]> code.delx.au - spectrwm/blob - osx/queue.h
Fix man errors
[spectrwm] / osx / queue.h
1 /* $OpenBSD: queue.h,v 1.38 2013/07/03 15:05:21 fgsch Exp $ */
2 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
3
4 /*
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * @(#)queue.h 8.5 (Berkeley) 8/20/94
33 */
34
35 #ifndef _SYS_QUEUE_H_
36 #define _SYS_QUEUE_H_
37
38 /*
39 * This file defines five types of data structures: singly-linked lists,
40 * lists, simple queues, tail queues, and circular queues.
41 *
42 *
43 * A singly-linked list is headed by a single forward pointer. The elements
44 * are singly linked for minimum space and pointer manipulation overhead at
45 * the expense of O(n) removal for arbitrary elements. New elements can be
46 * added to the list after an existing element or at the head of the list.
47 * Elements being removed from the head of the list should use the explicit
48 * macro for this purpose for optimum efficiency. A singly-linked list may
49 * only be traversed in the forward direction. Singly-linked lists are ideal
50 * for applications with large datasets and few or no removals or for
51 * implementing a LIFO queue.
52 *
53 * A list is headed by a single forward pointer (or an array of forward
54 * pointers for a hash table header). The elements are doubly linked
55 * so that an arbitrary element can be removed without a need to
56 * traverse the list. New elements can be added to the list before
57 * or after an existing element or at the head of the list. A list
58 * may only be traversed in the forward direction.
59 *
60 * A simple queue is headed by a pair of pointers, one the head of the
61 * list and the other to the tail of the list. The elements are singly
62 * linked to save space, so elements can only be removed from the
63 * head of the list. New elements can be added to the list before or after
64 * an existing element, at the head of the list, or at the end of the
65 * list. A simple queue may only be traversed in the forward direction.
66 *
67 * A tail queue is headed by a pair of pointers, one to the head of the
68 * list and the other to the tail of the list. The elements are doubly
69 * linked so that an arbitrary element can be removed without a need to
70 * traverse the list. New elements can be added to the list before or
71 * after an existing element, at the head of the list, or at the end of
72 * the list. A tail queue may be traversed in either direction.
73 *
74 * A circle queue is headed by a pair of pointers, one to the head of the
75 * list and the other to the tail of the list. The elements are doubly
76 * linked so that an arbitrary element can be removed without a need to
77 * traverse the list. New elements can be added to the list before or after
78 * an existing element, at the head of the list, or at the end of the list.
79 * A circle queue may be traversed in either direction, but has a more
80 * complex end of list detection.
81 *
82 * For details on the use of these macros, see the queue(3) manual page.
83 */
84
85 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
86 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
87 #else
88 #define _Q_INVALIDATE(a)
89 #endif
90
91 /*
92 * Singly-linked List definitions.
93 */
94 #define SLIST_HEAD(name, type) \
95 struct name { \
96 struct type *slh_first; /* first element */ \
97 }
98
99 #define SLIST_HEAD_INITIALIZER(head) \
100 { NULL }
101
102 #define SLIST_ENTRY(type) \
103 struct { \
104 struct type *sle_next; /* next element */ \
105 }
106
107 /*
108 * Singly-linked List access methods.
109 */
110 #define SLIST_FIRST(head) ((head)->slh_first)
111 #define SLIST_END(head) NULL
112 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
113 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
114
115 #define SLIST_FOREACH(var, head, field) \
116 for((var) = SLIST_FIRST(head); \
117 (var) != SLIST_END(head); \
118 (var) = SLIST_NEXT(var, field))
119
120 #define SLIST_FOREACH_SAFE(var, head, field, tvar) \
121 for ((var) = SLIST_FIRST(head); \
122 (var) && ((tvar) = SLIST_NEXT(var, field), 1); \
123 (var) = (tvar))
124
125 /*
126 * Singly-linked List functions.
