
5230
5231
5232 /* Return a string allocated in pure space. DATA is a buffer holding
5233 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5234 means make the result string multibyte.
5235
5236 Must get an error if pure storage is full, since if it cannot hold
5237 a large string it may be able to hold conses that point to that
5238 string; then the string is not protected from gc. */
5239
5240 Lisp_Object
5241 make_pure_string (const char *data,
5242 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5243 {
5244 Lisp_Object string;
5245 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5246 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5247 if (s->data == NULL)
5248 {
5249 s->data = pure_alloc (nbytes + 1, -1);
5250 memcpy (s->data, data, nbytes);
5251 s->data[nbytes] = '\0';
5252 }
5253 s->size = nchars;
5254 s->size_byte = multibyte ? nbytes : -1;
5255 s->intervals = NULL;
5256 XSETSTRING (string, s);
5257 return string;
5258 }
5259
5260 /* Return a string allocated in pure space. Do not
5261 allocate the string data, just point to DATA. */
5262
5263 Lisp_Object
5264 make_pure_c_string (const char *data, ptrdiff_t nchars)
5265 {
5266 Lisp_Object string;
5267 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5268 s->size = nchars;
5269 s->size_byte = -1;
5270 s->data = (unsigned char *) data;
5271 s->intervals = NULL;
5272 XSETSTRING (string, s);
5273 return string;
5274 }
5275
5276 static Lisp_Object purecopy (Lisp_Object obj);
5277
5278 /* Return a cons allocated from pure space. Give it pure copies
5279 of CAR as car and CDR as cdr. */
5280
5281 Lisp_Object
5282 pure_cons (Lisp_Object car, Lisp_Object cdr)
5283 {
5284 Lisp_Object new;
5285 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5286 XSETCONS (new, p);
5287 XSETCAR (new, purecopy (car));
5288 XSETCDR (new, purecopy (cdr));
5289 return new;
5290 }
5291
5292
5293 /* Value is a float object with value NUM allocated from pure space. */
5294
5295 static Lisp_Object
5296 make_pure_float (double num)
5297 {
5298 Lisp_Object new;
5299 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5300 XSETFLOAT (new, p);
5301 XFLOAT_INIT (new, num);
5302 return new;
5303 }
5304
5305
5306 /* Return a vector with room for LEN Lisp_Objects allocated from
5307 pure space. */
5308
5309 static Lisp_Object
5310 make_pure_vector (ptrdiff_t len)
5311 {
5312 Lisp_Object new;
5313 size_t size = header_size + len * word_size;
5314 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5315 XSETVECTOR (new, p);
5316 XVECTOR (new)->header.size = len;
5317 return new;
5318 }
5319
5320 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5321 doc: /* Make a copy of object OBJ in pure storage.
5322 Recursively copies contents of vectors and cons cells.
5323 Does not copy symbols. Copies strings without text properties. */)
5324 (register Lisp_Object obj)
5325 {
5326 if (NILP (Vpurify_flag))
5327 return obj;
5328 else if (MARKERP (obj) || OVERLAYP (obj)
5329 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5330 /* Can't purify those. */
5331 return obj;
5332 else
5333 return purecopy (obj);
5334 }
5335
5336 static Lisp_Object
5337 purecopy (Lisp_Object obj)
5338 {
5339 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5340 return obj; /* Already pure. */
5341
5342 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5343 {
5344 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5345 if (!NILP (tmp))
5346 return tmp;
5347 }
5348
5349 if (CONSP (obj))
5350 obj = pure_cons (XCAR (obj), XCDR (obj));
5351 else if (FLOATP (obj))
5352 obj = make_pure_float (XFLOAT_DATA (obj));
5353 else if (STRINGP (obj))
5354 {
5355 if (XSTRING (obj)->intervals)
5356 message_with_string ("Dropping text-properties while making string `%s' pure",
5357 obj, true);
5358 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5359 SBYTES (obj),
5360 STRING_MULTIBYTE (obj));
5361 }
5362 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5363 {
5364 struct Lisp_Vector *objp = XVECTOR (obj);
5365 ptrdiff_t nbytes = vector_nbytes (objp);
5366 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5367 register ptrdiff_t i;
5368 ptrdiff_t size = ASIZE (obj);
5369 if (size & PSEUDOVECTOR_FLAG)
5370 size &= PSEUDOVECTOR_SIZE_MASK;
5371 memcpy (vec, objp, nbytes);
5372 for (i = 0; i < size; i++)
5373 vec->contents[i] = purecopy (vec->contents[i]);
5374 XSETVECTOR (obj, vec);
5375 }
5376 else if (SYMBOLP (obj))
5377 {
5378 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5379 { /* We can't purify them, but they appear in many pure objects.
5380 Mark them as `pinned' so we know to mark them at every GC cycle. */
5381 XSYMBOL (obj)->pinned = true;
5382 symbol_block_pinned = symbol_block;
5383 }
5384 /* Don't hash-cons it. */
5385 return obj;
5386 }
5387 else
5388 {
5389 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5390 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5391 }
5392
5393 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5394 Fputhash (obj, obj, Vpurify_flag);
5395
5396 return obj;
5397 }
5398
5399
5400 \f
5401 /***********************************************************************
5402 Protection from GC
5403 ***********************************************************************/
5404
5405 /* Put an entry in staticvec, pointing at the variable with address
5406 VARADDRESS. */
5407
5408 void
5409 staticpro (Lisp_Object *varaddress)
5410 {
5411 if (staticidx >= NSTATICS)
5412 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5413 staticvec[staticidx++] = varaddress;
5414 }
5415
5416 \f
5417 /***********************************************************************
5418 Protection from GC
5419 ***********************************************************************/
5420
5421 /* Temporarily prevent garbage collection. */
5422
5423 ptrdiff_t
5424 inhibit_garbage_collection (void)
5425 {
5426 ptrdiff_t count = SPECPDL_INDEX ();
5427
5428 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5429 return count;
5430 }
5431
5432 /* Used to avoid possible overflows when
5433 converting from C to Lisp integers. */
5434
5435 static Lisp_Object
5436 bounded_number (EMACS_INT number)
5437 {
5438 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5439 }
5440
5441 /* Calculate total bytes of live objects. */
5442
5443 static size_t
5444 total_bytes_of_live_objects (void)
5445 {
5446 size_t tot = 0;
5447 tot += total_conses * sizeof (struct Lisp_Cons);
5448 tot += total_symbols * sizeof (struct Lisp_Symbol);
5449 tot += total_markers * sizeof (union Lisp_Misc);
5450 tot += total_string_bytes;
5451 tot += total_vector_slots * word_size;
5452 tot += total_floats * sizeof (struct Lisp_Float);
5453 tot += total_intervals * sizeof (struct interval);
5454 tot += total_strings * sizeof (struct Lisp_String);
5455 return tot;
5456 }
5457
5458 #ifdef HAVE_WINDOW_SYSTEM
5459
5460 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5461
5462 #if !defined (HAVE_NTGUI)
5463
5464 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5465 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5466
5467 static Lisp_Object
5468 compact_font_cache_entry (Lisp_Object entry)
5469 {
5470 Lisp_Object tail, *prev = &entry;
5471
5472 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5473 {
5474 bool drop = 0;
5475 Lisp_Object obj = XCAR (tail);
5476
5477 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5478 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5479 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5480 && VECTORP (XCDR (obj)))
5481 {
5482 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5483
5484 /* If font-spec is not marked, most likely all font-entities
5485 are not marked too. But we must be sure that nothing is
5486 marked within OBJ before we really drop it. */
5487 for (i = 0; i < size; i++)
5488 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5489 break;
5490
5491 if (i == size)
5492 drop = 1;
5493 }
5494 if (drop)
5495 *prev = XCDR (tail);
5496 else
5497 prev = xcdr_addr (tail);
5498 }
5499 return entry;
5500 }
5501
5502 #endif /* not HAVE_NTGUI */
5503
5504 /* Compact font caches on all terminals and mark
5505 everything which is still here after compaction. */
5506
5507 static void
5508 compact_font_caches (void)
5509 {
5510 struct terminal *t;
5511
5512 for (t = terminal_list; t; t = t->next_terminal)
5513 {
5514 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5515 #if !defined (HAVE_NTGUI)
5516 if (CONSP (cache))
5517 {
5518 Lisp_Object entry;
5519
5520 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5521 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5522 }
5523 #endif /* not HAVE_NTGUI */
5524 mark_object (cache);
5525 }
5526 }
5527
5528 #else /* not HAVE_WINDOW_SYSTEM */
5529
5530 #define compact_font_caches() (void)(0)
5531
5532 #endif /* HAVE_WINDOW_SYSTEM */
5533
5534 /* Remove (MARKER . DATA) entries with unmarked MARKER
5535 from buffer undo LIST and return changed list. */
5536
5537 static Lisp_Object
5538 compact_undo_list (Lisp_Object list)
5539 {
5540 Lisp_Object tail, *prev = &list;
5541
5542 for (tail = list; CONSP (tail); tail = XCDR (tail))
5543 {
5544 if (CONSP (XCAR (tail))
5545 && MARKERP (XCAR (XCAR (tail)))
5546 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5547 *prev = XCDR (tail);
5548 else
5549 prev = xcdr_addr (tail);
5550 }
5551 return list;
5552 }
5553
5554 static void
5555 mark_pinned_symbols (void)
5556 {
5557 struct symbol_block *sblk;
5558 int lim = (symbol_block_pinned == symbol_block
5559 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5560
5561 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5562 {
5563 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5564 for (; sym < end; ++sym)
5565 if (sym->s.pinned)
5566 mark_object (make_lisp_symbol (&sym->s));
5567
5568 lim = SYMBOL_BLOCK_SIZE;
5569 }
5570 }
5571
5572 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5573 separate function so that we could limit mark_stack in searching
5574 the stack frames below this function, thus avoiding the rare cases
5575 where mark_stack finds values that look like live Lisp objects on
5576 portions of stack that couldn't possibly contain such live objects.
