]> code.delx.au - pulseaudio/blob - src/pulse/volume.c
volume: introduce pa_cvolume_min() and pa_cvolume_min_mask()
[pulseaudio] / src / pulse / volume.c
1 /***
2 This file is part of PulseAudio.
3
4 Copyright 2004-2006 Lennart Poettering
5
6 PulseAudio is free software; you can redistribute it and/or modify
7 it under the terms of the GNU Lesser General Public License as published
8 by the Free Software Foundation; either version 2.1 of the License,
9 or (at your option) any later version.
10
11 PulseAudio is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public License
17 along with PulseAudio; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
19 USA.
20 ***/
21
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <stdio.h>
27 #include <string.h>
28
29 #include <pulse/i18n.h>
30
31 #include <pulsecore/core-util.h>
32 #include <pulsecore/macro.h>
33 #include <pulsecore/sample-util.h>
34
35 #include "volume.h"
36
37 int pa_cvolume_equal(const pa_cvolume *a, const pa_cvolume *b) {
38 int i;
39 pa_assert(a);
40 pa_assert(b);
41
42 pa_return_val_if_fail(pa_cvolume_valid(a), 0);
43
44 if (PA_UNLIKELY(a == b))
45 return 1;
46
47 pa_return_val_if_fail(pa_cvolume_valid(b), 0);
48
49 if (a->channels != b->channels)
50 return 0;
51
52 for (i = 0; i < a->channels; i++)
53 if (a->values[i] != b->values[i])
54 return 0;
55
56 return 1;
57 }
58
59 pa_cvolume* pa_cvolume_init(pa_cvolume *a) {
60 unsigned c;
61
62 pa_assert(a);
63
64 a->channels = 0;
65
66 for (c = 0; c < PA_CHANNELS_MAX; c++)
67 a->values[c] = (pa_volume_t) -1;
68
69 return a;
70 }
71
72 pa_cvolume* pa_cvolume_set(pa_cvolume *a, unsigned channels, pa_volume_t v) {
73 int i;
74
75 pa_assert(a);
76 pa_assert(channels > 0);
77 pa_assert(channels <= PA_CHANNELS_MAX);
78
79 a->channels = (uint8_t) channels;
80
81 for (i = 0; i < a->channels; i++)
82 a->values[i] = v;
83
84 return a;
85 }
86
87 pa_volume_t pa_cvolume_avg(const pa_cvolume *a) {
88 uint64_t sum = 0;
89 unsigned c;
90
91 pa_assert(a);
92 pa_return_val_if_fail(pa_cvolume_valid(a), PA_VOLUME_MUTED);
93
94 for (c = 0; c < a->channels; c++)
95 sum += a->values[c];
96
97 sum /= a->channels;
98
99 return (pa_volume_t) sum;
100 }
101
102 pa_volume_t pa_cvolume_avg_mask(const pa_cvolume *a, const pa_channel_map *cm, pa_channel_position_mask_t mask) {
103 uint64_t sum = 0;
104 unsigned c, n;
105
106 pa_assert(a);
107
108 if (!cm)
109 return pa_cvolume_avg(a);
110
111 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(a, cm), PA_VOLUME_MUTED);
112
113 for (c = n = 0; c < a->channels; c++) {
114
115 if (!(PA_CHANNEL_POSITION_MASK(cm->map[c]) & mask))
116 continue;
117
118 sum += a->values[c];
119 n ++;
120 }
121
122 if (n > 0)
123 sum /= n;
124
125 return (pa_volume_t) sum;
126 }
127
128 pa_volume_t pa_cvolume_max(const pa_cvolume *a) {
129 pa_volume_t m = PA_VOLUME_MUTED;
130 unsigned c;
131
132 pa_assert(a);
133 pa_return_val_if_fail(pa_cvolume_valid(a), PA_VOLUME_MUTED);
134
135 for (c = 0; c < a->channels; c++)