127 */
128 #define SLIST_INIT(head) { \
129 SLIST_FIRST(head) = SLIST_END(head); \
130 }
131
132 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
133 (elm)->field.sle_next = (slistelm)->field.sle_next; \
134 (slistelm)->field.sle_next = (elm); \
135 } while (0)
136
137 #define SLIST_INSERT_HEAD(head, elm, field) do { \
138 (elm)->field.sle_next = (head)->slh_first; \
139 (head)->slh_first = (elm); \
140 } while (0)
141
142 #define SLIST_REMOVE_AFTER(elm, field) do { \
143 (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
144 } while (0)
145
146 #define SLIST_REMOVE_HEAD(head, field) do { \
147 (head)->slh_first = (head)->slh_first->field.sle_next; \
148 } while (0)
149
150 #define SLIST_REMOVE(head, elm, type, field) do { \
151 if ((head)->slh_first == (elm)) { \
152 SLIST_REMOVE_HEAD((head), field); \
153 } else { \
154 struct type *curelm = (head)->slh_first; \
155 \
156 while (curelm->field.sle_next != (elm)) \
157 curelm = curelm->field.sle_next; \
158 curelm->field.sle_next = \
159 curelm->field.sle_next->field.sle_next; \
160 _Q_INVALIDATE((elm)->field.sle_next); \
161 } \
162 } while (0)
163
164 #define SLIST_SWAP(head1, head2, type) do { \
165 struct type *swap_first = SLIST_FIRST(head1); \
166 SLIST_FIRST(head1) = SLIST_FIRST(head2); \
167 SLIST_FIRST(head2) = swap_first; \
168 } while (0)
169
170 /*
171 * List definitions.
172 */
173 #define LIST_HEAD(name, type) \
174 struct name { \
175 struct type *lh_first; /* first element */ \
176 }
177
178 #define LIST_HEAD_INITIALIZER(head) \
179 { NULL }
180
181 #define LIST_ENTRY(type) \
182 struct { \
183 struct type *le_next; /* next element */ \
184 struct type **le_prev; /* address of previous next element */ \
185 }
186
187 /*
188 * List access methods
189 */
190 #define LIST_FIRST(head) ((head)->lh_first)
191 #define LIST_END(head) NULL
192 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
193 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
194
195 #define LIST_FOREACH(var, head, field) \
196 for((var) = LIST_FIRST(head); \
197 (var)!= LIST_END(head); \
198 (var) = LIST_NEXT(var, field))
199
200 #define LIST_FOREACH_SAFE(var, head, field, tvar) \
201 for ((var) = LIST_FIRST(head); \
202 (var) && ((tvar) = LIST_NEXT(var, field), 1); \
203 (var) = (tvar))
204
205 /*
206 * List functions.
207 */
208 #define LIST_INIT(head) do { \
209 LIST_FIRST(head) = LIST_END(head); \
210 } while (0)
211
212 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
213 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
214 (listelm)->field.le_next->field.le_prev = \
215 &(elm)->field.le_next; \
216 (listelm)->field.le_next = (elm); \
217 (elm)->field.le_prev = &(listelm)->field.le_next; \
218 } while (0)
219
220 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
221 (elm)->field.le_prev = (listelm)->field.le_prev; \
222 (elm)->field.le_next = (listelm); \
223 *(listelm)->field.le_prev = (elm); \
224 (listelm)->field.le_prev = &(elm)->field.le_next; \
225 } while (0)
226
227 #define LIST_INSERT_HEAD(head, elm, field) do { \
228 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
229 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
230 (head)->lh_first = (elm); \
231 (elm)->field.le_prev = &(head)->lh_first; \
232 } while (0)
233
234 #define LIST_REMOVE(elm, field) do { \
235 if ((elm)->field.le_next != NULL) \
236 (elm)->field.le_next->field.le_prev = \
237 (elm)->field.le_prev; \
238 *(elm)->field.le_prev = (elm)->field.le_next; \
239 _Q_INVALIDATE((elm)->field.le_prev); \