5577 For more details of this, see the discussion at
5578 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5579 static Lisp_Object
5580 garbage_collect_1 (void *end)
5581 {
5582 struct buffer *nextb;
5583 char stack_top_variable;
5584 ptrdiff_t i;
5585 bool message_p;
5586 ptrdiff_t count = SPECPDL_INDEX ();
5587 struct timespec start;
5588 Lisp_Object retval = Qnil;
5589 size_t tot_before = 0;
5590
5591 if (abort_on_gc)
5592 emacs_abort ();
5593
5594 /* Can't GC if pure storage overflowed because we can't determine
5595 if something is a pure object or not. */
5596 if (pure_bytes_used_before_overflow)
5597 return Qnil;
5598
5599 /* Record this function, so it appears on the profiler's backtraces. */
5600 record_in_backtrace (Qautomatic_gc, 0, 0);
5601
5602 check_cons_list ();
5603
5604 /* Don't keep undo information around forever.
5605 Do this early on, so it is no problem if the user quits. */
5606 FOR_EACH_BUFFER (nextb)
5607 compact_buffer (nextb);
5608
5609 if (profiler_memory_running)
5610 tot_before = total_bytes_of_live_objects ();
5611
5612 start = current_timespec ();
5613
5614 /* In case user calls debug_print during GC,
5615 don't let that cause a recursive GC. */
5616 consing_since_gc = 0;
5617
5618 /* Save what's currently displayed in the echo area. */
5619 message_p = push_message ();
5620 record_unwind_protect_void (pop_message_unwind);
5621
5622 /* Save a copy of the contents of the stack, for debugging. */
5623 #if MAX_SAVE_STACK > 0
5624 if (NILP (Vpurify_flag))
5625 {
5626 char *stack;
5627 ptrdiff_t stack_size;
5628 if (&stack_top_variable < stack_bottom)
5629 {
5630 stack = &stack_top_variable;
5631 stack_size = stack_bottom - &stack_top_variable;
5632 }
5633 else
5634 {
5635 stack = stack_bottom;
5636 stack_size = &stack_top_variable - stack_bottom;
5637 }
5638 if (stack_size <= MAX_SAVE_STACK)
5639 {
5640 if (stack_copy_size < stack_size)
5641 {
5642 stack_copy = xrealloc (stack_copy, stack_size);
5643 stack_copy_size = stack_size;
5644 }
5645 no_sanitize_memcpy (stack_copy, stack, stack_size);
5646 }
5647 }
5648 #endif /* MAX_SAVE_STACK > 0 */
5649
5650 if (garbage_collection_messages)
5651 message1_nolog ("Garbage collecting...");
5652
5653 block_input ();
5654
5655 shrink_regexp_cache ();
5656
5657 gc_in_progress = 1;
5658
5659 /* Mark all the special slots that serve as the roots of accessibility. */
5660
5661 mark_buffer (&buffer_defaults);
5662 mark_buffer (&buffer_local_symbols);
5663
5664 for (i = 0; i < ARRAYELTS (lispsym); i++)
5665 mark_object (builtin_lisp_symbol (i));
5666
5667 for (i = 0; i < staticidx; i++)
5668 mark_object (*staticvec[i]);
5669
5670 mark_pinned_symbols ();
5671 mark_specpdl ();
5672 mark_terminals ();
5673 mark_kboards ();
5674
5675 #ifdef USE_GTK
5676 xg_mark_data ();
5677 #endif
5678
5679 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5680 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5681 mark_stack (end);
5682 #else
5683 {
5684 register struct gcpro *tail;
5685 for (tail = gcprolist; tail; tail = tail->next)
5686 for (i = 0; i < tail->nvars; i++)
5687 mark_object (tail->var[i]);
5688 }
5689 mark_byte_stack ();
5690 #endif
5691 {
5692 struct handler *handler;
5693 for (handler = handlerlist; handler; handler = handler->next)
5694 {
5695 mark_object (handler->tag_or_ch);
5696 mark_object (handler->val);
5697 }
5698 }
5699 #ifdef HAVE_WINDOW_SYSTEM
5700 mark_fringe_data ();
5701 #endif
5702
5703 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5704 mark_stack (end);
5705 #endif
5706
5707 /* Everything is now marked, except for the data in font caches,
5708 undo lists, and finalizers. The first two are compacted by
5709 removing an items which aren't reachable otherwise. */
5710
5711 compact_font_caches ();
5712
5713 FOR_EACH_BUFFER (nextb)
5714 {
5715 if (!EQ (BVAR (nextb, undo_list), Qt))
5716 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5717 /* Now that we have stripped the elements that need not be
5718 in the undo_list any more, we can finally mark the list. */
5719 mark_object (BVAR (nextb, undo_list));
5720 }
5721
5722 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5723 to doomed_finalizers so we can run their associated functions
5724 after GC. It's important to scan finalizers at this stage so
5725 that we can be sure that unmarked finalizers are really
5726 unreachable except for references from their associated functions
5727 and from other finalizers. */
5728
5729 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5730 mark_finalizer_list (&doomed_finalizers);
5731
5732 gc_sweep ();
5733
5734 /* Clear the mark bits that we set in certain root slots. */
5735
5736 unmark_byte_stack ();
5737 VECTOR_UNMARK (&buffer_defaults);
5738 VECTOR_UNMARK (&buffer_local_symbols);
5739
5740 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5741 dump_zombies ();
5742 #endif
5743
5744 check_cons_list ();
5745
5746 gc_in_progress = 0;
5747
5748 unblock_input ();
5749
5750 consing_since_gc = 0;
5751 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5752 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5753
5754 gc_relative_threshold = 0;
5755 if (FLOATP (Vgc_cons_percentage))
5756 { /* Set gc_cons_combined_threshold. */
5757 double tot = total_bytes_of_live_objects ();
5758
5759 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5760 if (0 < tot)
5761 {
5762 if (tot < TYPE_MAXIMUM (EMACS_INT))
5763 gc_relative_threshold = tot;
5764 else
5765 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5766 }
5767 }
5768
5769 if (garbage_collection_messages)
5770 {
5771 if (message_p || minibuf_level > 0)
5772 restore_message ();
5773 else
5774 message1_nolog ("Garbage collecting...done");
5775 }
5776
5777 unbind_to (count, Qnil);
5778
5779 Lisp_Object total[] = {
5780 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5781 bounded_number (total_conses),
5782 bounded_number (total_free_conses)),
5783 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5784 bounded_number (total_symbols),
5785 bounded_number (total_free_symbols)),
5786 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5787 bounded_number (total_markers),
5788 bounded_number (total_free_markers)),
5789 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5790 bounded_number (total_strings),
5791 bounded_number (total_free_strings)),
5792 list3 (Qstring_bytes, make_number (1),
5793 bounded_number (total_string_bytes)),
5794 list3 (Qvectors,
5795 make_number (header_size + sizeof (Lisp_Object)),
5796 bounded_number (total_vectors)),
5797 list4 (Qvector_slots, make_number (word_size),
5798 bounded_number (total_vector_slots),
5799 bounded_number (total_free_vector_slots)),
5800 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5801 bounded_number (total_floats),
5802 bounded_number (total_free_floats)),
5803 list4 (Qintervals, make_number (sizeof (struct interval)),
5804 bounded_number (total_intervals),
5805 bounded_number (total_free_intervals)),
5806 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5807 bounded_number (total_buffers)),
5808
5809 #ifdef DOUG_LEA_MALLOC
5810 list4 (Qheap, make_number (1024),
5811 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5812 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5813 #endif
5814 };
5815 retval = CALLMANY (Flist, total);
5816
5817 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5818 {
5819 /* Compute average percentage of zombies. */
5820 double nlive
5821 = (total_conses + total_symbols + total_markers + total_strings
5822 + total_vectors + total_floats + total_intervals + total_buffers);
5823
5824 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5825 max_live = max (nlive, max_live);
5826 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5827 max_zombies = max (nzombies, max_zombies);
5828 ++ngcs;
5829 }
5830 #endif
5831
5832 /* GC is complete: now we can run our finalizer callbacks. */
5833 run_finalizers (&doomed_finalizers);
5834
5835 if (!NILP (Vpost_gc_hook))
5836 {
5837 ptrdiff_t gc_count = inhibit_garbage_collection ();
5838 safe_run_hooks (Qpost_gc_hook);
5839 unbind_to (gc_count, Qnil);
5840 }
5841
5842 /* Accumulate statistics. */
5843 if (FLOATP (Vgc_elapsed))
5844 {
5845 struct timespec since_start = timespec_sub (current_timespec (), start);
5846 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5847 + timespectod (since_start));
5848 }
5849
5850 gcs_done++;
5851
5852 /* Collect profiling data. */
5853 if (profiler_memory_running)
5854 {
5855 size_t swept = 0;
5856 size_t tot_after = total_bytes_of_live_objects ();
5857 if (tot_before > tot_after)
5858 swept = tot_before - tot_after;
5859 malloc_probe (swept);
5860 }
5861
5862 return retval;
5863 }
5864
5865 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5866 doc: /* Reclaim storage for Lisp objects no longer needed.
