]> code.delx.au - pulseaudio/blobdiff - src/modules/module-equalizer-sink.c
fix the ever-popular 'the the' typo
[pulseaudio] / src / modules / module-equalizer-sink.c
old mode 100755 (executable)
new mode 100644 (file)
index 3a28b49..e07452c
@@ -1,28 +1,29 @@
 /***
-This file is part of PulseAudio.
-
-This module is based off Lennart Poettering's LADSPA sink and swaps out
-LADSPA functionality for a dbus-aware STFT OLA based digital equalizer.
-All new work is published under Pulseaudio's original license.
-Copyright 2009 Jason Newton <nevion@gmail.com>
-
-Original Author:
-Copyright 2004-2008 Lennart Poettering
-
-PulseAudio is free software; you can redistribute it and/or modify
-it under the terms of the GNU Lesser General Public License as published
-by the Free Software Foundation; either version 2.1 of the License,
-or (at your option) any later version.
-
-PulseAudio is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-General Public License for more details.
-
-You should have received a copy of the GNU Lesser General Public License
-along with PulseAudio; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
-USA.
+  This file is part of PulseAudio.
+
+  This module is based off Lennart Poettering's LADSPA sink and swaps out
+  LADSPA functionality for a dbus-aware STFT OLA based digital equalizer.
+  All new work is published under Pulseaudio's original license.
+
+  Copyright 2009 Jason Newton <nevion@gmail.com>
+
+  Original Author:
+  Copyright 2004-2008 Lennart Poettering
+
+  PulseAudio is free software; you can redistribute it and/or modify
+  it under the terms of the GNU Lesser General Public License as
+  published by the Free Software Foundation; either version 2.1 of the
+  License, or (at your option) any later version.
+
+  PulseAudio is distributed in the hope that it will be useful, but
+  WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+  General Public License for more details.
+
+  You should have received a copy of the GNU Lesser General Public
+  License along with PulseAudio; if not, write to the Free Software
+  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
+  USA.
 ***/
 
 #ifdef HAVE_CONFIG_H
@@ -33,24 +34,29 @@ USA.
 #include <stdio.h>
 #include <float.h>
 #include <math.h>
-#include <fftw3.h>
 #include <string.h>
+#include <stdint.h>
+
+//#undef __SSE2__
+#ifdef __SSE2__
+#include <xmmintrin.h>
+#include <emmintrin.h>
+#endif
+
+#include <fftw3.h>
 
 #include <pulse/xmalloc.h>
-#include <pulse/i18n.h>
 #include <pulse/timeval.h>
 
 #include <pulsecore/core-rtclock.h>
+#include <pulsecore/i18n.h>
 #include <pulsecore/aupdate.h>
-#include <pulsecore/core-error.h>
 #include <pulsecore/namereg.h>
 #include <pulsecore/sink.h>
 #include <pulsecore/module.h>
 #include <pulsecore/core-util.h>
 #include <pulsecore/modargs.h>
 #include <pulsecore/log.h>
-#include <pulsecore/thread.h>
-#include <pulsecore/thread-mq.h>
 #include <pulsecore/rtpoll.h>
 #include <pulsecore/sample-util.h>
 #include <pulsecore/shared.h>
@@ -60,34 +66,32 @@ USA.
 #include <pulsecore/protocol-dbus.h>
 #include <pulsecore/dbus-util.h>
 
-#include <stdint.h>
-#include <time.h>
-
-
-//#undef __SSE2__
-#ifdef __SSE2__
-#include <xmmintrin.h>
-#include <emmintrin.h>
-#endif
-
-
-
 #include "module-equalizer-sink-symdef.h"
 
 PA_MODULE_AUTHOR("Jason Newton");
 PA_MODULE_DESCRIPTION(_("General Purpose Equalizer"));
 PA_MODULE_VERSION(PACKAGE_VERSION);
 PA_MODULE_LOAD_ONCE(FALSE);
-PA_MODULE_USAGE(_("sink=<sink to connect to> "));
+PA_MODULE_USAGE(
+        _("sink_name=<name of the sink> "
+          "sink_properties=<properties for the sink> "
+          "sink_master=<sink to connect to> "
+          "format=<sample format> "
+          "rate=<sample rate> "
+          "channels=<number of channels> "
+          "channel_map=<channel map> "
+          "autoloaded=<set if this module is being loaded automatically> "
+          "use_volume_sharing=<yes or no> "
+         ));
 
 #define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
-
+#define DEFAULT_AUTOLOADED FALSE
 
 struct userdata {
     pa_module *module;
     pa_sink *sink;
     pa_sink_input *sink_input;
-    char *name;
+    pa_bool_t autoloaded;
 
     size_t channels;
     size_t fft_size;//length (res) of fft
@@ -111,15 +115,17 @@ struct userdata {
     //size_t samplings;
 
     float **Xs;
-    float ***Hs;//thread updatable copies of the freq response filters (magintude based)
+    float ***Hs;//thread updatable copies of the freq response filters (magnitude based)
     pa_aupdate **a_H;
-    pa_memchunk conv_buffer;
     pa_memblockq *input_q;
+    char *output_buffer;
+    size_t output_buffer_length;
+    size_t output_buffer_max_length;
+    pa_memblockq *output_q;
     pa_bool_t first_iteration;
 
     pa_dbus_protocol *dbus_protocol;
     char *dbus_path;
-    pa_bool_t set_default;
 
     pa_database *database;
     char **base_profiles;
@@ -128,98 +134,104 @@ struct userdata {
 static const char* const valid_modargs[] = {
     "sink_name",
     "sink_properties",
-    "master",
+    "sink_master",
     "format",
     "rate",
-    "set_default",
     "channels",
     "channel_map",
+    "autoloaded",
+    "use_volume_sharing",
     NULL
 };
 
-
 #define v_size 4
 #define SINKLIST "equalized_sinklist"
 #define EQDB "equalizer_db"
 #define EQ_STATE_DB "equalizer-state"
-#define FILTER_SIZE (u->fft_size / 2 + 1)
-#define CHANNEL_PROFILE_SIZE (FILTER_SIZE + 1)
-#define FILTER_STATE_SIZE (CHANNEL_PROFILE_SIZE * u->channels)
+#define FILTER_SIZE(u) ((u)->fft_size / 2 + 1)
+#define CHANNEL_PROFILE_SIZE(u) (FILTER_SIZE(u) + 1)
+#define FILTER_STATE_SIZE(u) (CHANNEL_PROFILE_SIZE(u) * (u)->channels)
+
 static void dbus_init(struct userdata *u);
 static void dbus_done(struct userdata *u);
 
 static void hanning_window(float *W, size_t window_size){
-    //h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2
-    for(size_t i=0; i < window_size;++i){
-        W[i] = (float).5*(1-cos(2*M_PI*i/(window_size+1)));
-    }
+    /* h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2 */
+    for (size_t i = 0; i < window_size; ++i)
+        W[i] = (float).5 * (1 - cos(2*M_PI*i / (window_size+1)));
 }
 
 static void fix_filter(float *H, size_t fft_size){
-    //divide out the fft gain
-    for(size_t i = 0; i < fft_size / 2 + 1; ++i){
+    /* divide out the fft gain */
+    for (size_t i = 0; i < fft_size / 2 + 1; ++i)
         H[i] /= fft_size;
-    }
 }
 
 static void interpolate(float *signal, size_t length, uint32_t *xs, float *ys, size_t n_points){
-    //Note that xs must be monotonically increasing!
+    /* Note that xs must be monotonically increasing! */
     float x_range_lower, x_range_upper, c0;
-    pa_assert_se(n_points>=2);
-    pa_assert_se(xs[0] == 0);
-    pa_assert_se(xs[n_points - 1] == length - 1);
-    for(size_t x = 0, x_range_lower_i = 0; x < length-1; ++x){
+
+    pa_assert(n_points >= 2);
+    pa_assert(xs[0] == 0);
+    pa_assert(xs[n_points - 1] == length - 1);
+
+    for (size_t x = 0, x_range_lower_i = 0; x < length-1; ++x) {
         pa_assert(x_range_lower_i < n_points-1);
-        x_range_lower = (float) (xs[x_range_lower_i]);
-        x_range_upper = (float) (xs[x_range_lower_i+1]);
+
+        x_range_lower = (float) xs[x_range_lower_i];
+        x_range_upper = (float) xs[x_range_lower_i+1];
+
         pa_assert_se(x_range_lower < x_range_upper);
         pa_assert_se(x >= x_range_lower);
         pa_assert_se(x <= x_range_upper);
-        //bilinear-interpolation of coefficients specified
-        c0 = (x-x_range_lower)/(x_range_upper-x_range_lower);
-        pa_assert_se(c0 >= 0&&c0 <= 1.0);
+
+        /* bilinear-interpolation of coefficients specified */
+        c0 = (x-x_range_lower) / (x_range_upper-x_range_lower);
+        pa_assert(c0 >= 0 && c0 <= 1.0);
+
         signal[x] = ((1.0f - c0) * ys[x_range_lower_i] + c0 * ys[x_range_lower_i + 1]);
-        while(x >= xs[x_range_lower_i + 1]){
+        while(x >= xs[x_range_lower_i + 1])
             x_range_lower_i++;
-        }
     }
-    signal[length-1]=ys[n_points-1];
+
+    signal[length-1] = ys[n_points-1];
 }
 