240 _Q_INVALIDATE((elm)->field.le_next); \
241 } while (0)
242
243 #define LIST_REPLACE(elm, elm2, field) do { \
244 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
245 (elm2)->field.le_next->field.le_prev = \
246 &(elm2)->field.le_next; \
247 (elm2)->field.le_prev = (elm)->field.le_prev; \
248 *(elm2)->field.le_prev = (elm2); \
249 _Q_INVALIDATE((elm)->field.le_prev); \
250 _Q_INVALIDATE((elm)->field.le_next); \
251 } while (0)
252
253 #define LIST_SWAP(head1, head2, type, field) do { \
254 struct type *swap_tmp = LIST_FIRST((head1)); \
255 LIST_FIRST((head1)) = LIST_FIRST((head2)); \
256 LIST_FIRST((head2)) = swap_tmp; \
257 if ((swap_tmp = LIST_FIRST((head1))) != NULL) \
258 swap_tmp->field.le_prev = &LIST_FIRST((head1)); \
259 if ((swap_tmp = LIST_FIRST((head2))) != NULL) \
260 swap_tmp->field.le_prev = &LIST_FIRST((head2)); \
261 } while (0)
262
263 /*
264 * Simple queue definitions.
265 */
266 #define SIMPLEQ_HEAD(name, type) \
267 struct name { \
268 struct type *sqh_first; /* first element */ \
269 struct type **sqh_last; /* addr of last next element */ \
270 }
271
272 #define SIMPLEQ_HEAD_INITIALIZER(head) \
273 { NULL, &(head).sqh_first }
274
275 #define SIMPLEQ_ENTRY(type) \
276 struct { \
277 struct type *sqe_next; /* next element */ \
278 }
279
280 /*
281 * Simple queue access methods.
282 */
283 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
284 #define SIMPLEQ_END(head) NULL
285 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
286 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
287
288 #define SIMPLEQ_FOREACH(var, head, field) \
289 for((var) = SIMPLEQ_FIRST(head); \
290 (var) != SIMPLEQ_END(head); \
291 (var) = SIMPLEQ_NEXT(var, field))
292
293 #define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
294 for ((var) = SIMPLEQ_FIRST(head); \
295 (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \
296 (var) = (tvar))
297
298 /*
299 * Simple queue functions.
300 */
301 #define SIMPLEQ_INIT(head) do { \
302 (head)->sqh_first = NULL; \
303 (head)->sqh_last = &(head)->sqh_first; \
304 } while (0)
305
306 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
307 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
308 (head)->sqh_last = &(elm)->field.sqe_next; \
309 (head)->sqh_first = (elm); \
310 } while (0)
311
312 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
313 (elm)->field.sqe_next = NULL; \
314 *(head)->sqh_last = (elm); \
315 (head)->sqh_last = &(elm)->field.sqe_next; \
316 } while (0)
317
318 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
319 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
320 (head)->sqh_last = &(elm)->field.sqe_next; \
321 (listelm)->field.sqe_next = (elm); \
322 } while (0)
323
324 #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
325 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
326 (head)->sqh_last = &(head)->sqh_first; \
327 } while (0)
328
329 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
330 if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
331 == NULL) \
332 (head)->sqh_last = &(elm)->field.sqe_next; \
333 } while (0)
334
335 /*
336 * XOR Simple queue definitions.
337 */
338 #define XSIMPLEQ_HEAD(name, type) \
339 struct name { \
340 struct type *sqx_first; /* first element */ \
341 struct type **sqx_last; /* addr of last next element */ \
342 unsigned long sqx_cookie; \
343 }
344
345 #define XSIMPLEQ_ENTRY(type) \
346 struct { \
347 struct type *sqx_next; /* next element */ \
348 }
349
350 /*
351 * XOR Simple queue access methods.