5867 Garbage collection happens automatically if you cons more than
5868 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5869 `garbage-collect' normally returns a list with info on amount of space in use,
5870 where each entry has the form (NAME SIZE USED FREE), where:
5871 - NAME is a symbol describing the kind of objects this entry represents,
5872 - SIZE is the number of bytes used by each one,
5873 - USED is the number of those objects that were found live in the heap,
5874 - FREE is the number of those objects that are not live but that Emacs
5875 keeps around for future allocations (maybe because it does not know how
5876 to return them to the OS).
5877 However, if there was overflow in pure space, `garbage-collect'
5878 returns nil, because real GC can't be done.
5879 See Info node `(elisp)Garbage Collection'. */)
5880 (void)
5881 {
5882 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5883 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5884 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5885 void *end;
5886
5887 #ifdef HAVE___BUILTIN_UNWIND_INIT
5888 /* Force callee-saved registers and register windows onto the stack.
5889 This is the preferred method if available, obviating the need for
5890 machine dependent methods. */
5891 __builtin_unwind_init ();
5892 end = &end;
5893 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5894 #ifndef GC_SAVE_REGISTERS_ON_STACK
5895 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5896 union aligned_jmpbuf {
5897 Lisp_Object o;
5898 sys_jmp_buf j;
5899 } j;
5900 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5901 #endif
5902 /* This trick flushes the register windows so that all the state of
5903 the process is contained in the stack. */
5904 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5905 needed on ia64 too. See mach_dep.c, where it also says inline
5906 assembler doesn't work with relevant proprietary compilers. */
5907 #ifdef __sparc__
5908 #if defined (__sparc64__) && defined (__FreeBSD__)
5909 /* FreeBSD does not have a ta 3 handler. */
5910 asm ("flushw");
5911 #else
5912 asm ("ta 3");
5913 #endif
5914 #endif
5915
5916 /* Save registers that we need to see on the stack. We need to see
5917 registers used to hold register variables and registers used to
5918 pass parameters. */
5919 #ifdef GC_SAVE_REGISTERS_ON_STACK
5920 GC_SAVE_REGISTERS_ON_STACK (end);
5921 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5922
5923 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5924 setjmp will definitely work, test it
5925 and print a message with the result
5926 of the test. */
5927 if (!setjmp_tested_p)
5928 {
5929 setjmp_tested_p = 1;
5930 test_setjmp ();
5931 }
5932 #endif /* GC_SETJMP_WORKS */
5933
5934 sys_setjmp (j.j);
5935 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5936 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5937 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5938 return garbage_collect_1 (end);
5939 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5940 /* Old GCPROs-based method without stack marking. */
5941 return garbage_collect_1 (NULL);
5942 #else
5943 emacs_abort ();
5944 #endif /* GC_MARK_STACK */
5945 }
5946
5947 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5948 only interesting objects referenced from glyphs are strings. */
5949
5950 static void
5951 mark_glyph_matrix (struct glyph_matrix *matrix)
5952 {
5953 struct glyph_row *row = matrix->rows;
5954 struct glyph_row *end = row + matrix->nrows;
5955
5956 for (; row < end; ++row)
5957 if (row->enabled_p)
5958 {
5959 int area;
5960 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5961 {
5962 struct glyph *glyph = row->glyphs[area];
5963 struct glyph *end_glyph = glyph + row->used[area];
5964
5965 for (; glyph < end_glyph; ++glyph)
5966 if (STRINGP (glyph->object)
5967 && !STRING_MARKED_P (XSTRING (glyph->object)))
5968 mark_object (glyph->object);
5969 }
5970 }
5971 }
5972
5973 /* Mark reference to a Lisp_Object.
5974 If the object referred to has not been seen yet, recursively mark
5975 all the references contained in it. */
5976
5977 #define LAST_MARKED_SIZE 500
5978 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5979 static int last_marked_index;
5980
5981 /* For debugging--call abort when we cdr down this many
5982 links of a list, in mark_object. In debugging,
5983 the call to abort will hit a breakpoint.
5984 Normally this is zero and the check never goes off. */
5985 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5986
5987 static void
5988 mark_vectorlike (struct Lisp_Vector *ptr)
5989 {
5990 ptrdiff_t size = ptr->header.size;
5991 ptrdiff_t i;
5992
5993 eassert (!VECTOR_MARKED_P (ptr));
5994 VECTOR_MARK (ptr); /* Else mark it. */
5995 if (size & PSEUDOVECTOR_FLAG)
5996 size &= PSEUDOVECTOR_SIZE_MASK;
5997
5998 /* Note that this size is not the memory-footprint size, but only
5999 the number of Lisp_Object fields that we should trace.