-static int is_monotonic(const uint32_t *xs,size_t length){
-    if(length<2){
-        return 1;
-    }
-    for(size_t i = 1; i < length; ++i){
-        if(xs[i]<=xs[i-1]){
-            return 0;
-        }
-    }
-    return 1;
+static pa_bool_t is_monotonic(const uint32_t *xs, size_t length) {
+    pa_assert(xs);
+
+    if (length < 2)
+        return TRUE;
+
+    for(size_t i = 1; i < length; ++i)
+        if (xs[i] <= xs[i-1])
+            return FALSE;
+
+    return TRUE;
 }
 
-//ensure's memory allocated is a multiple of v_size
-//and aligned
-static void * alloc(size_t x,size_t s){
-    size_t f = PA_ROUND_UP(x*s, sizeof(float)*v_size);
+/* ensures memory allocated is a multiple of v_size and aligned */
+static void * alloc(size_t x, size_t s){
+    size_t f;
     float *t;
-    pa_assert(f >= x*s);
-    t = fftwf_malloc(f);
-    memset(t, 0, f);
+
+    f = PA_ROUND_UP(x*s, sizeof(float)*v_size);
+    pa_assert_se(t = fftwf_malloc(f));
+    pa_memzero(t, f);
+
     return t;
 }
 
 static void alloc_input_buffers(struct userdata *u, size_t min_buffer_length){
-    if(min_buffer_length <= u->input_buffer_max){
+    if (min_buffer_length <= u->input_buffer_max)
         return;
-    }
+
     pa_assert(min_buffer_length >= u->window_size);
-    for(size_t c = 0; c < u->channels; ++c){
+    for (size_t c = 0; c < u->channels; ++c) {
         float *tmp = alloc(min_buffer_length, sizeof(float));
-        if(u->input[c]){
-            if(!u->first_iteration){
+        if (u->input[c]) {
+            if (!u->first_iteration)
                 memcpy(tmp, u->input[c], u->overlap_size * sizeof(float));
-            }
             free(u->input[c]);
         }
         u->input[c] = tmp;
@@ -250,10 +262,11 @@ static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t of
                 pa_sink_get_latency_within_thread(u->sink_input->sink) +
 
                 /* Add the latency internal to our sink input on top */
+                pa_bytes_to_usec(pa_memblockq_get_length(u->output_q) +
+                                 pa_memblockq_get_length(u->input_q), &u->sink_input->sink->sample_spec) +
                 pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec);
             //    pa_bytes_to_usec(u->samples_gathered * fs, &u->sink->sample_spec);
             //+ pa_bytes_to_usec(u->latency * fs, ss)
-            //+ pa_bytes_to_usec(pa_memblockq_get_length(u->input_q), ss);
             return 0;
         }
     }
@@ -337,7 +350,7 @@ static void sink_set_mute_cb(pa_sink *s) {
     pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted);
 }
 
-
+#if 1
 //reference implementation
 static void dsp_logic(
     float * restrict dst,//used as a temp array too, needs to be fft_length!
@@ -345,29 +358,30 @@ static void dsp_logic(
                                *automatically cycled in routine
                                */
     float * restrict overlap,
-    const float X,//multipliar
+    const float X,//multiplier
     const float * restrict H,//The freq. magnitude scalers filter
     const float * restrict W,//The windowing function
-    fftwf_complex * restrict output_window,//The transformed window'd src
+    fftwf_complex * restrict output_window,//The transformed windowed src
     struct userdata *u){
+
     //use a linear-phase sliding STFT and overlap-add method (for each channel)
-    //zero padd the data
-    memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
     //window the data
     for(size_t j = 0; j < u->window_size; ++j){
         dst[j] = X * W[j] * src[j];
     }
+    //zero pad the remaining fft window
+    memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
     //Processing is done here!
     //do fft
     fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
     //perform filtering
-    for(size_t j = 0; j < FILTER_SIZE; ++j){
+    for(size_t j = 0; j < FILTER_SIZE(u); ++j){
         u->output_window[j][0] *= H[j];
         u->output_window[j][1] *= H[j];
     }
     //inverse fft
     fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
-    ////debug: tests overlaping add
+    ////debug: tests overlapping add
     ////and negates ALL PREVIOUS processing
     ////yields a perfect reconstruction if COLA is held
     //for(size_t j = 0; j < u->window_size; ++j){
@@ -385,130 +399,144 @@ static void dsp_logic(
     //    u->work_buffer[j] = u->input[c][j];
     //}
 
-    //preseve the needed input for the next window's overlap
+    //preserve the needed input for the next window's overlap
     memmove(src, src + u->R,
         (u->samples_gathered - u->R) * sizeof(float)
     );
 }
-
+#else
 typedef float v4sf __attribute__ ((__aligned__(v_size * sizeof(float))));
 typedef union float_vector {
     float f[v_size];
     v4sf v;
-#ifdef __SSE2__
     __m128 m;
-#endif
 } float_vector_t;
 