136 if (a->values[c] > m)
137 m = a->values[c];
138
139 return m;
140 }
141
142 pa_volume_t pa_cvolume_min(const pa_cvolume *a) {
143 pa_volume_t m = (pa_volume_t) -1;
144 unsigned c;
145
146 pa_assert(a);
147 pa_return_val_if_fail(pa_cvolume_valid(a), PA_VOLUME_MUTED);
148
149 for (c = 0; c < a->channels; c++)
150 if (m == (pa_volume_t) -1 || a->values[c] < m)
151 m = a->values[c];
152
153 return m;
154 }
155
156 pa_volume_t pa_cvolume_max_mask(const pa_cvolume *a, const pa_channel_map *cm, pa_channel_position_mask_t mask) {
157 pa_volume_t m = PA_VOLUME_MUTED;
158 unsigned c, n;
159
160 pa_assert(a);
161
162 if (!cm)
163 return pa_cvolume_max(a);
164
165 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(a, cm), PA_VOLUME_MUTED);
166
167 for (c = n = 0; c < a->channels; c++) {
168
169 if (!(PA_CHANNEL_POSITION_MASK(cm->map[c]) & mask))
170 continue;
171
172 if (a->values[c] > m)
173 m = a->values[c];
174 }
175
176 return m;
177 }
178
179 pa_volume_t pa_cvolume_min_mask(const pa_cvolume *a, const pa_channel_map *cm, pa_channel_position_mask_t mask) {
180 pa_volume_t m = (pa_volume_t) -1;
181 unsigned c, n;
182
183 pa_assert(a);
184
185 if (!cm)
186 return pa_cvolume_min(a);
187
188 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(a, cm), PA_VOLUME_MUTED);
189
190 for (c = n = 0; c < a->channels; c++) {
191
192 if (!(PA_CHANNEL_POSITION_MASK(cm->map[c]) & mask))
193 continue;
194
195 if (m == (pa_volume_t) -1 || a->values[c] < m)
196 m = a->values[c];
197 }
198
199 return m;
200 }
201
202 pa_volume_t pa_sw_volume_multiply(pa_volume_t a, pa_volume_t b) {
203 return pa_sw_volume_from_linear(pa_sw_volume_to_linear(a) * pa_sw_volume_to_linear(b));
204 }
205
206 pa_volume_t pa_sw_volume_divide(pa_volume_t a, pa_volume_t b) {
207 double v = pa_sw_volume_to_linear(b);
208
209 if (v <= 0)
210 return 0;
211
212 return pa_sw_volume_from_linear(pa_sw_volume_to_linear(a) / v);
213 }
214
215 /* Amplitude, not power */
216 static double linear_to_dB(double v) {
217 return 20.0 * log10(v);
218 }
219
220 static double dB_to_linear(double v) {
221 return pow(10.0, v / 20.0);
222 }
223
224 pa_volume_t pa_sw_volume_from_dB(double dB) {
225 if (isinf(dB) < 0 || dB <= PA_DECIBEL_MININFTY)
226 return PA_VOLUME_MUTED;
227
228 return pa_sw_volume_from_linear(dB_to_linear(dB));
229 }
230
231 double pa_sw_volume_to_dB(pa_volume_t v) {
232
233 if (v <= PA_VOLUME_MUTED)
234 return PA_DECIBEL_MININFTY;
235
236 return linear_to_dB(pa_sw_volume_to_linear(v));
237 }
238
239 pa_volume_t pa_sw_volume_from_linear(double v) {
240
241 if (v <= 0.0)
242 return PA_VOLUME_MUTED;
243
244 /*
245 * We use a cubic mapping here, as suggested and discussed here:
246 *
247 * http://www.robotplanet.dk/audio/audio_gui_design/
248 * http://lists.linuxaudio.org/pipermail/linux-audio-dev/2009-May/thread.html#23151
249 *
250 * We make sure that the conversion to linear and back yields the
251 * same volume value! That's why we need the lround() below!