6000 The distinction is used e.g. by Lisp_Process which places extra
6001 non-Lisp_Object fields at the end of the structure... */
6002 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6003 mark_object (ptr->contents[i]);
6004 }
6005
6006 /* Like mark_vectorlike but optimized for char-tables (and
6007 sub-char-tables) assuming that the contents are mostly integers or
6008 symbols. */
6009
6010 static void
6011 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6012 {
6013 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6014 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6015 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6016
6017 eassert (!VECTOR_MARKED_P (ptr));
6018 VECTOR_MARK (ptr);
6019 for (i = idx; i < size; i++)
6020 {
6021 Lisp_Object val = ptr->contents[i];
6022
6023 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6024 continue;
6025 if (SUB_CHAR_TABLE_P (val))
6026 {
6027 if (! VECTOR_MARKED_P (XVECTOR (val)))
6028 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6029 }
6030 else
6031 mark_object (val);
6032 }
6033 }
6034
6035 NO_INLINE /* To reduce stack depth in mark_object. */
6036 static Lisp_Object
6037 mark_compiled (struct Lisp_Vector *ptr)
6038 {
6039 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6040
6041 VECTOR_MARK (ptr);
6042 for (i = 0; i < size; i++)
6043 if (i != COMPILED_CONSTANTS)
6044 mark_object (ptr->contents[i]);
6045 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6046 }
6047
6048 /* Mark the chain of overlays starting at PTR. */
6049
6050 static void
6051 mark_overlay (struct Lisp_Overlay *ptr)
6052 {
6053 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6054 {
6055 ptr->gcmarkbit = 1;
6056 /* These two are always markers and can be marked fast. */
6057 XMARKER (ptr->start)->gcmarkbit = 1;
6058 XMARKER (ptr->end)->gcmarkbit = 1;
6059 mark_object (ptr->plist);
6060 }
6061 }
6062
6063 /* Mark Lisp_Objects and special pointers in BUFFER. */
6064
6065 static void
6066 mark_buffer (struct buffer *buffer)
6067 {
6068 /* This is handled much like other pseudovectors... */
6069 mark_vectorlike ((struct Lisp_Vector *) buffer);
6070
6071 /* ...but there are some buffer-specific things. */
6072
6073 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6074
6075 /* For now, we just don't mark the undo_list. It's done later in
6076 a special way just before the sweep phase, and after stripping
6077 some of its elements that are not needed any more. */
6078
6079 mark_overlay (buffer->overlays_before);
6080 mark_overlay (buffer->overlays_after);
6081
6082 /* If this is an indirect buffer, mark its base buffer. */
6083 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6084 mark_buffer (buffer->base_buffer);
6085 }
6086
6087 /* Mark Lisp faces in the face cache C. */
6088
6089 NO_INLINE /* To reduce stack depth in mark_object. */
6090 static void
6091 mark_face_cache (struct face_cache *c)
6092 {
6093 if (c)
6094 {
6095 int i, j;
6096 for (i = 0; i < c->used; ++i)
6097 {
6098 struct face *face = FACE_FROM_ID (c->f, i);
6099
6100 if (face)
6101 {
6102 if (face->font && !VECTOR_MARKED_P (face->font))
6103 mark_vectorlike ((struct Lisp_Vector *) face->font);
6104
6105 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6106 mark_object (face->lface[j]);
6107 }
6108 }
6109 }
6110 }
6111
6112 NO_INLINE /* To reduce stack depth in mark_object. */
6113 static void
6114 mark_localized_symbol (struct Lisp_Symbol *ptr)
6115 {
6116 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6117 Lisp_Object where = blv->where;
6118 /* If the value is set up for a killed buffer or deleted
6119 frame, restore its global binding. If the value is
6120 forwarded to a C variable, either it's not a Lisp_Object
6121 var, or it's staticpro'd already. */
6122 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6123 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6124 swap_in_global_binding (ptr);
6125 mark_object (blv->where);
6126 mark_object (blv->valcell);
6127 mark_object (blv->defcell);
6128 }
6129
6130 NO_INLINE /* To reduce stack depth in mark_object. */
6131 static void
6132 mark_save_value (struct Lisp_Save_Value *ptr)
6133 {
6134 /* If `save_type' is zero, `data[0].pointer' is the address
6135 of a memory area containing `data[1].integer' potential
6136 Lisp_Objects. */
6137 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6138 {
6139 Lisp_Object *p = ptr->data[0].pointer;
6140 ptrdiff_t nelt;
6141 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6142 mark_maybe_object (*p);
6143 }
6144 else
6145 {
6146 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6147 int i;
6148 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6149 if (save_type (ptr, i) == SAVE_OBJECT)
6150 mark_object (ptr->data[i].object);
6151 }
6152 }
6153
6154 /* Remove killed buffers or items whose car is a killed buffer from
6155 LIST, and mark other items. Return changed LIST, which is marked. */
6156
6157 static Lisp_Object
6158 mark_discard_killed_buffers (Lisp_Object list)
6159 {
6160 Lisp_Object tail, *prev = &list;
6161
6162 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6163 tail = XCDR (tail))
6164 {
6165 Lisp_Object tem = XCAR (tail);
6166 if (CONSP (tem))
6167 tem = XCAR (tem);
6168 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6169 *prev = XCDR (tail);
6170 else
6171 {
6172 CONS_MARK (XCONS (tail));
6173 mark_object (XCAR (tail));
6174 prev = xcdr_addr (tail);
6175 }
6176 }
6177 mark_object (tail);
6178 return list;
6179 }
6180
6181 /* Determine type of generic Lisp_Object and mark it accordingly.
6182
6183 This function implements a straightforward depth-first marking
6184 algorithm and so the recursion depth may be very high (a few
6185 tens of thousands is not uncommon). To minimize stack usage,
6186 a few cold paths are moved out to NO_INLINE functions above.
6187 In general, inlining them doesn't help you to gain more speed. */
6188
6189 void
6190 mark_object (Lisp_Object arg)
6191 {
6192 register Lisp_Object obj;
6193 void *po;
6194 #ifdef GC_CHECK_MARKED_OBJECTS
6195 struct mem_node *m;
6196 #endif
6197 ptrdiff_t cdr_count = 0;
6198
6199 obj = arg;
6200 loop:
6201
6202 po = XPNTR (obj);
6203 if (PURE_POINTER_P (po))
6204 return;
6205
6206 last_marked[last_marked_index++] = obj;
6207 if (last_marked_index == LAST_MARKED_SIZE)
6208 last_marked_index = 0;
6209
6210 /* Perform some sanity checks on the objects marked here. Abort if
6211 we encounter an object we know is bogus. This increases GC time
6212 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6213 #ifdef GC_CHECK_MARKED_OBJECTS
6214
6215 /* Check that the object pointed to by PO is known to be a Lisp
6216 structure allocated from the heap. */
6217 #define CHECK_ALLOCATED() \
6218 do { \
6219 m = mem_find (po); \
6220 if (m == MEM_NIL) \
6221 emacs_abort (); \
6222 } while (0)
6223
6224 /* Check that the object pointed to by PO is live, using predicate
6225 function LIVEP. */
6226 #define CHECK_LIVE(LIVEP) \
6227 do { \
6228 if (!LIVEP (m, po)) \
6229 emacs_abort (); \
6230 } while (0)
6231
6232 /* Check both of the above conditions, for non-symbols. */
6233 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6234 do { \
6235 CHECK_ALLOCATED (); \
6236 CHECK_LIVE (LIVEP); \
6237 } while (0) \
6238
6239 /* Check both of the above conditions, for symbols. */
6240 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6241 do { \
6242 if (!c_symbol_p (ptr)) \
6243 { \
6244 CHECK_ALLOCATED (); \
6245 CHECK_LIVE (live_symbol_p); \
6246 } \
6247 } while (0) \
6248
6249 #else /* not GC_CHECK_MARKED_OBJECTS */
6250
6251 #define CHECK_LIVE(LIVEP) ((void) 0)
6252 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6253 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6254
6255 #endif /* not GC_CHECK_MARKED_OBJECTS */
6256
6257 switch (XTYPE (obj))
6258 {
6259 case Lisp_String:
6260 {
6261 register struct Lisp_String *ptr = XSTRING (obj);
6262 if (STRING_MARKED_P (ptr))
6263 break;
6264 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6265 MARK_STRING (ptr);
6266 MARK_INTERVAL_TREE (ptr->intervals);
6267 #ifdef GC_CHECK_STRING_BYTES
6268 /* Check that the string size recorded in the string is the
6269 same as the one recorded in the sdata structure. */
6270 string_bytes (ptr);
6271 #endif /* GC_CHECK_STRING_BYTES */
6272 }
6273 break;
6274
6275 case Lisp_Vectorlike:
6276 {
6277 register struct Lisp_Vector *ptr = XVECTOR (obj);
6278 register ptrdiff_t pvectype;
6279
6280 if (VECTOR_MARKED_P (ptr))
6281 break;
6282
6283 #ifdef GC_CHECK_MARKED_OBJECTS
6284 m = mem_find (po);
6285 if (m == MEM_NIL && !SUBRP (obj))
6286 emacs_abort ();
6287 #endif /* GC_CHECK_MARKED_OBJECTS */
6288
6289 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6290 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6291 >> PSEUDOVECTOR_AREA_BITS);
6292 else
6293 pvectype = PVEC_NORMAL_VECTOR;
6294
6295 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6296 CHECK_LIVE (live_vector_p);
6297
6298 switch (pvectype)
6299 {
6300 case PVEC_BUFFER:
6301 #ifdef GC_CHECK_MARKED_OBJECTS
6302 {
6303 struct buffer *b;
6304 FOR_EACH_BUFFER (b)
6305 if (b == po)
6306 break;
6307 if (b == NULL)
6308 emacs_abort ();
6309 }
6310 #endif /* GC_CHECK_MARKED_OBJECTS */
6311 mark_buffer ((struct buffer *) ptr);
6312 break;
6313
6314 case PVEC_COMPILED:
6315 /* Although we could treat this just like a vector, mark_compiled
6316 returns the COMPILED_CONSTANTS element, which is marked at the
6317 next iteration of goto-loop here. This is done to avoid a few
6318 recursive calls to mark_object. */
6319 obj = mark_compiled (ptr);
6320 if (!NILP (obj))
6321 goto loop;
6322 break;
6323
6324 case PVEC_FRAME:
6325 {
6326 struct frame *f = (struct frame *) ptr;
6327
6328 mark_vectorlike (ptr);
6329 mark_face_cache (f->face_cache);
6330 #ifdef HAVE_WINDOW_SYSTEM
6331 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6332 {
6333 struct font *font = FRAME_FONT (f);
6334
6335 if (font && !VECTOR_MARKED_P (font))
6336 mark_vectorlike ((struct Lisp_Vector *) font);
6337 }
6338 #endif
6339 }
6340 break;
6341
6342 case PVEC_WINDOW:
6343 {
6344 struct window *w = (struct window *) ptr;
6345
6346 mark_vectorlike (ptr);
6347
6348 /* Mark glyph matrices, if any. Marking window
6349 matrices is sufficient because frame matrices
6350 use the same glyph memory. */
6351 if (w->current_matrix)
6352 {
6353 mark_glyph_matrix (w->current_matrix);
6354 mark_glyph_matrix (w->desired_matrix);
6355 }
6356
6357 /* Filter out killed buffers from both buffer lists
6358 in attempt to help GC to reclaim killed buffers faster.