-////regardless of sse enabled, the loops in here assume
-////16 byte aligned addresses and memory allocations divisible by v_size
-//void dsp_logic(
-//    float * restrict dst,//used as a temp array too, needs to be fft_length!
-//    float * restrict src,/*input data w/ overlap at start,
-//                               *automatically cycled in routine
-//                               */
-//    float * restrict overlap,//The size of the overlap
-//    const float X,//multipliar
-//    const float * restrict H,//The freq. magnitude scalers filter
-//    const float * restrict W,//The windowing function
-//    fftwf_complex * restrict output_window,//The transformed window'd src
-//    struct userdata *u){//Collection of constants
-      //float_vector_t x = {X, X, X, X};
-//    const size_t window_size = PA_ROUND_UP(u->window_size,v_size);
-//    const size_t fft_h = PA_ROUND_UP(FILTER_SIZE, v_size / 2);
-//    //const size_t R = PA_ROUND_UP(u->R, v_size);
-//    const size_t overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
-//     overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
-//
-//    //assert(u->samples_gathered >= u->R);
-//    //zero out the bit beyond the real overlap so we don't add garbage
-//    for(size_t j = overlap_size; j > u->overlap_size; --j){
-//       overlap[j-1] = 0;
-//    }
-//    //use a linear-phase sliding STFT and overlap-add method
-//    //zero padd the data
-//    memset(dst + u->window_size, 0, (u->fft_size - u->window_size)*sizeof(float));
-//    //window the data
-//    for(size_t j = 0; j < window_size; j += v_size){
-//        //dst[j] = W[j]*src[j];
-//        float_vector_t *d = (float_vector_t*) (dst+j);
-//        float_vector_t *w = (float_vector_t*) (W+j);
-//        float_vector_t *s = (float_vector_t*) (src+j);
+//regardless of sse enabled, the loops in here assume
+//16 byte aligned addresses and memory allocations divisible by v_size
+static void dsp_logic(
+    float * restrict dst,//used as a temp array too, needs to be fft_length!
+    float * restrict src,/*input data w/ overlap at start,
+                               *automatically cycled in routine
+                               */
+    float * restrict overlap,//The size of the overlap
+    const float X,//multiplier
+    const float * restrict H,//The freq. magnitude scalers filter
+    const float * restrict W,//The windowing function
+    fftwf_complex * restrict output_window,//The transformed windowed src
+    struct userdata *u){//Collection of constants
+    const size_t overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
+    float_vector_t x;
+    x.f[0] = x.f[1] = x.f[2] = x.f[3] = X;
+
+    //assert(u->samples_gathered >= u->R);
+    //use a linear-phase sliding STFT and overlap-add method
+    for(size_t j = 0; j < u->window_size; j += v_size){
+        //dst[j] = W[j] * src[j];
+        float_vector_t *d = (float_vector_t*) (dst + j);
+        float_vector_t *w = (float_vector_t*) (W + j);
+        float_vector_t *s = (float_vector_t*) (src + j);
 //#if __SSE2__
-//        d->m = _mm_mul_ps(x->m, _mm_mul_ps(w->m, s->m));
-//#else
+        d->m = _mm_mul_ps(x.m, _mm_mul_ps(w->m, s->m));
 //        d->v = x->v * w->v * s->v;
 //#endif
-//    }
-//    //Processing is done here!
-//    //do fft
-//    fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
-//
-//
-//    //perform filtering - purely magnitude based
-//    for(size_t j = 0;j < fft_h; j+=v_size/2){
-//        //output_window[j][0]*=H[j];
-//        //output_window[j][1]*=H[j];
-//        float_vector_t *d = (float_vector_t*)(output_window+j);
-//        float_vector_t h;
-//        h.f[0] = h.f[1] = H[j];
-//        h.f[2] = h.f[3] = H[j+1];
+    }
+    //zero pad the remaining fft window
+    memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
+
+    //Processing is done here!
+    //do fft
+    fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
+    //perform filtering - purely magnitude based
+    for(size_t j = 0; j < FILTER_SIZE; j += v_size / 2){
+        //output_window[j][0]*=H[j];
+        //output_window[j][1]*=H[j];
+        float_vector_t *d = (float_vector_t*)( ((float *) output_window) + 2 * j);
+        float_vector_t h;
+        h.f[0] = h.f[1] = H[j];
+        h.f[2] = h.f[3] = H[j + 1];
 //#if __SSE2__
-//        d->m = _mm_mul_ps(d->m, h.m);
+        d->m = _mm_mul_ps(d->m, h.m);
 //#else
-//        d->v = d->v*h->v;
+//        d->v = d->v * h.v;
 //#endif
-//    }
-//    //inverse fft
-//    fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
-//
-//    ////debug: tests overlaping add
-//    ////and negates ALL PREVIOUS processing
-//    ////yields a perfect reconstruction if COLA is held
-//    //for(size_t j = 0; j < u->window_size; ++j){
-//    //    dst[j] = W[j]*src[j];
-//    //}
-//
-//    //overlap add and preserve overlap component from this window (linear phase)
-//    for(size_t j = 0; j < overlap_size; j+=v_size){
-//        //dst[j]+=overlap[j];
-//        //overlap[j]+=dst[j+R];
-//        float_vector_t *d = (float_vector_t*)(dst+j);
-//        float_vector_t *o = (float_vector_t*)(overlap+j);
+    }
+
+    //inverse fft
+    fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
+
+    ////debug: tests overlapping add
+    ////and negates ALL PREVIOUS processing
+    ////yields a perfect reconstruction if COLA is held
+    //for(size_t j = 0; j < u->window_size; ++j){
+    //    dst[j] = W[j] * src[j];
+    //}
+
+    //overlap add and preserve overlap component from this window (linear phase)
+    for(size_t j = 0; j < overlap_size; j += v_size){
+        //dst[j]+=overlap[j];
+        //overlap[j]+=dst[j+R];
+        float_vector_t *d = (float_vector_t*)(dst + j);
+        float_vector_t *o = (float_vector_t*)(overlap + j);
 //#if __SSE2__
-//        d->m = _mm_add_ps(d->m, o->m);
-//        o->m = ((float_vector_t*)(dst+u->R+j))->m;
+        d->m = _mm_add_ps(d->m, o->m);
+        o->m = ((float_vector_t*)(dst + u->R + j))->m;
 //#else
-//        d->v = d->v+o->v;
-//        o->v = ((float_vector_t*)(dst+u->R+j))->v;
+//        d->v = d->v + o->v;
+//        o->v = ((float_vector_t*)(dst + u->R + j))->v;
 //#endif
-//    }
-//    //memcpy(overlap, dst+u->R, u->overlap_size*sizeof(float));
-//
-//    //////debug: tests if basic buffering works
-//    //////shouldn't modify the signal AT ALL (beyond roundoff)
-//    //for(size_t j = 0; j < u->window_size; ++j){
-//    //    dst[j] = src[j];
-//    //}
-//
-//    //preseve the needed input for the next window's overlap
-//    memmove(src, src + u->R,
-//        u->overlap_size * sizeof(float)
-//    );
-//}
-
-static void process_samples(struct userdata *u, pa_memchunk *tchunk){
+    }
+    //memcpy(overlap, dst+u->R, u->overlap_size * sizeof(float)); //overlap preserve (debug)
+    //zero out the bit beyond the real overlap so we don't add garbage next iteration
+    memset(overlap + u->overlap_size, 0, overlap_size - u->overlap_size);
+
+    ////debug: tests if basic buffering works
+    ////shouldn't modify the signal AT ALL (beyond roundoff)
+    //for(size_t j = 0; j < u->window_size; ++j){
+    //    dst[j] = src[j];
+    //}
+
+    //preserve the needed input for the next window's overlap
+    memmove(src, src + u->R,
+        (u->samples_gathered - u->R) * sizeof(float)
+    );
+}
+#endif
+
+static void flatten_to_memblockq(struct userdata *u){
+    size_t mbs = pa_mempool_block_size_max(u->sink->core->mempool);
+    pa_memchunk tchunk;
+    char *dst;
+    size_t i = 0;
+    while(i < u->output_buffer_length){
+        tchunk.index = 0;
+        tchunk.length = PA_MIN((u->output_buffer_length - i), mbs);
+        tchunk.memblock = pa_memblock_new(u->sink->core->mempool, tchunk.length);
+        //pa_log_debug("pushing %ld into the q", tchunk.length);
+        dst = pa_memblock_acquire(tchunk.memblock);
+        memcpy(dst, u->output_buffer + i, tchunk.length);
+        pa_memblock_release(tchunk.memblock);
+        pa_memblockq_push(u->output_q, &tchunk);
+        pa_memblock_unref(tchunk.memblock);
+        i += tchunk.length;
+    }
+}
+
+static void process_samples(struct userdata *u){
     size_t fs = pa_frame_size(&(u->sink->sample_spec));
-    float *dst;
     unsigned a_i;
     float *H, X;
     size_t iterations, offset;
     pa_assert(u->samples_gathered >= u->window_size);
     iterations = (u->samples_gathered - u->overlap_size) / u->R;
-    tchunk->index = 0;
-    tchunk->length = iterations * u->R * fs;
-    tchunk->memblock = pa_memblock_new(u->sink->core->mempool, tchunk->length);
-    dst = ((float*) pa_memblock_acquire(tchunk->memblock));
+    //make sure there is enough buffer memory allocated
+    if(iterations * u->R * fs > u->output_buffer_max_length){
+        u->output_buffer_max_length = iterations * u->R * fs;
+        pa_xfree(u->output_buffer);
+        u->output_buffer = pa_xmalloc(u->output_buffer_max_length);
+    }
+    u->output_buffer_length = iterations * u->R * fs;
+
     for(size_t iter = 0; iter < iterations; ++iter){
         offset = iter * u->R * fs;
         for(size_t c = 0;c < u->channels; c++) {
@@ -534,14 +562,14 @@ static void process_samples(struct userdata *u, pa_memchunk *tchunk){
                     u->work_buffer[i] = u->W[i] <= FLT_EPSILON ? u->work_buffer[i] : u->work_buffer[i] / u->W[i];
                 }
             }
-            pa_sample_clamp(PA_SAMPLE_FLOAT32NE, (uint8_t *) (dst + c) + offset, fs, u->work_buffer, sizeof(float), u->R);
+            pa_sample_clamp(PA_SAMPLE_FLOAT32NE, (uint8_t *) (((float *)u->output_buffer) + c) + offset, fs, u->work_buffer, sizeof(float), u->R);
         }
         if(u->first_iteration){
             u->first_iteration = FALSE;
         }
         u->samples_gathered -= u->R;
     }
-    pa_memblock_release(tchunk->memblock);
+    flatten_to_memblockq(u);
 }
 