252 */
253
254 return (pa_volume_t) lround(cbrt(v) * PA_VOLUME_NORM);
255 }
256
257 double pa_sw_volume_to_linear(pa_volume_t v) {
258 double f;
259
260 if (v <= PA_VOLUME_MUTED)
261 return 0.0;
262
263 if (v == PA_VOLUME_NORM)
264 return 1.0;
265
266 f = ((double) v / PA_VOLUME_NORM);
267
268 return f*f*f;
269 }
270
271 char *pa_cvolume_snprint(char *s, size_t l, const pa_cvolume *c) {
272 unsigned channel;
273 pa_bool_t first = TRUE;
274 char *e;
275
276 pa_assert(s);
277 pa_assert(l > 0);
278 pa_assert(c);
279
280 pa_init_i18n();
281
282 if (!pa_cvolume_valid(c)) {
283 pa_snprintf(s, l, _("(invalid)"));
284 return s;
285 }
286
287 *(e = s) = 0;
288
289 for (channel = 0; channel < c->channels && l > 1; channel++) {
290 l -= pa_snprintf(e, l, "%s%u: %3u%%",
291 first ? "" : " ",
292 channel,
293 (c->values[channel]*100)/PA_VOLUME_NORM);
294
295 e = strchr(e, 0);
296 first = FALSE;
297 }
298
299 return s;
300 }
301
302 char *pa_volume_snprint(char *s, size_t l, pa_volume_t v) {
303 pa_assert(s);
304 pa_assert(l > 0);
305
306 pa_init_i18n();
307
308 if (v == (pa_volume_t) -1) {
309 pa_snprintf(s, l, _("(invalid)"));
310 return s;
311 }
312
313 pa_snprintf(s, l, "%3u%%", (v*100)/PA_VOLUME_NORM);
314 return s;
315 }
316
317 char *pa_sw_cvolume_snprint_dB(char *s, size_t l, const pa_cvolume *c) {
318 unsigned channel;
319 pa_bool_t first = TRUE;
320 char *e;
321
322 pa_assert(s);
323 pa_assert(l > 0);
324 pa_assert(c);
325
326 pa_init_i18n();
327
328 if (!pa_cvolume_valid(c)) {
329 pa_snprintf(s, l, _("(invalid)"));
330 return s;
331 }
332
333 *(e = s) = 0;
334
335 for (channel = 0; channel < c->channels && l > 1; channel++) {
336 double f = pa_sw_volume_to_dB(c->values[channel]);
337
338 l -= pa_snprintf(e, l, "%s%u: %0.2f dB",
339 first ? "" : " ",
340 channel,
341 isinf(f) < 0 || f <= PA_DECIBEL_MININFTY ? -INFINITY : f);
342
343 e = strchr(e, 0);
344 first = FALSE;
345 }
346
347 return s;
348 }
349
350 char *pa_sw_volume_snprint_dB(char *s, size_t l, pa_volume_t v) {
351 double f;
352
353 pa_assert(s);
354 pa_assert(l > 0);
355
356 pa_init_i18n();
357
358 if (v == (pa_volume_t) -1) {
359 pa_snprintf(s, l, _("(invalid)"));
360 return s;
361 }
362
363 f = pa_sw_volume_to_dB(v);
364 pa_snprintf(s, l, "%0.2f dB",
365 isinf(f) < 0 || f <= PA_DECIBEL_MININFTY ? -INFINITY : f);
366
367 return s;
368 }
369
370 int pa_cvolume_channels_equal_to(const pa_cvolume *a, pa_volume_t v) {
371 unsigned c;
372 pa_assert(a);
373
374 pa_return_val_if_fail(pa_cvolume_valid(a), 0);
375
376 for (c = 0; c < a->channels; c++)
377 if (a->values[c] != v)
378 return 0;
379
380 return 1;
381 }
382
383 pa_cvolume *pa_sw_cvolume_multiply(pa_cvolume *dest, const pa_cvolume *a, const pa_cvolume *b) {
384 unsigned i;
385
386 pa_assert(dest);
387 pa_assert(a);
388 pa_assert(b);
389
390 pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
391 pa_return_val_if_fail(pa_cvolume_valid(b), NULL);
392
393 for (i = 0; i < a->channels && i < b->channels; i++)
394 dest->values[i] = pa_sw_volume_multiply(a->values[i], b->values[i]);
395