6359 We can do it elsewhere for live windows, but this is the
6360 best place to do it for dead windows. */
6361 wset_prev_buffers
6362 (w, mark_discard_killed_buffers (w->prev_buffers));
6363 wset_next_buffers
6364 (w, mark_discard_killed_buffers (w->next_buffers));
6365 }
6366 break;
6367
6368 case PVEC_HASH_TABLE:
6369 {
6370 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6371
6372 mark_vectorlike (ptr);
6373 mark_object (h->test.name);
6374 mark_object (h->test.user_hash_function);
6375 mark_object (h->test.user_cmp_function);
6376 /* If hash table is not weak, mark all keys and values.
6377 For weak tables, mark only the vector. */
6378 if (NILP (h->weak))
6379 mark_object (h->key_and_value);
6380 else
6381 VECTOR_MARK (XVECTOR (h->key_and_value));
6382 }
6383 break;
6384
6385 case PVEC_CHAR_TABLE:
6386 case PVEC_SUB_CHAR_TABLE:
6387 mark_char_table (ptr, (enum pvec_type) pvectype);
6388 break;
6389
6390 case PVEC_BOOL_VECTOR:
6391 /* No Lisp_Objects to mark in a bool vector. */
6392 VECTOR_MARK (ptr);
6393 break;
6394
6395 case PVEC_SUBR:
6396 break;
6397
6398 case PVEC_FREE:
6399 emacs_abort ();
6400
6401 default:
6402 mark_vectorlike (ptr);
6403 }
6404 }
6405 break;
6406
6407 case Lisp_Symbol:
6408 {
6409 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6410 nextsym:
6411 if (ptr->gcmarkbit)
6412 break;
6413 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6414 ptr->gcmarkbit = 1;
6415 /* Attempt to catch bogus objects. */
6416 eassert (valid_lisp_object_p (ptr->function));
6417 mark_object (ptr->function);
6418 mark_object (ptr->plist);
6419 switch (ptr->redirect)
6420 {
6421 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6422 case SYMBOL_VARALIAS:
6423 {
6424 Lisp_Object tem;
6425 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6426 mark_object (tem);
6427 break;
6428 }
6429 case SYMBOL_LOCALIZED:
6430 mark_localized_symbol (ptr);
6431 break;
6432 case SYMBOL_FORWARDED:
6433 /* If the value is forwarded to a buffer or keyboard field,
6434 these are marked when we see the corresponding object.
6435 And if it's forwarded to a C variable, either it's not
6436 a Lisp_Object var, or it's staticpro'd already. */
6437 break;
6438 default: emacs_abort ();
6439 }
6440 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6441 MARK_STRING (XSTRING (ptr->name));
6442 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6443 /* Inner loop to mark next symbol in this bucket, if any. */
6444 ptr = ptr->next;
6445 if (ptr)
6446 goto nextsym;
6447 }
6448 break;
6449
6450 case Lisp_Misc:
6451 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6452
6453 if (XMISCANY (obj)->gcmarkbit)
6454 break;
6455
6456 switch (XMISCTYPE (obj))
6457 {
6458 case Lisp_Misc_Marker:
6459 /* DO NOT mark thru the marker's chain.
6460 The buffer's markers chain does not preserve markers from gc;
6461 instead, markers are removed from the chain when freed by gc. */
6462 XMISCANY (obj)->gcmarkbit = 1;
6463 break;
6464
6465 case Lisp_Misc_Save_Value:
6466 XMISCANY (obj)->gcmarkbit = 1;
6467 mark_save_value (XSAVE_VALUE (obj));
6468 break;
6469
6470 case Lisp_Misc_Overlay:
6471 mark_overlay (XOVERLAY (obj));
6472 break;
6473
6474 case Lisp_Misc_Finalizer:
6475 XMISCANY (obj)->gcmarkbit = true;
6476 mark_object (XFINALIZER (obj)->function);
6477 break;
6478
6479 default:
6480 emacs_abort ();
6481 }
6482 break;
6483
6484 case Lisp_Cons:
6485 {
6486 register struct Lisp_Cons *ptr = XCONS (obj);
6487 if (CONS_MARKED_P (ptr))
6488 break;
6489 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6490 CONS_MARK (ptr);
6491 /* If the cdr is nil, avoid recursion for the car. */
6492 if (EQ (ptr->u.cdr, Qnil))
6493 {
6494 obj = ptr->car;
6495 cdr_count = 0;
6496 goto loop;
6497 }
6498 mark_object (ptr->car);
6499 obj = ptr->u.cdr;
6500 cdr_count++;
6501 if (cdr_count == mark_object_loop_halt)
6502 emacs_abort ();
6503 goto loop;
6504 }
6505
6506 case Lisp_Float:
6507 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6508 FLOAT_MARK (XFLOAT (obj));
6509 break;
6510
6511 case_Lisp_Int:
6512 break;
6513
6514 default:
6515 emacs_abort ();
6516 }
6517
6518 #undef CHECK_LIVE
6519 #undef CHECK_ALLOCATED
6520 #undef CHECK_ALLOCATED_AND_LIVE
6521 }
6522 /* Mark the Lisp pointers in the terminal objects.
6523 Called by Fgarbage_collect. */
6524
6525 static void
6526 mark_terminals (void)
6527 {
6528 struct terminal *t;
6529 for (t = terminal_list; t; t = t->next_terminal)
6530 {
6531 eassert (t->name != NULL);
6532 #ifdef HAVE_WINDOW_SYSTEM
6533 /* If a terminal object is reachable from a stacpro'ed object,
6534 it might have been marked already. Make sure the image cache
6535 gets marked. */
6536 mark_image_cache (t->image_cache);
6537 #endif /* HAVE_WINDOW_SYSTEM */
6538 if (!VECTOR_MARKED_P (t))
6539 mark_vectorlike ((struct Lisp_Vector *)t);
6540 }
6541 }
6542
6543
6544
6545 /* Value is non-zero if OBJ will survive the current GC because it's
6546 either marked or does not need to be marked to survive. */
6547
6548 bool
6549 survives_gc_p (Lisp_Object obj)
6550 {
6551 bool survives_p;
6552
6553 switch (XTYPE (obj))
6554 {
6555 case_Lisp_Int:
6556 survives_p = 1;
6557 break;
6558
6559 case Lisp_Symbol:
6560 survives_p = XSYMBOL (obj)->gcmarkbit;
6561 break;
6562
6563 case Lisp_Misc:
6564 survives_p = XMISCANY (obj)->gcmarkbit;
6565 break;
6566
6567 case Lisp_String:
6568 survives_p = STRING_MARKED_P (XSTRING (obj));
6569 break;
6570
6571 case Lisp_Vectorlike:
6572 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6573 break;
6574
6575 case Lisp_Cons:
6576 survives_p = CONS_MARKED_P (XCONS (obj));
6577 break;
6578
6579 case Lisp_Float:
6580 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6581 break;
6582
6583 default:
6584 emacs_abort ();
6585 }
6586
6587 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6588 }
6589
6590
6591 \f
6592
6593 NO_INLINE /* For better stack traces */
6594 static void
6595 sweep_conses (void)
6596 {
6597 struct cons_block *cblk;
6598 struct cons_block **cprev = &cons_block;
6599 int lim = cons_block_index;
6600 EMACS_INT num_free = 0, num_used = 0;
6601
6602 cons_free_list = 0;
6603
6604 for (cblk = cons_block; cblk; cblk = *cprev)
6605 {
6606 int i = 0;
6607 int this_free = 0;
6608 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6609
6610 /* Scan the mark bits an int at a time. */
6611 for (i = 0; i < ilim; i++)
6612 {
6613 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6614 {
6615 /* Fast path - all cons cells for this int are marked. */
6616 cblk->gcmarkbits[i] = 0;
6617 num_used += BITS_PER_BITS_WORD;
6618 }
6619 else
6620 {
6621 /* Some cons cells for this int are not marked.