 static void input_buffer(struct userdata *u, pa_memchunk *in){
@@ -565,65 +593,90 @@ static void input_buffer(struct userdata *u, pa_memchunk *in){
 static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
     struct userdata *u;
     size_t fs, target_samples;
-    struct timeval start, end;
+    size_t mbs;
+    //struct timeval start, end;
     pa_memchunk tchunk;
+
     pa_sink_input_assert_ref(i);
     pa_assert_se(u = i->userdata);
     pa_assert(chunk);
     pa_assert(u->sink);
+
+    /* FIXME: Please clean this up. I see more commented code lines
+     * than uncommented code lines. I am sorry, but I am too dumb to
+     * understand this. */
+
     fs = pa_frame_size(&(u->sink->sample_spec));
+    mbs = pa_mempool_block_size_max(u->sink->core->mempool);
+    if(pa_memblockq_get_length(u->output_q) > 0){
+        //pa_log_debug("qsize is %ld", pa_memblockq_get_length(u->output_q));
+        goto END;
+    }
+    //nbytes = PA_MIN(nbytes, pa_mempool_block_size_max(u->sink->core->mempool));
     target_samples = PA_ROUND_UP(nbytes / fs, u->R);
+    ////pa_log_debug("vanilla mbs = %ld",mbs);
+    //mbs = PA_ROUND_DOWN(mbs / fs, u->R);
+    //mbs = PA_MAX(mbs, u->R);
+    //target_samples = PA_MAX(target_samples, mbs);
+    //pa_log_debug("target samples: %ld", target_samples);
     if(u->first_iteration){
         //allocate request_size
         target_samples = PA_MAX(target_samples, u->window_size);
     }else{
         //allocate request_size + overlap
         target_samples += u->overlap_size;
-        alloc_input_buffers(u, target_samples);
     }
     alloc_input_buffers(u, target_samples);
+    //pa_log_debug("post target samples: %ld", target_samples);
     chunk->memblock = NULL;
 
     /* Hmm, process any rewind request that might be queued up */
     pa_sink_process_rewind(u->sink, 0);
 
     //pa_log_debug("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested);
-    pa_rtclock_get(&start);
+    //pa_rtclock_get(&start);
     do{
         size_t input_remaining = target_samples - u->samples_gathered;
+       // pa_log_debug("input remaining %ld samples", input_remaining);
         pa_assert(input_remaining > 0);
-        while(pa_memblockq_peek(u->input_q, &tchunk) < 0){
+        while (pa_memblockq_peek(u->input_q, &tchunk) < 0) {
             //pa_sink_render(u->sink, input_remaining * fs, &tchunk);
-            pa_sink_render_full(u->sink, input_remaining * fs, &tchunk);
-            pa_assert(tchunk.memblock);
+            pa_sink_render_full(u->sink, PA_MIN(input_remaining * fs, mbs), &tchunk);
             pa_memblockq_push(u->input_q, &tchunk);
             pa_memblock_unref(tchunk.memblock);
         }
         pa_assert(tchunk.memblock);
+
         tchunk.length = PA_MIN(input_remaining * fs, tchunk.length);
+
         pa_memblockq_drop(u->input_q, tchunk.length);
         //pa_log_debug("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs);
         /* copy new input */
         //pa_rtclock_get(start);
+       // pa_log_debug("buffering %ld bytes", tchunk.length);
         input_buffer(u, &tchunk);
         //pa_rtclock_get(&end);
         //pa_log_debug("Took %0.5f seconds to setup", pa_timeval_diff(end, start) / (double) PA_USEC_PER_SEC);
         pa_memblock_unref(tchunk.memblock);
-    }while(u->samples_gathered < target_samples);
+    } while(u->samples_gathered < target_samples);
 
-    pa_rtclock_get(&end);
-    pa_log_debug("Took %0.6f seconds to get data", (double) pa_timeval_diff(&end, &start) / PA_USEC_PER_SEC);
+    //pa_rtclock_get(&end);
+    //pa_log_debug("Took %0.6f seconds to get data", (double) pa_timeval_diff(&end, &start) / PA_USEC_PER_SEC);
 
     pa_assert(u->fft_size >= u->window_size);
     pa_assert(u->R < u->window_size);
-    /* set the H filter */
-    pa_rtclock_get(&start);
+    //pa_rtclock_get(&start);
     /* process a block */
-    process_samples(u, chunk);
-    pa_rtclock_get(&end);
-    pa_log_debug("Took %0.6f seconds to process", (double) pa_timeval_diff(&end, &start) / PA_USEC_PER_SEC);
-
+    process_samples(u);
+    //pa_rtclock_get(&end);
+    //pa_log_debug("Took %0.6f seconds to process", (double) pa_timeval_diff(&end, &start) / PA_USEC_PER_SEC);
+END:
+    pa_assert_se(pa_memblockq_peek(u->output_q, chunk) >= 0);
     pa_assert(chunk->memblock);
+    pa_memblockq_drop(u->output_q, chunk->length);
+
+    /** FIXME: Uh? you need to unref the chunk here! */
+
     //pa_log_debug("gave %ld", chunk->length/fs);
     //pa_log_debug("end pop");
     return 0;
@@ -649,19 +702,23 @@ static void sink_input_mute_changed_cb(pa_sink_input *i) {
     pa_sink_mute_changed(u->sink, i->muted);
 }
 
+#if 0
 static void reset_filter(struct userdata *u){
     size_t fs = pa_frame_size(&u->sink->sample_spec);
     size_t max_request;
+
     u->samples_gathered = 0;
-    for(size_t i = 0; i < u->channels; ++i){
-        memset(u->overlap_accum[i], 0, u->overlap_size * sizeof(float));
-    }
+
+    for(size_t i = 0; i < u->channels; ++i)
+        pa_memzero(u->overlap_accum[i], u->overlap_size * sizeof(float));
+
     u->first_iteration = TRUE;
     //set buffer size to max request, no overlap copy
     max_request = PA_ROUND_UP(pa_sink_input_get_max_request(u->sink_input) / fs , u->R);
     max_request = PA_MAX(max_request, u->window_size);
     pa_sink_set_max_request_within_thread(u->sink, max_request * fs);
 }
+#endif
 
 /* Called from I/O thread context */
 static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
@@ -685,7 +742,7 @@ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
             //invalidate the output q
             pa_memblockq_seek(u->input_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
             pa_log("Resetting filter");
-            reset_filter(u);
+            //reset_filter(u); //this is the "proper" thing to do...
         }
     }
 
@@ -708,12 +765,11 @@ static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
 static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
     struct userdata *u;
     size_t fs;
+
     pa_sink_input_assert_ref(i);
     pa_assert_se(u = i->userdata);
-    //if(u->first_iteration){
-    //    return;
-    //}
-    fs = pa_frame_size(&(u->sink->sample_spec));
+
+    fs = pa_frame_size(&u->sink_input->sample_spec);
     pa_sink_set_max_request_within_thread(u->sink, PA_ROUND_UP(nbytes / fs, u->R) * fs);
 }
 
@@ -753,24 +809,23 @@ static void sink_input_detach_cb(pa_sink_input *i) {
 static void sink_input_attach_cb(pa_sink_input *i) {
     struct userdata *u;
     size_t fs, max_request;
+
     pa_sink_input_assert_ref(i);
     pa_assert_se(u = i->userdata);
 
     pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll);
     pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
-
     pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
-    fs = pa_frame_size(&u->sink->sample_spec);
-    //set buffer size to max request, no overlap copy
-    max_request = PA_ROUND_UP(pa_sink_input_get_max_request(u->sink_input) / fs , u->R);
+
+    fs = pa_frame_size(&u->sink_input->sample_spec);
+    /* set buffer size to max request, no overlap copy */
+    max_request = PA_ROUND_UP(pa_sink_input_get_max_request(u->sink_input) / fs, u->R);
     max_request = PA_MAX(max_request, u->window_size);
+
     pa_sink_set_max_request_within_thread(u->sink, max_request * fs);
     pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i));
+
     pa_sink_attach_within_thread(u->sink);
-    if(u->set_default){
-        pa_log_debug("Setting default sink to %s", u->sink->name);
-        pa_namereg_set_default_sink(u->module->core, u->sink);
-    }
 }
 