396 dest->channels = (uint8_t) i;
397
398 return dest;
399 }
400
401 pa_cvolume *pa_sw_cvolume_multiply_scalar(pa_cvolume *dest, const pa_cvolume *a, pa_volume_t b) {
402 unsigned i;
403
404 pa_assert(dest);
405 pa_assert(a);
406
407 pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
408
409 for (i = 0; i < a->channels; i++)
410 dest->values[i] = pa_sw_volume_multiply(a->values[i], b);
411
412 dest->channels = (uint8_t) i;
413
414 return dest;
415 }
416
417 pa_cvolume *pa_sw_cvolume_divide(pa_cvolume *dest, const pa_cvolume *a, const pa_cvolume *b) {
418 unsigned i;
419
420 pa_assert(dest);
421 pa_assert(a);
422 pa_assert(b);
423
424 pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
425 pa_return_val_if_fail(pa_cvolume_valid(b), NULL);
426
427 for (i = 0; i < a->channels && i < b->channels; i++)
428 dest->values[i] = pa_sw_volume_divide(a->values[i], b->values[i]);
429
430 dest->channels = (uint8_t) i;
431
432 return dest;
433 }
434
435 pa_cvolume *pa_sw_cvolume_divide_scalar(pa_cvolume *dest, const pa_cvolume *a, pa_volume_t b) {
436 unsigned i;
437
438 pa_assert(dest);
439 pa_assert(a);
440
441 pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
442
443 for (i = 0; i < a->channels; i++)
444 dest->values[i] = pa_sw_volume_divide(a->values[i], b);
445
446 dest->channels = (uint8_t) i;
447
448 return dest;
449 }
450
451 int pa_cvolume_valid(const pa_cvolume *v) {
452 unsigned c;
453
454 pa_assert(v);
455
456 if (v->channels <= 0 || v->channels > PA_CHANNELS_MAX)
457 return 0;
458
459 for (c = 0; c < v->channels; c++)
460 if (v->values[c] == (pa_volume_t) -1)
461 return 0;
462
463 return 1;
464 }
465
466 static pa_bool_t on_left(pa_channel_position_t p) {
467 return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_LEFT);
468 }
469
470 static pa_bool_t on_right(pa_channel_position_t p) {
471 return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_RIGHT);
472 }
473
474 static pa_bool_t on_center(pa_channel_position_t p) {
475 return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_CENTER);
476 }
477
478 static pa_bool_t on_lfe(pa_channel_position_t p) {
479 return p == PA_CHANNEL_POSITION_LFE;
480 }
481
482 static pa_bool_t on_front(pa_channel_position_t p) {
483 return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_FRONT);
484 }
485
486 static pa_bool_t on_rear(pa_channel_position_t p) {
487 return !!(PA_CHANNEL_POSITION_MASK(p) & PA_CHANNEL_POSITION_MASK_REAR);
488 }
489
490 pa_cvolume *pa_cvolume_remap(pa_cvolume *v, const pa_channel_map *from, const pa_channel_map *to) {
491 int a, b;
492 pa_cvolume result;
493
494 pa_assert(v);
495 pa_assert(from);
496 pa_assert(to);
497
498 pa_return_val_if_fail(pa_cvolume_valid(v), NULL);
499 pa_return_val_if_fail(pa_channel_map_valid(from), NULL);
500 pa_return_val_if_fail(pa_channel_map_valid(to), NULL);
501 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, from), NULL);
502
503 if (pa_channel_map_equal(from, to))
504 return v;
505
506 result.channels = to->channels;
507
508 for (b = 0; b < to->channels; b++) {
509 pa_volume_t k = 0;