6622 Find which ones, and free them. */
6623 int start, pos, stop;
6624
6625 start = i * BITS_PER_BITS_WORD;
6626 stop = lim - start;
6627 if (stop > BITS_PER_BITS_WORD)
6628 stop = BITS_PER_BITS_WORD;
6629 stop += start;
6630
6631 for (pos = start; pos < stop; pos++)
6632 {
6633 if (!CONS_MARKED_P (&cblk->conses[pos]))
6634 {
6635 this_free++;
6636 cblk->conses[pos].u.chain = cons_free_list;
6637 cons_free_list = &cblk->conses[pos];
6638 #if GC_MARK_STACK
6639 cons_free_list->car = Vdead;
6640 #endif
6641 }
6642 else
6643 {
6644 num_used++;
6645 CONS_UNMARK (&cblk->conses[pos]);
6646 }
6647 }
6648 }
6649 }
6650
6651 lim = CONS_BLOCK_SIZE;
6652 /* If this block contains only free conses and we have already
6653 seen more than two blocks worth of free conses then deallocate
6654 this block. */
6655 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6656 {
6657 *cprev = cblk->next;
6658 /* Unhook from the free list. */
6659 cons_free_list = cblk->conses[0].u.chain;
6660 lisp_align_free (cblk);
6661 }
6662 else
6663 {
6664 num_free += this_free;
6665 cprev = &cblk->next;
6666 }
6667 }
6668 total_conses = num_used;
6669 total_free_conses = num_free;
6670 }
6671
6672 NO_INLINE /* For better stack traces */
6673 static void
6674 sweep_floats (void)
6675 {
6676 register struct float_block *fblk;
6677 struct float_block **fprev = &float_block;
6678 register int lim = float_block_index;
6679 EMACS_INT num_free = 0, num_used = 0;
6680
6681 float_free_list = 0;
6682
6683 for (fblk = float_block; fblk; fblk = *fprev)
6684 {
6685 register int i;
6686 int this_free = 0;
6687 for (i = 0; i < lim; i++)
6688 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6689 {
6690 this_free++;
6691 fblk->floats[i].u.chain = float_free_list;
6692 float_free_list = &fblk->floats[i];
6693 }
6694 else
6695 {
6696 num_used++;
6697 FLOAT_UNMARK (&fblk->floats[i]);
6698 }
6699 lim = FLOAT_BLOCK_SIZE;
6700 /* If this block contains only free floats and we have already
6701 seen more than two blocks worth of free floats then deallocate
6702 this block. */
6703 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6704 {
6705 *fprev = fblk->next;
6706 /* Unhook from the free list. */
6707 float_free_list = fblk->floats[0].u.chain;
6708 lisp_align_free (fblk);
6709 }
6710 else
6711 {
6712 num_free += this_free;
6713 fprev = &fblk->next;
6714 }
6715 }
6716 total_floats = num_used;
6717 total_free_floats = num_free;
6718 }
6719
6720 NO_INLINE /* For better stack traces */
6721 static void
6722 sweep_intervals (void)
6723 {
6724 register struct interval_block *iblk;
6725 struct interval_block **iprev = &interval_block;
6726 register int lim = interval_block_index;
6727 EMACS_INT num_free = 0, num_used = 0;
6728
6729 interval_free_list = 0;
6730
6731 for (iblk = interval_block; iblk; iblk = *iprev)
6732 {
6733 register int i;
6734 int this_free = 0;
6735
6736 for (i = 0; i < lim; i++)
6737 {
6738 if (!iblk->intervals[i].gcmarkbit)
6739 {
6740 set_interval_parent (&iblk->intervals[i], interval_free_list);
6741 interval_free_list = &iblk->intervals[i];
6742 this_free++;
6743 }
6744 else
6745 {
6746 num_used++;
6747 iblk->intervals[i].gcmarkbit = 0;
6748 }
6749 }
6750 lim = INTERVAL_BLOCK_SIZE;
6751 /* If this block contains only free intervals and we have already
6752 seen more than two blocks worth of free intervals then
6753 deallocate this block. */
6754 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6755 {
6756 *iprev = iblk->next;
6757 /* Unhook from the free list. */
6758 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6759 lisp_free (iblk);
6760 }
6761 else
6762 {
6763 num_free += this_free;
6764 iprev = &iblk->next;
6765 }
6766 }
6767 total_intervals = num_used;
6768 total_free_intervals = num_free;
6769 }
6770
6771 NO_INLINE /* For better stack traces */
6772 static void
6773 sweep_symbols (void)
6774 {
6775 struct symbol_block *sblk;
6776 struct symbol_block **sprev = &symbol_block;
6777 int lim = symbol_block_index;
6778 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6779
6780 symbol_free_list = NULL;
6781
6782 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6783 lispsym[i].gcmarkbit = 0;
6784
6785 for (sblk = symbol_block; sblk; sblk = *sprev)
6786 {
6787 int this_free = 0;
6788 union aligned_Lisp_Symbol *sym = sblk->symbols;
6789 union aligned_Lisp_Symbol *end = sym + lim;
6790
6791 for (; sym < end; ++sym)
6792 {
6793 if (!sym->s.gcmarkbit)
6794 {
6795 if (sym->s.redirect == SYMBOL_LOCALIZED)
6796 xfree (SYMBOL_BLV (&sym->s));
6797 sym->s.next = symbol_free_list;
6798 symbol_free_list = &sym->s;
6799 #if GC_MARK_STACK
6800 symbol_free_list->function = Vdead;
6801 #endif
6802 ++this_free;
6803 }
6804 else
6805 {
6806 ++num_used;
6807 sym->s.gcmarkbit = 0;
6808 /* Attempt to catch bogus objects. */
6809 eassert (valid_lisp_object_p (sym->s.function));
6810 }
6811 }
6812
6813 lim = SYMBOL_BLOCK_SIZE;
6814 /* If this block contains only free symbols and we have already
6815 seen more than two blocks worth of free symbols then deallocate
6816 this block. */
6817 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6818 {
6819 *sprev = sblk->next;
6820 /* Unhook from the free list. */
6821 symbol_free_list = sblk->symbols[0].s.next;
6822 lisp_free (sblk);
6823 }
6824 else
6825 {
6826 num_free += this_free;
6827 sprev = &sblk->next;
6828 }
6829 }
6830 total_symbols = num_used;
6831 total_free_symbols = num_free;
6832 }
6833
6834 NO_INLINE /* For better stack traces. */
6835 static void
6836 sweep_misc (void)
6837 {
6838 register struct marker_block *mblk;
6839 struct marker_block **mprev = &marker_block;
6840 register int lim = marker_block_index;
6841 EMACS_INT num_free = 0, num_used = 0;
6842
6843 /* Put all unmarked misc's on free list. For a marker, first
6844 unchain it from the buffer it points into. */
6845
6846 marker_free_list = 0;
6847
6848 for (mblk = marker_block; mblk; mblk = *mprev)
6849 {
6850 register int i;
6851 int this_free = 0;
6852
6853 for (i = 0; i < lim; i++)
6854 {
6855 if (!mblk->markers[i].m.u_any.gcmarkbit)
6856 {
6857 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6858 unchain_marker (&mblk->markers[i].m.u_marker);
6859 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6860 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6861 /* Set the type of the freed object to Lisp_Misc_Free.