 /* Called from main context */
@@ -814,38 +869,40 @@ static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t s
 static void pack(char **strs, size_t len, char **packed, size_t *length){
     size_t t_len = 0;
     size_t headers = (1+len) * sizeof(uint16_t);
-    size_t offset = sizeof(uint16_t);
+    char *p;
     for(size_t i = 0; i < len; ++i){
         t_len += strlen(strs[i]);
     }
     *length = headers + t_len;
-    *packed = pa_xmalloc0(*length);
-    ((uint16_t *) *packed)[0] = (uint16_t) len;
+    p = *packed = pa_xmalloc0(*length);
+    *((uint16_t *) p) = (uint16_t) len;
+    p += sizeof(uint16_t);
     for(size_t i = 0; i < len; ++i){
         uint16_t l = strlen(strs[i]);
-        *((uint16_t *)(*packed + offset)) = l;
-        offset += sizeof(uint16_t);
-        memcpy(*packed + offset, strs[i], l);
-        offset += l;
+        *((uint16_t *) p) = (uint16_t) l;
+        p += sizeof(uint16_t);
+        memcpy(p, strs[i], l);
+        p += l;
     }
 }
 static void unpack(char *str, size_t length, char ***strs, size_t *len){
-    size_t offset = sizeof(uint16_t);
-    *len = ((uint16_t *)str)[0];
+    char *p = str;
+    *len = *((uint16_t *) p);
+    p += sizeof(uint16_t);
     *strs = pa_xnew(char *, *len);
+
     for(size_t i = 0; i < *len; ++i){
-        size_t l = *((uint16_t *)(str+offset));
-        size_t e = PA_MIN(offset + l, length) - offset;
-        offset = PA_MIN(offset + sizeof(uint16_t), length);
-        (*strs)[i] = pa_xnew(char, e + 1);
-        memcpy((*strs)[i], str + offset, e);
-        (*strs)[i][e] = '\0';
-        offset += l;
+        size_t l = *((uint16_t *) p);
+        p += sizeof(uint16_t);
+        (*strs)[i] = pa_xnew(char, l + 1);
+        memcpy((*strs)[i], p, l);
+        (*strs)[i][l] = '\0';
+        p += l;
     }
 }
 static void save_profile(struct userdata *u, size_t channel, char *name){
     unsigned a_i;
-    const size_t profile_size = CHANNEL_PROFILE_SIZE * sizeof(float);
+    const size_t profile_size = CHANNEL_PROFILE_SIZE(u) * sizeof(float);
     float *H_n, *profile;
     const float *H;
     pa_datum key, data;
@@ -854,7 +911,7 @@ static void save_profile(struct userdata *u, size_t channel, char *name){
     profile[0] = u->Xs[a_i][channel];
     H = u->Hs[channel][a_i];
     H_n = profile + 1;
-    for(size_t i = 0 ; i <= FILTER_SIZE; ++i){
+    for(size_t i = 0 ; i < FILTER_SIZE(u); ++i){
         H_n[i] = H[i] * u->fft_size;
         //H_n[i] = H[i];
     }
@@ -873,31 +930,30 @@ static void save_profile(struct userdata *u, size_t channel, char *name){
 
 static void save_state(struct userdata *u){
     unsigned a_i;
-    const size_t filter_state_size = FILTER_STATE_SIZE * sizeof(float);
+    const size_t filter_state_size = FILTER_STATE_SIZE(u) * sizeof(float);
     float *H_n, *state;
     float *H;
     pa_datum key, data;
     pa_database *database;
     char *dbname;
-    char *state_name = u->name;
     char *packed;
     size_t packed_length;
 
     pack(u->base_profiles, u->channels, &packed, &packed_length);
     state = (float *) pa_xmalloc0(filter_state_size + packed_length);
+    memcpy(state + FILTER_STATE_SIZE(u), packed, packed_length);
+    pa_xfree(packed);
 
     for(size_t c = 0; c < u->channels; ++c){
         a_i = pa_aupdate_read_begin(u->a_H[c]);
-        state[c * CHANNEL_PROFILE_SIZE] = u->Xs[a_i][c];
+        state[c * CHANNEL_PROFILE_SIZE(u)] = u->Xs[c][a_i];
         H = u->Hs[c][a_i];
-        H_n = state + c * CHANNEL_PROFILE_SIZE + 1;
-        memcpy(H_n, H, FILTER_SIZE * sizeof(float));
+        H_n = &state[c * CHANNEL_PROFILE_SIZE(u) + 1];
+        memcpy(H_n, H, FILTER_SIZE(u) * sizeof(float));
         pa_aupdate_read_end(u->a_H[c]);
     }
-    memcpy(((char *)state) + filter_state_size, packed, packed_length);
-    pa_xfree(packed);
 
-    key.data = state_name;
+    key.data = u->sink->name;
     key.size = strlen(key.data);
     data.data = state;
     data.size = filter_state_size + packed_length;
@@ -925,7 +981,7 @@ static void remove_profile(pa_core *c, char *name){
 static const char* load_profile(struct userdata *u, size_t channel, char *name){
     unsigned a_i;
     pa_datum key, value;
-    const size_t profile_size = CHANNEL_PROFILE_SIZE * sizeof(float);
+    const size_t profile_size = CHANNEL_PROFILE_SIZE(u) * sizeof(float);
     key.data = name;
     key.size = strlen(key.data);
     if(pa_database_get(u->database, &key, &value) != NULL){
@@ -933,7 +989,7 @@ static const char* load_profile(struct userdata *u, size_t channel, char *name){
             float *profile = (float *) value.data;
             a_i = pa_aupdate_write_begin(u->a_H[channel]);
             u->Xs[channel][a_i] = profile[0];
-            memcpy(u->Hs[channel][a_i], profile + 1, FILTER_SIZE * sizeof(float));
+            memcpy(u->Hs[channel][a_i], profile + 1, FILTER_SIZE(u) * sizeof(float));
             fix_filter(u->Hs[channel][a_i], u->fft_size);
             pa_aupdate_write_end(u->a_H[channel]);
             pa_xfree(u->base_profiles[channel]);
@@ -954,7 +1010,6 @@ static void load_state(struct userdata *u){
     pa_datum key, value;
     pa_database *database;
     char *dbname;
-    char *state_name = u->name;
     pa_assert_se(dbname = pa_state_path(EQ_STATE_DB, FALSE));
     database = pa_database_open(dbname, FALSE);
     pa_xfree(dbname);
@@ -963,28 +1018,28 @@ static void load_state(struct userdata *u){
         return;
     }
 
-    key.data = state_name;
+    key.data = u->sink->name;
     key.size = strlen(key.data);
 
     if(pa_database_get(database, &key, &value) != NULL){
-        if(value.size > FILTER_STATE_SIZE * sizeof(float) + sizeof(uint16_t)){
+        if(value.size > FILTER_STATE_SIZE(u) * sizeof(float) + sizeof(uint16_t)){
             float *state = (float *) value.data;
             size_t n_profs;
             char **names;
             for(size_t c = 0; c < u->channels; ++c){
                 a_i = pa_aupdate_write_begin(u->a_H[c]);
-                H = state + c * CHANNEL_PROFILE_SIZE + 1;
-                u->Xs[c][a_i] = state[c * CHANNEL_PROFILE_SIZE];
-                memcpy(u->Hs[c][a_i], H, FILTER_SIZE * sizeof(float));
+                H = state + c * CHANNEL_PROFILE_SIZE(u) + 1;
+                u->Xs[c][a_i] = state[c * CHANNEL_PROFILE_SIZE(u)];
+                memcpy(u->Hs[c][a_i], H, FILTER_SIZE(u) * sizeof(float));
                 pa_aupdate_write_end(u->a_H[c]);
             }
-            //unpack(((char *)value.data) + FILTER_STATE_SIZE, value.size - FILTER_STATE_SIZE, &names, &n_profs);
-            //n_profs = PA_MIN(n_profs, u->channels);
-            //for(size_t c = 0; c < n_profs; ++c){
-            //    pa_xfree(u->base_profiles[c]);
-            //    u->base_profiles[c] = names[c];
-            //}
-            //pa_xfree(names);
+            unpack(((char *)value.data) + FILTER_STATE_SIZE(u) * sizeof(float), value.size - FILTER_STATE_SIZE(u) * sizeof(float), &names, &n_profs);
+            n_profs = PA_MIN(n_profs, u->channels);
+            for(size_t c = 0; c < n_profs; ++c){
+                pa_xfree(u->base_profiles[c]);
+                u->base_profiles[c] = names[c];
+            }
+            pa_xfree(names);
         }
         pa_datum_free(&value);
     }else{
@@ -1000,6 +1055,9 @@ static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
     pa_sink_input_assert_ref(i);
     pa_assert_se(u = i->userdata);
 