510 int n = 0;
511
512 for (a = 0; a < from->channels; a++)
513 if (from->map[a] == to->map[b]) {
514 k += v->values[a];
515 n ++;
516 }
517
518 if (n <= 0) {
519 for (a = 0; a < from->channels; a++)
520 if ((on_left(from->map[a]) && on_left(to->map[b])) ||
521 (on_right(from->map[a]) && on_right(to->map[b])) ||
522 (on_center(from->map[a]) && on_center(to->map[b])) ||
523 (on_lfe(from->map[a]) && on_lfe(to->map[b]))) {
524
525 k += v->values[a];
526 n ++;
527 }
528 }
529
530 if (n <= 0)
531 k = pa_cvolume_avg(v);
532 else
533 k /= n;
534
535 result.values[b] = k;
536 }
537
538 *v = result;
539 return v;
540 }
541
542 int pa_cvolume_compatible(const pa_cvolume *v, const pa_sample_spec *ss) {
543
544 pa_assert(v);
545 pa_assert(ss);
546
547 pa_return_val_if_fail(pa_cvolume_valid(v), 0);
548 pa_return_val_if_fail(pa_sample_spec_valid(ss), 0);
549
550 return v->channels == ss->channels;
551 }
552
553 int pa_cvolume_compatible_with_channel_map(const pa_cvolume *v, const pa_channel_map *cm) {
554 pa_assert(v);
555 pa_assert(cm);
556
557 pa_return_val_if_fail(pa_cvolume_valid(v), 0);
558 pa_return_val_if_fail(pa_channel_map_valid(cm), 0);
559
560 return v->channels == cm->channels;
561 }
562
563 static void get_avg_lr(const pa_channel_map *map, const pa_cvolume *v, pa_volume_t *l, pa_volume_t *r) {
564 int c;
565 pa_volume_t left = 0, right = 0;
566 unsigned n_left = 0, n_right = 0;
567
568 pa_assert(v);
569 pa_assert(map);
570 pa_assert(map->channels == v->channels);
571 pa_assert(l);
572 pa_assert(r);
573
574 for (c = 0; c < map->channels; c++) {
575 if (on_left(map->map[c])) {
576 left += v->values[c];
577 n_left++;
578 } else if (on_right(map->map[c])) {
579 right += v->values[c];
580 n_right++;
581 }
582 }
583
584 if (n_left <= 0)
585 *l = PA_VOLUME_NORM;
586 else
587 *l = left / n_left;
588
589 if (n_right <= 0)
590 *r = PA_VOLUME_NORM;
591 else
592 *r = right / n_right;
593 }
594
595 float pa_cvolume_get_balance(const pa_cvolume *v, const pa_channel_map *map) {
596 pa_volume_t left, right;
597
598 pa_assert(v);
599 pa_assert(map);
600
601 pa_return_val_if_fail(pa_cvolume_valid(v), 0.0f);
602 pa_return_val_if_fail(pa_channel_map_valid(map), 0.0f);
603 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), 0.0f);
604
605 if (!pa_channel_map_can_balance(map))
606 return 0.0f;
607
608 get_avg_lr(map, v, &left, &right);
609
610 if (left == right)
611 return 0.0f;
612
613 /* 1.0, 0.0 => -1.0
614 0.0, 1.0 => 1.0
615 0.0, 0.0 => 0.0
616 0.5, 0.5 => 0.0
617 1.0, 0.5 => -0.5
618 1.0, 0.25 => -0.75
619 0.75, 0.25 => -0.66
620 0.5, 0.25 => -0.5 */
621
622 if (left > right)
623 return -1.0f + ((float) right / (float) left);
624 else
625 return 1.0f - ((float) left / (float) right);
626 }
627
628 pa_cvolume* pa_cvolume_set_balance(pa_cvolume *v, const pa_channel_map *map, float new_balance) {
629 pa_volume_t left, nleft, right, nright, m;
630 unsigned c;
631
632 pa_assert(map);
633 pa_assert(v);
634 pa_assert(new_balance >= -1.0f);
635 pa_assert(new_balance <= 1.0f);
636
637 pa_return_val_if_fail(pa_cvolume_valid(v), NULL);