352 */
353 #define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \
354 (unsigned long)(ptr)))
355 #define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
356 #define XSIMPLEQ_END(head) NULL
357 #define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
358 #define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
359
360
361 #define XSIMPLEQ_FOREACH(var, head, field) \
362 for ((var) = XSIMPLEQ_FIRST(head); \
363 (var) != XSIMPLEQ_END(head); \
364 (var) = XSIMPLEQ_NEXT(head, var, field))
365
366 #define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
367 for ((var) = XSIMPLEQ_FIRST(head); \
368 (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \
369 (var) = (tvar))
370
371 /*
372 * XOR Simple queue functions.
373 */
374 #define XSIMPLEQ_INIT(head) do { \
375 arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
376 (head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \
377 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
378 } while (0)
379
380 #define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \
381 if (((elm)->field.sqx_next = (head)->sqx_first) == \
382 XSIMPLEQ_XOR(head, NULL)) \
383 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
384 (head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \
385 } while (0)
386
387 #define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \
388 (elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \
389 *(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
390 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
391 } while (0)
392
393 #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
394 if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \
395 XSIMPLEQ_XOR(head, NULL)) \
396 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
397 (listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \
398 } while (0)
399
400 #define XSIMPLEQ_REMOVE_HEAD(head, field) do { \
401 if (((head)->sqx_first = XSIMPLEQ_XOR(head, \
402 (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
403 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
404 } while (0)
405
406 #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
407 if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \
408 (elm)->field.sqx_next)->field.sqx_next) \
409 == XSIMPLEQ_XOR(head, NULL)) \
410 (head)->sqx_last = \
411 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
412 } while (0)
413
414
415 /*
416 * Tail queue definitions.
417 */
418 #define TAILQ_HEAD(name, type) \
419 struct name { \
420 struct type *tqh_first; /* first element */ \
421 struct type **tqh_last; /* addr of last next element */ \
422 }
423
424 #define TAILQ_HEAD_INITIALIZER(head) \
425 { NULL, &(head).tqh_first }
426
427 #define TAILQ_ENTRY(type) \
428 struct { \
429 struct type *tqe_next; /* next element */ \
430 struct type **tqe_prev; /* address of previous next element */ \
431 }
432
433 /*
434 * tail queue access methods
435 */
436 #define TAILQ_FIRST(head) ((head)->tqh_first)
437 #define TAILQ_END(head) NULL
438 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
439 #define TAILQ_LAST(head, headname) \
440 (*(((struct headname *)((head)->tqh_last))->tqh_last))
441 /* XXX */
442 #define TAILQ_PREV(elm, headname, field) \
443 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
444 #define TAILQ_EMPTY(head) \
445 (TAILQ_FIRST(head) == TAILQ_END(head))
446
447 #define TAILQ_FOREACH(var, head, field) \
448 for((var) = TAILQ_FIRST(head); \
449 (var) != TAILQ_END(head); \
450 (var) = TAILQ_NEXT(var, field))
451
452 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
453 for ((var) = TAILQ_FIRST(head); \
454 (var) != TAILQ_END(head) && \
455 ((tvar) = TAILQ_NEXT(var, field), 1); \
456 (var) = (tvar))
457
458
459 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
460 for((var) = TAILQ_LAST(head, headname); \
461 (var) != TAILQ_END(head); \
462 (var) = TAILQ_PREV(var, headname, field))
463
464 #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
465 for ((var) = TAILQ_LAST(head, headname); \
466 (var) != TAILQ_END(head) && \
467 ((tvar) = TAILQ_PREV(var, headname, field), 1); \
468 (var) = (tvar))
469
470 /*
471 * Tail queue functions.