+    if (u->autoloaded)
+        return FALSE;
+
     return u->sink != dest;
 }
 
@@ -1009,6 +1067,7 @@ static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
 
     pa_sink_input_assert_ref(i);
     pa_assert_se(u = i->userdata);
+
     if (dest) {
         pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq);
         pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags);
@@ -1025,9 +1084,11 @@ int pa__init(pa_module*m) {
     pa_sink *master;
     pa_sink_input_new_data sink_input_data;
     pa_sink_new_data sink_data;
-    size_t fs;
+    size_t i;
+    unsigned c;
     float *H;
     unsigned a_i;
+    pa_bool_t use_volume_sharing = TRUE;
 
     pa_assert(m);
 
@@ -1036,13 +1097,9 @@ int pa__init(pa_module*m) {
         goto fail;
     }
 
-    if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
-        pa_log("Master sink not found, trying default");
-        master = pa_namereg_get_default_sink(m->core);
-        if(!master){
-            pa_log("no default sink found!");
-            goto fail;
-        }
+    if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "sink_master", NULL), PA_NAMEREG_SINK))) {
+        pa_log("Master sink not found");
+        goto fail;
     }
 
     ss = master->sample_spec;
@@ -1052,45 +1109,50 @@ int pa__init(pa_module*m) {
         pa_log("Invalid sample format specification or channel map");
         goto fail;
     }
-    fs = pa_frame_size(&ss);
+
+    //fs = pa_frame_size(&ss);
+
+    if (pa_modargs_get_value_boolean(ma, "use_volume_sharing", &use_volume_sharing) < 0) {
+        pa_log("use_volume_sharing= expects a boolean argument");
+        goto fail;
+    }
 
     u = pa_xnew0(struct userdata, 1);
     u->module = m;
     m->userdata = u;
 
-    u->set_default = TRUE;
-    pa_modargs_get_value_boolean(ma, "set_default", &u->set_default);
-
     u->channels = ss.channels;
-    u->fft_size = pow(2, ceil(log(ss.rate)/log(2)));//probably unstable near corner cases of powers of 2
-    pa_log_debug("fft size: %ld", u->fft_size);
+    u->fft_size = pow(2, ceil(log(ss.rate) / log(2)));//probably unstable near corner cases of powers of 2
+    pa_log_debug("fft size: %zd", u->fft_size);
     u->window_size = 15999;
+    if (u->window_size % 2 == 0)
+        u->window_size--;
     u->R = (u->window_size + 1) / 2;
     u->overlap_size = u->window_size - u->R;
     u->samples_gathered = 0;
     u->input_buffer_max = 0;
+
     u->a_H = pa_xnew0(pa_aupdate *, u->channels);
     u->Xs = pa_xnew0(float *, u->channels);
     u->Hs = pa_xnew0(float **, u->channels);
-    for(size_t c = 0; c < u->channels; ++c){
+
+    for (c = 0; c < u->channels; ++c) {
         u->Xs[c] = pa_xnew0(float, 2);
         u->Hs[c] = pa_xnew0(float *, 2);
-        for(size_t i = 0; i < 2; ++i){
-            u->Hs[c][i] = alloc(FILTER_SIZE, sizeof(float));
-        }
+        for (i = 0; i < 2; ++i)
+            u->Hs[c][i] = alloc(FILTER_SIZE(u), sizeof(float));
     }
+
     u->W = alloc(u->window_size, sizeof(float));
     u->work_buffer = alloc(u->fft_size, sizeof(float));
-    memset(u->work_buffer, 0, u->fft_size*sizeof(float));
     u->input = pa_xnew0(float *, u->channels);
     u->overlap_accum = pa_xnew0(float *, u->channels);
-    for(size_t c = 0; c < u->channels; ++c){
+    for (c = 0; c < u->channels; ++c) {
         u->a_H[c] = pa_aupdate_new();
         u->input[c] = NULL;
         u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float));
-        memset(u->overlap_accum[c], 0, u->overlap_size*sizeof(float));
     }
-    u->output_window = alloc((FILTER_SIZE), sizeof(fftwf_complex));
+    u->output_window = alloc(FILTER_SIZE(u), sizeof(fftwf_complex));
     u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE);
     u->inverse_plan = fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE);
 
@@ -1098,9 +1160,8 @@ int pa__init(pa_module*m) {
     u->first_iteration = TRUE;
 
     u->base_profiles = pa_xnew0(char *, u->channels);
-    for(size_t c = 0; c < u->channels; ++c){
+    for (c = 0; c < u->channels; ++c)
         u->base_profiles[c] = pa_xstrdup("default");
-    }
 
     /* Create sink */
     pa_sink_new_data_init(&sink_data);
@@ -1110,8 +1171,10 @@ int pa__init(pa_module*m) {
         sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name);
     pa_sink_new_data_set_sample_spec(&sink_data, &ss);
     pa_sink_new_data_set_channel_map(&sink_data, &map);
+
     z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
-    pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer on %s",z? z: master->name);
+    pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer on %s", z ? z : master->name);
+
     pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
     pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
 
@@ -1121,24 +1184,37 @@ int pa__init(pa_module*m) {
         goto fail;
     }
 
-    u->sink = pa_sink_new(m->core, &sink_data,
-                          PA_SINK_HW_MUTE_CTRL|PA_SINK_HW_VOLUME_CTRL|PA_SINK_DECIBEL_VOLUME|
-                          (master->flags & (PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY)));
+    u->autoloaded = DEFAULT_AUTOLOADED;
+    if (pa_modargs_get_value_boolean(ma, "autoloaded", &u->autoloaded) < 0) {
+        pa_log("Failed to parse autoloaded value");
+        goto fail;
+    }
+
+    u->sink = pa_sink_new(m->core, &sink_data, (master->flags & (PA_SINK_LATENCY | PA_SINK_DYNAMIC_LATENCY))
+                                               | (use_volume_sharing ? PA_SINK_SHARE_VOLUME_WITH_MASTER : 0));
     pa_sink_new_data_done(&sink_data);
 
     if (!u->sink) {
         pa_log("Failed to create sink.");
         goto fail;
     }
-    u->name=pa_xstrdup(u->sink->name);
+
     u->sink->parent.process_msg = sink_process_msg_cb;
     u->sink->set_state = sink_set_state_cb;
     u->sink->update_requested_latency = sink_update_requested_latency_cb;
     u->sink->request_rewind = sink_request_rewind_cb;
-    u->sink->set_volume = sink_set_volume_cb;
-    u->sink->set_mute = sink_set_mute_cb;
+    pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb);
+    if (!use_volume_sharing) {
+        pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb);
+        pa_sink_enable_decibel_volume(u->sink, TRUE);
+    }
     u->sink->userdata = u;
-    u->input_q = pa_memblockq_new(0,  MEMBLOCKQ_MAXLENGTH, 0, fs, 1, 1, 0, &u->sink->silence);
+
+    u->input_q = pa_memblockq_new("module-equalizer-sink input_q", 0, MEMBLOCKQ_MAXLENGTH, 0, &ss, 1, 1, 0, &u->sink->silence);
+    u->output_q = pa_memblockq_new("module-equalizer-sink output_q", 0, MEMBLOCKQ_MAXLENGTH, 0, &ss, 1, 1, 0, NULL);
+    u->output_buffer = NULL;
+    u->output_buffer_length = 0;
+    u->output_buffer_max_length = 0;
 
     pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
     //pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->R*fs, &ss));
@@ -1147,7 +1223,8 @@ int pa__init(pa_module*m) {
     pa_sink_input_new_data_init(&sink_input_data);
     sink_input_data.driver = __FILE__;
     sink_input_data.module = m;
-    sink_input_data.sink = master;
+    pa_sink_input_new_data_set_sink(&sink_input_data, master, FALSE);
+    sink_input_data.origin_sink = u->sink;
     pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream");
     pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
     pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
@@ -1171,40 +1248,42 @@ int pa__init(pa_module*m) {
     u->sink_input->state_change = sink_input_state_change_cb;
     u->sink_input->may_move_to = sink_input_may_move_to_cb;
     u->sink_input->moving = sink_input_moving_cb;
-    u->sink_input->volume_changed = sink_input_volume_changed_cb;
+    if (!use_volume_sharing)
+        u->sink_input->volume_changed = sink_input_volume_changed_cb;
     u->sink_input->mute_changed = sink_input_mute_changed_cb;
-
     u->sink_input->userdata = u;
 