638 pa_return_val_if_fail(pa_channel_map_valid(map), NULL);
639 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), NULL);
640
641 if (!pa_channel_map_can_balance(map))
642 return v;
643
644 get_avg_lr(map, v, &left, &right);
645
646 m = PA_MAX(left, right);
647
648 if (new_balance <= 0) {
649 nright = (new_balance + 1.0f) * m;
650 nleft = m;
651 } else {
652 nleft = (1.0f - new_balance) * m;
653 nright = m;
654 }
655
656 for (c = 0; c < map->channels; c++) {
657 if (on_left(map->map[c])) {
658 if (left == 0)
659 v->values[c] = nleft;
660 else
661 v->values[c] = (pa_volume_t) (((uint64_t) v->values[c] * (uint64_t) nleft) / (uint64_t) left);
662 } else if (on_right(map->map[c])) {
663 if (right == 0)
664 v->values[c] = nright;
665 else
666 v->values[c] = (pa_volume_t) (((uint64_t) v->values[c] * (uint64_t) nright) / (uint64_t) right);
667 }
668 }
669
670 return v;
671 }
672
673 pa_cvolume* pa_cvolume_scale(pa_cvolume *v, pa_volume_t max) {
674 unsigned c;
675 pa_volume_t t = 0;
676
677 pa_assert(v);
678
679 pa_return_val_if_fail(pa_cvolume_valid(v), NULL);
680 pa_return_val_if_fail(max != (pa_volume_t) -1, NULL);
681
682 t = pa_cvolume_max(v);
683
684 if (t <= PA_VOLUME_MUTED)
685 return pa_cvolume_set(v, v->channels, max);
686
687 for (c = 0; c < v->channels; c++)
688 v->values[c] = (pa_volume_t) (((uint64_t) v->values[c] * (uint64_t) max) / (uint64_t) t);
689
690 return v;
691 }
692
693 pa_cvolume* pa_cvolume_scale_mask(pa_cvolume *v, pa_volume_t max, pa_channel_map *cm, pa_channel_position_mask_t mask) {
694 unsigned c;
695 pa_volume_t t = 0;
696
697 pa_assert(v);
698
699 pa_return_val_if_fail(pa_cvolume_valid(v), NULL);
700 pa_return_val_if_fail(max != (pa_volume_t) -1, NULL);
701
702 t = pa_cvolume_max_mask(v, cm, mask);
703
704 if (t <= PA_VOLUME_MUTED)
705 return pa_cvolume_set(v, v->channels, max);
706
707 for (c = 0; c < v->channels; c++)
708 v->values[c] = (pa_volume_t) (((uint64_t) v->values[c] * (uint64_t) max) / (uint64_t) t);
709
710 return v;
711 }
712
713 static void get_avg_fr(const pa_channel_map *map, const pa_cvolume *v, pa_volume_t *f, pa_volume_t *r) {
714 int c;
715 pa_volume_t front = 0, rear = 0;
716 unsigned n_front = 0, n_rear = 0;
717
718 pa_assert(v);
719 pa_assert(map);
720 pa_assert(map->channels == v->channels);
721 pa_assert(f);
722 pa_assert(r);
723
724 for (c = 0; c < map->channels; c++) {
725 if (on_front(map->map[c])) {
726 front += v->values[c];
727 n_front++;
728 } else if (on_rear(map->map[c])) {
729 rear += v->values[c];
730 n_rear++;
731 }
732 }
733
734 if (n_front <= 0)
735 *f = PA_VOLUME_NORM;
736 else
737 *f = front / n_front;
738
739 if (n_rear <= 0)
740 *r = PA_VOLUME_NORM;
741 else
742 *r = rear / n_rear;
743 }
744
745 float pa_cvolume_get_fade(const pa_cvolume *v, const pa_channel_map *map) {
746 pa_volume_t front, rear;
747
748 pa_assert(v);
749 pa_assert(map);
750
751 pa_return_val_if_fail(pa_cvolume_valid(v), 0.0f);
752 pa_return_val_if_fail(pa_channel_map_valid(map), 0.0f);
753 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), 0.0f);