6862 We could leave the type alone, since nobody checks it,
6863 but this might catch bugs faster. */
6864 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6865 mblk->markers[i].m.u_free.chain = marker_free_list;
6866 marker_free_list = &mblk->markers[i].m;
6867 this_free++;
6868 }
6869 else
6870 {
6871 num_used++;
6872 mblk->markers[i].m.u_any.gcmarkbit = 0;
6873 }
6874 }
6875 lim = MARKER_BLOCK_SIZE;
6876 /* If this block contains only free markers and we have already
6877 seen more than two blocks worth of free markers then deallocate
6878 this block. */
6879 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6880 {
6881 *mprev = mblk->next;
6882 /* Unhook from the free list. */
6883 marker_free_list = mblk->markers[0].m.u_free.chain;
6884 lisp_free (mblk);
6885 }
6886 else
6887 {
6888 num_free += this_free;
6889 mprev = &mblk->next;
6890 }
6891 }
6892
6893 total_markers = num_used;
6894 total_free_markers = num_free;
6895 }
6896
6897 NO_INLINE /* For better stack traces */
6898 static void
6899 sweep_buffers (void)
6900 {
6901 register struct buffer *buffer, **bprev = &all_buffers;
6902
6903 total_buffers = 0;
6904 for (buffer = all_buffers; buffer; buffer = *bprev)
6905 if (!VECTOR_MARKED_P (buffer))
6906 {
6907 *bprev = buffer->next;
6908 lisp_free (buffer);
6909 }
6910 else
6911 {
6912 VECTOR_UNMARK (buffer);
6913 /* Do not use buffer_(set|get)_intervals here. */
6914 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6915 total_buffers++;
6916 bprev = &buffer->next;
6917 }
6918 }
6919
6920 /* Sweep: find all structures not marked, and free them. */
6921 static void
6922 gc_sweep (void)
6923 {
6924 /* Remove or mark entries in weak hash tables.
6925 This must be done before any object is unmarked. */
6926 sweep_weak_hash_tables ();
6927
6928 sweep_strings ();
6929 check_string_bytes (!noninteractive);
6930 sweep_conses ();
6931 sweep_floats ();
6932 sweep_intervals ();
6933 sweep_symbols ();
6934 sweep_misc ();
6935 sweep_buffers ();
6936 sweep_vectors ();
6937 check_string_bytes (!noninteractive);
6938 }
6939
6940 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6941 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6942 All values are in Kbytes. If there is no swap space,
6943 last two values are zero. If the system is not supported
6944 or memory information can't be obtained, return nil. */)
6945 (void)
6946 {
6947 #if defined HAVE_LINUX_SYSINFO
6948 struct sysinfo si;
6949 uintmax_t units;
6950
6951 if (sysinfo (&si))
6952 return Qnil;
6953 #ifdef LINUX_SYSINFO_UNIT
6954 units = si.mem_unit;
6955 #else
6956 units = 1;
6957 #endif
6958 return list4i ((uintmax_t) si.totalram * units / 1024,
6959 (uintmax_t) si.freeram * units / 1024,
6960 (uintmax_t) si.totalswap * units / 1024,
6961 (uintmax_t) si.freeswap * units / 1024);
6962 #elif defined WINDOWSNT
6963 unsigned long long totalram, freeram, totalswap, freeswap;
6964
6965 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6966 return list4i ((uintmax_t) totalram / 1024,
6967 (uintmax_t) freeram / 1024,
6968 (uintmax_t) totalswap / 1024,
6969 (uintmax_t) freeswap / 1024);
6970 else
6971 return Qnil;
6972 #elif defined MSDOS
6973 unsigned long totalram, freeram, totalswap, freeswap;
6974
6975 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6976 return list4i ((uintmax_t) totalram / 1024,
6977 (uintmax_t) freeram / 1024,
6978 (uintmax_t) totalswap / 1024,
6979 (uintmax_t) freeswap / 1024);
6980 else
6981 return Qnil;
6982 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6983 /* FIXME: add more systems. */
6984 return Qnil;
6985 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6986 }
6987
6988 /* Debugging aids. */
6989
6990 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6991 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6992 This may be helpful in debugging Emacs's memory usage.
6993 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6994 (void)
6995 {
6996 Lisp_Object end;
6997
6998 #ifdef HAVE_NS
6999 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7000 XSETINT (end, 0);
7001 #else
7002 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7003 #endif
7004
7005 return end;
7006 }
7007
7008 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7009 doc: /* Return a list of counters that measure how much consing there has been.
7010 Each of these counters increments for a certain kind of object.
7011 The counters wrap around from the largest positive integer to zero.
7012 Garbage collection does not decrease them.
7013 The elements of the value are as follows:
7014 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7015 All are in units of 1 = one object consed
7016 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7017 objects consed.
7018 MISCS include overlays, markers, and some internal types.
7019 Frames, windows, buffers, and subprocesses count as vectors
7020 (but the contents of a buffer's text do not count here). */)
7021 (void)
7022 {
7023 return listn (CONSTYPE_HEAP, 8,
7024 bounded_number (cons_cells_consed),
7025 bounded_number (floats_consed),
7026 bounded_number (vector_cells_consed),
7027 bounded_number (symbols_consed),
7028 bounded_number (string_chars_consed),
7029 bounded_number (misc_objects_consed),
7030 bounded_number (intervals_consed),
7031 bounded_number (strings_consed));
7032 }
7033
7034 static bool
7035 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7036 {
7037 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7038 Lisp_Object val = find_symbol_value (symbol);
7039 return (EQ (val, obj)
7040 || EQ (sym->function, obj)
7041 || (!NILP (sym->function)
7042 && COMPILEDP (sym->function)
7043 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7044 || (!NILP (val)
7045 && COMPILEDP (val)
7046 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7047 }
7048
7049 /* Find at most FIND_MAX symbols which have OBJ as their value or
7050 function. This is used in gdbinit's `xwhichsymbols' command. */
7051
7052 Lisp_Object
7053 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7054 {
7055 struct symbol_block *sblk;
7056 ptrdiff_t gc_count = inhibit_garbage_collection ();
7057 Lisp_Object found = Qnil;
7058
7059 if (! DEADP (obj))
7060 {
7061 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7062 {
7063 Lisp_Object sym = builtin_lisp_symbol (i);
7064 if (symbol_uses_obj (sym, obj))
7065 {
7066 found = Fcons (sym, found);
7067 if (--find_max == 0)
7068 goto out;
7069 }
7070 }
7071
7072 for (sblk = symbol_block; sblk; sblk = sblk->next)
7073 {
7074 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7075 int bn;
7076
7077 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7078 {
7079 if (sblk == symbol_block && bn >= symbol_block_index)
7080 break;
7081
7082 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7083 if (symbol_uses_obj (sym, obj))
7084 {
7085 found = Fcons (sym, found);
7086 if (--find_max == 0)
7087 goto out;
7088 }
7089 }
7090 }
7091 }
7092
7093 out:
7094 unbind_to (gc_count, Qnil);
7095 return found;
7096 }
7097
7098 #ifdef SUSPICIOUS_OBJECT_CHECKING
7099
7100 static void *
7101 find_suspicious_object_in_range (void *begin, void *end)
7102 {
7103 char *begin_a = begin;
7104 char *end_a = end;
7105 int i;
7106
7107 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7108 {
7109 char *suspicious_object = suspicious_objects[i];
7110 if (begin_a <= suspicious_object && suspicious_object < end_a)
7111 return suspicious_object;
7112 }
7113
7114 return NULL;
7115 }
7116
7117 static void
7118 note_suspicious_free (void* ptr)
7119 {
7120 struct suspicious_free_record* rec;
7121
7122 rec = &suspicious_free_history[suspicious_free_history_index++];
7123 if (suspicious_free_history_index ==
7124 ARRAYELTS (suspicious_free_history))
7125 {
7126 suspicious_free_history_index = 0;
7127 }
7128
7129 memset (rec, 0, sizeof (*rec));
7130 rec->suspicious_object = ptr;
7131 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7132 }
7133
7134 static void
7135 detect_suspicious_free (void* ptr)
7136 {
7137 int i;
7138
7139 eassert (ptr != NULL);
7140
7141 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7142 if (suspicious_objects[i] == ptr)
7143 {
7144 note_suspicious_free (ptr);
7145 suspicious_objects[i] = NULL;
7146 }
7147 }
7148
7149 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7150
7151 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7152 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7153 If Emacs is compiled with suspicious object checking, capture
7154 a stack trace when OBJ is freed in order to help track down
7155 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7156 (Lisp_Object obj)
7157 {
7158 #ifdef SUSPICIOUS_OBJECT_CHECKING
7159 /* Right now, we care only about vectors. */
7160 if (VECTORLIKEP (obj))
7161 {
7162 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7163 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7164 suspicious_object_index = 0;