-    pa_sink_put(u->sink);
-    pa_sink_input_put(u->sink_input);
-
-    pa_modargs_free(ma);
-
+    u->sink->input_to_master = u->sink_input;
 
     dbus_init(u);
 
-    //default filter to these
-    for(size_t c = 0; c< u->channels; ++c){
+    /* default filter to these */
+    for (c = 0; c< u->channels; ++c) {
         a_i = pa_aupdate_write_begin(u->a_H[c]);
         H = u->Hs[c][a_i];
         u->Xs[c][a_i] = 1.0f;
-        for(size_t i = 0; i < FILTER_SIZE; ++i){
+
+        for(i = 0; i < FILTER_SIZE(u); ++i)
             H[i] = 1.0 / sqrtf(2.0f);
-        }
+
         fix_filter(H, u->fft_size);
         pa_aupdate_write_end(u->a_H[c]);
     }
-    //load old parameters
+
+    /* load old parameters */
     load_state(u);
 
+    pa_sink_put(u->sink);
+    pa_sink_input_put(u->sink_input);
+
+    pa_modargs_free(ma);
+
     return 0;
 
 fail:
     if (ma)
         pa_modargs_free(ma);
 
-
     pa__done(m);
 
     return -1;
@@ -1221,6 +1300,7 @@ int pa__get_n_used(pa_module *m) {
 
 void pa__done(pa_module*m) {
     struct userdata *u;
+    unsigned c;
 
     pa_assert(m);
 
@@ -1231,9 +1311,8 @@ void pa__done(pa_module*m) {
 
     dbus_done(u);
 
-    for(size_t c = 0; c < u->channels; ++c){
+    for(c = 0; c < u->channels; ++c)
         pa_xfree(u->base_profiles[c]);
-    }
     pa_xfree(u->base_profiles);
 
     /* See comments in sink_input_kill_cb() above regarding
@@ -1251,12 +1330,14 @@ void pa__done(pa_module*m) {
     if (u->sink)
         pa_sink_unref(u->sink);
 
+    pa_xfree(u->output_buffer);
+    pa_memblockq_free(u->output_q);
     pa_memblockq_free(u->input_q);
 
     fftwf_destroy_plan(u->inverse_plan);
     fftwf_destroy_plan(u->forward_plan);
     pa_xfree(u->output_window);
-    for(size_t c=0; c < u->channels; ++c){
+    for (c = 0; c < u->channels; ++c) {
         pa_aupdate_free(u->a_H[c]);
         pa_xfree(u->overlap_accum[c]);
         pa_xfree(u->input[c]);
@@ -1266,18 +1347,15 @@ void pa__done(pa_module*m) {
     pa_xfree(u->input);
     pa_xfree(u->work_buffer);
     pa_xfree(u->W);
-    for(size_t c = 0; c < u->channels; ++c){
+    for (c = 0; c < u->channels; ++c) {
         pa_xfree(u->Xs[c]);
-        for(size_t i = 0; i < 2; ++i){
+        for (size_t i = 0; i < 2; ++i)
             pa_xfree(u->Hs[c][i]);
-        }
         pa_xfree(u->Hs[c]);
     }
     pa_xfree(u->Xs);
     pa_xfree(u->Hs);
 
-    pa_xfree(u->name);
-
     pa_xfree(u);
 }
 
@@ -1317,7 +1395,7 @@ pa_dbus_arg_info remove_profile_args[]={
 };
 
 static pa_dbus_method_handler manager_methods[MANAGER_METHOD_MAX]={
-    [MANAGER_METHOD_REMOVE_PROFILE]{
+    [MANAGER_METHOD_REMOVE_PROFILE]={
         .method_name="RemoveProfile",
         .arguments=remove_profile_args,
         .n_arguments=sizeof(remove_profile_args)/sizeof(pa_dbus_arg_info),
@@ -1424,42 +1502,42 @@ pa_dbus_arg_info base_profile_name_args[]={
 };
 
 static pa_dbus_method_handler equalizer_methods[EQUALIZER_METHOD_MAX]={
-    [EQUALIZER_METHOD_SEED_FILTER]{
+    [EQUALIZER_METHOD_SEED_FILTER]={
         .method_name="SeedFilter",
         .arguments=seed_filter_args,
         .n_arguments=sizeof(seed_filter_args)/sizeof(pa_dbus_arg_info),
         .receive_cb=equalizer_handle_seed_filter},
-    [EQUALIZER_METHOD_FILTER_POINTS]{
+    [EQUALIZER_METHOD_FILTER_POINTS]={
         .method_name="FilterAtPoints",
         .arguments=filter_points_args,
         .n_arguments=sizeof(filter_points_args)/sizeof(pa_dbus_arg_info),
         .receive_cb=equalizer_handle_get_filter_points},
-    [EQUALIZER_METHOD_SET_FILTER]{
+    [EQUALIZER_METHOD_SET_FILTER]={
         .method_name="SetFilter",
         .arguments=set_filter_args,
         .n_arguments=sizeof(set_filter_args)/sizeof(pa_dbus_arg_info),
         .receive_cb=equalizer_handle_set_filter},
-    [EQUALIZER_METHOD_GET_FILTER]{
+    [EQUALIZER_METHOD_GET_FILTER]={
         .method_name="GetFilter",
         .arguments=get_filter_args,
         .n_arguments=sizeof(get_filter_args)/sizeof(pa_dbus_arg_info),
         .receive_cb=equalizer_handle_get_filter},
-    [EQUALIZER_METHOD_SAVE_PROFILE]{
+    [EQUALIZER_METHOD_SAVE_PROFILE]={
         .method_name="SaveProfile",
         .arguments=save_profile_args,
         .n_arguments=sizeof(save_profile_args)/sizeof(pa_dbus_arg_info),
         .receive_cb=equalizer_handle_save_profile},
-    [EQUALIZER_METHOD_LOAD_PROFILE]{
+    [EQUALIZER_METHOD_LOAD_PROFILE]={
         .method_name="LoadProfile",
         .arguments=load_profile_args,
         .n_arguments=sizeof(load_profile_args)/sizeof(pa_dbus_arg_info),
         .receive_cb=equalizer_handle_load_profile},
-    [EQUALIZER_METHOD_SAVE_STATE]{
+    [EQUALIZER_METHOD_SAVE_STATE]={
         .method_name="SaveState",
         .arguments=NULL,
         .n_arguments=0,
         .receive_cb=equalizer_handle_save_state},
-    [EQUALIZER_METHOD_GET_PROFILE_NAME]{
+    [EQUALIZER_METHOD_GET_PROFILE_NAME]={
         .method_name="BaseProfile",
         .arguments=base_profile_name_args,
         .n_arguments=sizeof(base_profile_name_args)/sizeof(pa_dbus_arg_info),
@@ -1468,10 +1546,10 @@ static pa_dbus_method_handler equalizer_methods[EQUALIZER_METHOD_MAX]={
 
 static pa_dbus_property_handler equalizer_handlers[EQUALIZER_HANDLER_MAX]={
     [EQUALIZER_HANDLER_REVISION]={.property_name="InterfaceRevision",.type="u",.get_cb=equalizer_get_revision,.set_cb=NULL},
-    [EQUALIZER_HANDLER_SAMPLERATE]{.property_name="SampleRate",.type="u",.get_cb=equalizer_get_sample_rate,.set_cb=NULL},
-    [EQUALIZER_HANDLER_FILTERSAMPLERATE]{.property_name="FilterSampleRate",.type="u",.get_cb=equalizer_get_filter_rate,.set_cb=NULL},
-    [EQUALIZER_HANDLER_N_COEFS]{.property_name="NFilterCoefficients",.type="u",.get_cb=equalizer_get_n_coefs,.set_cb=NULL},
-    [EQUALIZER_HANDLER_N_CHANNELS]{.property_name="NChannels",.type="u",.get_cb=equalizer_get_n_channels,.set_cb=NULL},
+    [EQUALIZER_HANDLER_SAMPLERATE]={.property_name="SampleRate",.type="u",.get_cb=equalizer_get_sample_rate,.set_cb=NULL},
+    [EQUALIZER_HANDLER_FILTERSAMPLERATE]={.property_name="FilterSampleRate",.type="u",.get_cb=equalizer_get_filter_rate,.set_cb=NULL},
+    [EQUALIZER_HANDLER_N_COEFS]={.property_name="NFilterCoefficients",.type="u",.get_cb=equalizer_get_n_coefs,.set_cb=NULL},
+    [EQUALIZER_HANDLER_N_CHANNELS]={.property_name="NChannels",.type="u",.get_cb=equalizer_get_n_channels,.set_cb=NULL},
 };
 