754
755 if (!pa_channel_map_can_fade(map))
756 return 0.0f;
757
758 get_avg_fr(map, v, &front, &rear);
759
760 if (front == rear)
761 return 0.0f;
762
763 if (rear > front)
764 return -1.0f + ((float) front / (float) rear);
765 else
766 return 1.0f - ((float) rear / (float) front);
767 }
768
769 pa_cvolume* pa_cvolume_set_fade(pa_cvolume *v, const pa_channel_map *map, float new_fade) {
770 pa_volume_t front, nfront, rear, nrear, m;
771 unsigned c;
772
773 pa_assert(map);
774 pa_assert(v);
775 pa_assert(new_fade >= -1.0f);
776 pa_assert(new_fade <= 1.0f);
777
778 pa_return_val_if_fail(pa_cvolume_valid(v), NULL);
779 pa_return_val_if_fail(pa_channel_map_valid(map), NULL);
780 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(v, map), NULL);
781
782 if (!pa_channel_map_can_fade(map))
783 return v;
784
785 get_avg_fr(map, v, &front, &rear);
786
787 m = PA_MAX(front, rear);
788
789 if (new_fade <= 0) {
790 nfront = (new_fade + 1.0f) * m;
791 nrear = m;
792 } else {
793 nrear = (1.0f - new_fade) * m;
794 nfront = m;
795 }
796
797 for (c = 0; c < map->channels; c++) {
798 if (on_front(map->map[c])) {
799 if (front == 0)
800 v->values[c] = nfront;
801 else
802 v->values[c] = (pa_volume_t) (((uint64_t) v->values[c] * (uint64_t) nfront) / (uint64_t) front);
803 } else if (on_rear(map->map[c])) {
804 if (rear == 0)
805 v->values[c] = nrear;
806 else
807 v->values[c] = (pa_volume_t) (((uint64_t) v->values[c] * (uint64_t) nrear) / (uint64_t) rear);
808 }
809 }
810
811 return v;
812 }
813
814 pa_cvolume* pa_cvolume_set_position(
815 pa_cvolume *cv,
816 const pa_channel_map *map,
817 pa_channel_position_t t,
818 pa_volume_t v) {
819
820 unsigned c;
821 pa_bool_t good = FALSE;
822
823 pa_assert(cv);
824 pa_assert(map);
825
826 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(cv, map), NULL);
827 pa_return_val_if_fail(t < PA_CHANNEL_POSITION_MAX, NULL);
828
829 for (c = 0; c < map->channels; c++)
830 if (map->map[c] == t) {
831 cv->values[c] = v;
832 good = TRUE;
833 }
834
835 return good ? cv : NULL;
836 }
837
838 pa_volume_t pa_cvolume_get_position(
839 pa_cvolume *cv,
840 const pa_channel_map *map,
841 pa_channel_position_t t) {
842
843 unsigned c;
844 pa_volume_t v = PA_VOLUME_MUTED;
845
846 pa_assert(cv);
847 pa_assert(map);
848
849 pa_return_val_if_fail(pa_cvolume_compatible_with_channel_map(cv, map), PA_VOLUME_MUTED);
850 pa_return_val_if_fail(t < PA_CHANNEL_POSITION_MAX, PA_VOLUME_MUTED);
851
852 for (c = 0; c < map->channels; c++)
853 if (map->map[c] == t)
854 if (cv->values[c] > v)
855 v = cv->values[c];
856
857 return v;
858 }
859
860 pa_cvolume* pa_cvolume_merge(pa_cvolume *dest, const pa_cvolume *a, const pa_cvolume *b) {
861 unsigned i;
862
863 pa_assert(dest);
864 pa_assert(a);
865 pa_assert(b);
866
867 pa_return_val_if_fail(pa_cvolume_valid(a), NULL);
868 pa_return_val_if_fail(pa_cvolume_valid(b), NULL);
869
870 for (i = 0; i < a->channels && i < b->channels; i++)
871 dest->values[i] = PA_MAX(a->values[i], b->values[i]);
872
873 dest->channels = (uint8_t) i;
874
875 return dest;
876 }