7165 }
7166 #endif
7167 return obj;
7168 }
7169
7170 #ifdef ENABLE_CHECKING
7171
7172 bool suppress_checking;
7173
7174 void
7175 die (const char *msg, const char *file, int line)
7176 {
7177 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7178 file, line, msg);
7179 terminate_due_to_signal (SIGABRT, INT_MAX);
7180 }
7181
7182 #endif /* ENABLE_CHECKING */
7183
7184 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7185
7186 /* Debugging check whether STR is ASCII-only. */
7187
7188 const char *
7189 verify_ascii (const char *str)
7190 {
7191 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7192 while (ptr < end)
7193 {
7194 int c = STRING_CHAR_ADVANCE (ptr);
7195 if (!ASCII_CHAR_P (c))
7196 emacs_abort ();
7197 }
7198 return str;
7199 }
7200
7201 /* Stress alloca with inconveniently sized requests and check
7202 whether all allocated areas may be used for Lisp_Object. */
7203
7204 NO_INLINE static void
7205 verify_alloca (void)
7206 {
7207 int i;
7208 enum { ALLOCA_CHECK_MAX = 256 };
7209 /* Start from size of the smallest Lisp object. */
7210 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7211 {
7212 void *ptr = alloca (i);
7213 make_lisp_ptr (ptr, Lisp_Cons);
7214 }
7215 }
7216
7217 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7218
7219 #define verify_alloca() ((void) 0)
7220
7221 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7222
7223 /* Initialization. */
7224
7225 void
7226 init_alloc_once (void)
7227 {
7228 /* Even though Qt's contents are not set up, its address is known. */
7229 Vpurify_flag = Qt;
7230 gc_precise = (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE);
7231
7232 purebeg = PUREBEG;
7233 pure_size = PURESIZE;
7234
7235 verify_alloca ();
7236 init_finalizer_list (&finalizers);
7237 init_finalizer_list (&doomed_finalizers);
7238
7239 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7240 mem_init ();
7241 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7242 #endif
7243
7244 #ifdef DOUG_LEA_MALLOC
7245 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7246 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7247 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7248 #endif
7249 init_strings ();
7250 init_vectors ();
7251
7252 refill_memory_reserve ();
7253 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7254 }
7255
7256 void
7257 init_alloc (void)
7258 {
7259 #if GC_MARK_STACK
7260 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7261 setjmp_tested_p = longjmps_done = 0;
7262 #endif
7263 #endif
7264 Vgc_elapsed = make_float (0.0);
7265 gcs_done = 0;
7266
7267 #if USE_VALGRIND
7268 valgrind_p = RUNNING_ON_VALGRIND != 0;
7269 #endif
7270 }
7271
7272 void
7273 syms_of_alloc (void)
7274 {
7275 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7276 doc: /* Number of bytes of consing between garbage collections.
7277 Garbage collection can happen automatically once this many bytes have been
7278 allocated since the last garbage collection. All data types count.
7279
7280 Garbage collection happens automatically only when `eval' is called.
7281
7282 By binding this temporarily to a large number, you can effectively
7283 prevent garbage collection during a part of the program.
7284 See also `gc-cons-percentage'. */);
7285
7286 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7287 doc: /* Portion of the heap used for allocation.
7288 Garbage collection can happen automatically once this portion of the heap
7289 has been allocated since the last garbage collection.
7290 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7291 Vgc_cons_percentage = make_float (0.1);
7292
7293 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7294 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7295
7296 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7297 doc: /* Number of cons cells that have been consed so far. */);
7298
7299 DEFVAR_INT ("floats-consed", floats_consed,
7300 doc: /* Number of floats that have been consed so far. */);
7301
7302 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7303 doc: /* Number of vector cells that have been consed so far. */);
7304
7305 DEFVAR_INT ("symbols-consed", symbols_consed,
7306 doc: /* Number of symbols that have been consed so far. */);
7307 symbols_consed += ARRAYELTS (lispsym);
7308
7309 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7310 doc: /* Number of string characters that have been consed so far. */);
7311
7312 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7313 doc: /* Number of miscellaneous objects that have been consed so far.
7314 These include markers and overlays, plus certain objects not visible
7315 to users. */);
7316
7317 DEFVAR_INT ("intervals-consed", intervals_consed,
7318 doc: /* Number of intervals that have been consed so far. */);
7319
7320 DEFVAR_INT ("strings-consed", strings_consed,
7321 doc: /* Number of strings that have been consed so far. */);
7322
7323 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7324 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7325 This means that certain objects should be allocated in shared (pure) space.
7326 It can also be set to a hash-table, in which case this table is used to
7327 do hash-consing of the objects allocated to pure space. */);
7328
7329 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7330 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7331 garbage_collection_messages = 0;
7332
7333 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7334 doc: /* Hook run after garbage collection has finished. */);
7335 Vpost_gc_hook = Qnil;
7336 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7337
7338 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7339 doc: /* Precomputed `signal' argument for memory-full error. */);
7340 /* We build this in advance because if we wait until we need it, we might
7341 not be able to allocate the memory to hold it. */
7342 Vmemory_signal_data
7343 = listn (CONSTYPE_PURE, 2, Qerror,
7344 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7345
7346 DEFVAR_LISP ("memory-full", Vmemory_full,
7347 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7348 Vmemory_full = Qnil;
7349
7350 DEFSYM (Qconses, "conses");
7351 DEFSYM (Qsymbols, "symbols");
7352 DEFSYM (Qmiscs, "miscs");
7353 DEFSYM (Qstrings, "strings");
7354 DEFSYM (Qvectors, "vectors");
7355 DEFSYM (Qfloats, "floats");
7356 DEFSYM (Qintervals, "intervals");
7357 DEFSYM (Qbuffers, "buffers");
7358 DEFSYM (Qstring_bytes, "string-bytes");
7359 DEFSYM (Qvector_slots, "vector-slots");
7360 DEFSYM (Qheap, "heap");
7361 DEFSYM (Qautomatic_gc, "Automatic GC");
7362
7363 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7364 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7365
7366 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7367 doc: /* Accumulated time elapsed in garbage collections.
7368 The time is in seconds as a floating point value. */);
7369 DEFVAR_INT ("gcs-done", gcs_done,
7370 doc: /* Accumulated number of garbage collections done. */);
7371
7372 DEFVAR_BOOL ("gc-precise", gc_precise,
7373 doc: /* Non-nil means GC stack marking is precise.
7374 Useful mainly for automated GC tests. Build time constant.*/);
7375 XSYMBOL (intern_c_string ("gc-precise"))->constant = 1;
7376
7377 defsubr (&Scons);
7378 defsubr (&Slist);
7379 defsubr (&Svector);
7380 defsubr (&Sbool_vector);
7381 defsubr (&Smake_byte_code);
7382 defsubr (&Smake_list);
7383 defsubr (&Smake_vector);
7384 defsubr (&Smake_string);
7385 defsubr (&Smake_bool_vector);
7386 defsubr (&Smake_symbol);
7387 defsubr (&Smake_marker);
7388 defsubr (&Smake_finalizer);
7389 defsubr (&Spurecopy);
7390 defsubr (&Sgarbage_collect);
7391 defsubr (&Smemory_limit);
7392 defsubr (&Smemory_info);
7393 defsubr (&Smemory_use_counts);
7394 defsubr (&Ssuspicious_object);
7395
7396 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7397 defsubr (&Sgc_status);
7398 #endif
7399 }
7400
7401 /* When compiled with GCC, GDB might say "No enum type named
7402 pvec_type" if we don't have at least one symbol with that type, and
7403 then xbacktrace could fail. Similarly for the other enums and
7404 their values. Some non-GCC compilers don't like these constructs. */
7405 #ifdef __GNUC__
7406 union
7407 {
7408 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7409 enum char_table_specials char_table_specials;
7410 enum char_bits char_bits;
7411 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7412 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7413 enum Lisp_Bits Lisp_Bits;
7414 enum Lisp_Compiled Lisp_Compiled;
7415 enum maxargs maxargs;
7416 enum MAX_ALLOCA MAX_ALLOCA;
7417 enum More_Lisp_Bits More_Lisp_Bits;
7418 enum pvec_type pvec_type;
7419 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7420 #endif /* __GNUC__ */