 enum equalizer_signal_index{
@@ -1700,7 +1778,7 @@ void manager_get_all(DBusConnection *conn, DBusMessage *msg, void *_u){
 }
 
 void equalizer_handle_seed_filter(DBusConnection *conn, DBusMessage *msg, void *_u) {
-    struct userdata *u=(struct userdata *) _u;
+    struct userdata *u = _u;
     DBusError error;
     DBusMessage *signal = NULL;
     float *ys;
@@ -1709,6 +1787,7 @@ void equalizer_handle_seed_filter(DBusConnection *conn, DBusMessage *msg, void *
     unsigned x_npoints, y_npoints, a_i;
     float *H;
     pa_bool_t points_good = TRUE;
+
     pa_assert(conn);
     pa_assert(msg);
     pa_assert(u);
@@ -1731,17 +1810,17 @@ void equalizer_handle_seed_filter(DBusConnection *conn, DBusMessage *msg, void *
         return;
     }
     for(size_t i = 0; i < x_npoints; ++i){
-        if(xs[i] >= FILTER_SIZE){
+        if(xs[i] >= FILTER_SIZE(u)){
             points_good = FALSE;
             break;
         }
     }
     if(!is_monotonic(xs, x_npoints) || !points_good){
-        pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs must be monotonic and 0<=x<=%ld", u->fft_size / 2);
+        pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs must be monotonic and 0<=x<=%zd", u->fft_size / 2);
         dbus_error_free(&error);
         return;
-    }else if(x_npoints != y_npoints || x_npoints < 2 || x_npoints > FILTER_SIZE  ){
-        pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs and ys must be the same length and 2<=l<=%ld!", FILTER_SIZE);
+    }else if(x_npoints != y_npoints || x_npoints < 2 || x_npoints > FILTER_SIZE(u)){
+        pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs and ys must be the same length and 2<=l<=%zd!", FILTER_SIZE(u));
         dbus_error_free(&error);
         return;
     }else if(xs[0] != 0 || xs[x_npoints - 1] != u->fft_size / 2){
@@ -1758,14 +1837,14 @@ void equalizer_handle_seed_filter(DBusConnection *conn, DBusMessage *msg, void *
     a_i = pa_aupdate_write_begin(u->a_H[r_channel]);
     H = u->Hs[r_channel][a_i];
     u->Xs[r_channel][a_i] = preamp;
-    interpolate(H, FILTER_SIZE, xs, ys, x_npoints);
+    interpolate(H, FILTER_SIZE(u), xs, ys, x_npoints);
     fix_filter(H, u->fft_size);
     if(channel == u->channels){
         for(size_t c = 1; c < u->channels; ++c){
             unsigned b_i = pa_aupdate_write_begin(u->a_H[c]);
             float *H_p = u->Hs[c][b_i];
             u->Xs[c][b_i] = preamp;
-            memcpy(H_p, H, FILTER_SIZE * sizeof(float));
+            memcpy(H_p, H, FILTER_SIZE(u) * sizeof(float));
             pa_aupdate_write_end(u->a_H[c]);
         }
     }
@@ -1811,14 +1890,14 @@ void equalizer_handle_get_filter_points(DBusConnection *conn, DBusMessage *msg,
     }
 
     for(size_t i = 0; i < x_npoints; ++i){
-        if(xs[i] >= FILTER_SIZE){
+        if(xs[i] >= FILTER_SIZE(u)){
             points_good=FALSE;
             break;
         }
     }
 
-    if(x_npoints > FILTER_SIZE || !points_good){
-        pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs indices/length must be <= %ld!", FILTER_SIZE);
+    if(x_npoints > FILTER_SIZE(u) || !points_good){
+        pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs indices/length must be <= %zd!", FILTER_SIZE(u));
         dbus_error_free(&error);
         return;
     }
@@ -1848,10 +1927,10 @@ static void get_filter(struct userdata *u, size_t channel, double **H_, double *
     float *H;
     unsigned a_i;
     size_t r_channel = channel == u->channels ? 0 : channel;
-    *H_ = pa_xnew0(double, FILTER_SIZE);
+    *H_ = pa_xnew0(double, FILTER_SIZE(u));
     a_i = pa_aupdate_read_begin(u->a_H[r_channel]);
     H = u->Hs[r_channel][a_i];
-    for(size_t i = 0;i < FILTER_SIZE; ++i){
+    for(size_t i = 0;i < FILTER_SIZE(u); ++i){
         (*H_)[i] = H[i] * u->fft_size;
     }
     *preamp = u->Xs[r_channel][a_i];
@@ -1885,7 +1964,7 @@ void equalizer_handle_get_filter(DBusConnection *conn, DBusMessage *msg, void *_
         return;
     }
 
-    n_coefs = CHANNEL_PROFILE_SIZE;
+    n_coefs = CHANNEL_PROFILE_SIZE(u);
     pa_assert(conn);
     pa_assert(msg);
     get_filter(u, channel, &H_, &preamp);
@@ -1908,7 +1987,7 @@ static void set_filter(struct userdata *u, size_t channel, double *H_, double pr
     a_i = pa_aupdate_write_begin(u->a_H[r_channel]);
     u->Xs[r_channel][a_i] = (float) preamp;
     H = u->Hs[r_channel][a_i];
-    for(size_t i = 0; i < FILTER_SIZE; ++i){
+    for(size_t i = 0; i < FILTER_SIZE(u); ++i){
         H[i] = (float) H_[i];
     }
     fix_filter(H, u->fft_size);
@@ -1916,7 +1995,7 @@ static void set_filter(struct userdata *u, size_t channel, double *H_, double pr
         for(size_t c = 1; c < u->channels; ++c){
             unsigned b_i = pa_aupdate_write_begin(u->a_H[c]);
             u->Xs[c][b_i] = u->Xs[r_channel][a_i];
-            memcpy(u->Hs[c][b_i], u->Hs[r_channel][a_i], FILTER_SIZE * sizeof(float));
+            memcpy(u->Hs[c][b_i], u->Hs[r_channel][a_i], FILTER_SIZE(u) * sizeof(float));
             pa_aupdate_write_end(u->a_H[c]);
         }
     }
@@ -1949,8 +2028,8 @@ void equalizer_handle_set_filter(DBusConnection *conn, DBusMessage *msg, void *_
         dbus_error_free(&error);
         return;
     }
-    if(_n_coefs != FILTER_SIZE){
-        pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "This filter takes exactly %ld coefficients, you gave %d", FILTER_SIZE, _n_coefs);
+    if(_n_coefs != FILTER_SIZE(u)){
+        pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "This filter takes exactly %zd coefficients, you gave %d", FILTER_SIZE(u), _n_coefs);
         return;
     }
     set_filter(u, channel, H, preamp);
@@ -2101,7 +2180,7 @@ void equalizer_get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u){
     pa_assert(conn);
     pa_assert(msg);
 
-    n_coefs = (uint32_t) CHANNEL_PROFILE_SIZE;
+    n_coefs = (uint32_t) CHANNEL_PROFILE_SIZE(u);
     pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &n_coefs);
 }
 
@@ -2132,11 +2211,12 @@ void equalizer_get_all(DBusConnection *conn, DBusMessage *msg, void *_u){
     DBusMessage *reply = NULL;
     DBusMessageIter msg_iter, dict_iter;
     uint32_t rev, n_coefs, rate, fft_size, channels;
-    pa_assert_se(u = (struct userdata *) _u);
+
+    pa_assert_se(u = _u);
     pa_assert(msg);
 
     rev = 1;
-    n_coefs = (uint32_t) CHANNEL_PROFILE_SIZE;
+    n_coefs = (uint32_t) CHANNEL_PROFILE_SIZE(u);
     rate = (uint32_t) u->sink->sample_spec.rate;
     fft_size = (uint32_t) u->fft_size;
     channels = (uint32_t) u->channels;