472 */
473 #define TAILQ_INIT(head) do { \
474 (head)->tqh_first = NULL; \
475 (head)->tqh_last = &(head)->tqh_first; \
476 } while (0)
477
478 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
479 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
480 (head)->tqh_first->field.tqe_prev = \
481 &(elm)->field.tqe_next; \
482 else \
483 (head)->tqh_last = &(elm)->field.tqe_next; \
484 (head)->tqh_first = (elm); \
485 (elm)->field.tqe_prev = &(head)->tqh_first; \
486 } while (0)
487
488 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
489 (elm)->field.tqe_next = NULL; \
490 (elm)->field.tqe_prev = (head)->tqh_last; \
491 *(head)->tqh_last = (elm); \
492 (head)->tqh_last = &(elm)->field.tqe_next; \
493 } while (0)
494
495 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
496 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
497 (elm)->field.tqe_next->field.tqe_prev = \
498 &(elm)->field.tqe_next; \
499 else \
500 (head)->tqh_last = &(elm)->field.tqe_next; \
501 (listelm)->field.tqe_next = (elm); \
502 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
503 } while (0)
504
505 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
506 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
507 (elm)->field.tqe_next = (listelm); \
508 *(listelm)->field.tqe_prev = (elm); \
509 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
510 } while (0)
511
512 #define TAILQ_REMOVE(head, elm, field) do { \
513 if (((elm)->field.tqe_next) != NULL) \
514 (elm)->field.tqe_next->field.tqe_prev = \
515 (elm)->field.tqe_prev; \
516 else \
517 (head)->tqh_last = (elm)->field.tqe_prev; \
518 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
519 _Q_INVALIDATE((elm)->field.tqe_prev); \
520 _Q_INVALIDATE((elm)->field.tqe_next); \
521 } while (0)
522
523 #define TAILQ_REPLACE(head, elm, elm2, field) do { \
524 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
525 (elm2)->field.tqe_next->field.tqe_prev = \
526 &(elm2)->field.tqe_next; \
527 else \
528 (head)->tqh_last = &(elm2)->field.tqe_next; \
529 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
530 *(elm2)->field.tqe_prev = (elm2); \
531 _Q_INVALIDATE((elm)->field.tqe_prev); \
532 _Q_INVALIDATE((elm)->field.tqe_next); \
533 } while (0)
534
535 #define TAILQ_SWAP(head1, head2, type, field) do { \
536 struct type *swap_first = (head1)->tqh_first; \
537 struct type **swap_last = (head1)->tqh_last; \
538 (head1)->tqh_first = (head2)->tqh_first; \
539 (head1)->tqh_last = (head2)->tqh_last; \
540 (head2)->tqh_first = swap_first; \
541 (head2)->tqh_last = swap_last; \
542 if ((swap_first = (head1)->tqh_first) != NULL) \
543 swap_first->field.tqe_prev = &(head1)->tqh_first; \
544 else \
545 (head1)->tqh_last = &(head1)->tqh_first; \
546 if ((swap_first = (head2)->tqh_first) != NULL) \
547 swap_first->field.tqe_prev = &(head2)->tqh_first; \
548 else \
549 (head2)->tqh_last = &(head2)->tqh_first; \
550 } while (0)
551
552 /*
553 * Circular queue definitions.
554 */
555 #define CIRCLEQ_HEAD(name, type) \
556 struct name { \
557 struct type *cqh_first; /* first element */ \
558 struct type *cqh_last; /* last element */ \
559 }
560
561 #define CIRCLEQ_HEAD_INITIALIZER(head) \
562 { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
563
564 #define CIRCLEQ_ENTRY(type) \
565 struct { \
566 struct type *cqe_next; /* next element */ \
567 struct type *cqe_prev; /* previous element */ \
568 }
569
570 /*
571 * Circular queue access methods
572 */
573 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
574 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
575 #define CIRCLEQ_END(head) ((void *)(head))
576 #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
577 #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
578 #define CIRCLEQ_EMPTY(head) \
579 (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
580
581 #define CIRCLEQ_FOREACH(var, head, field) \
582 for((var) = CIRCLEQ_FIRST(head); \
583 (var) != CIRCLEQ_END(head); \
584 (var) = CIRCLEQ_NEXT(var, field))
585
586 #define CIRCLEQ_FOREACH_SAFE(var, head, field, tvar) \
587 for ((var) = CIRCLEQ_FIRST(head); \
588 (var) != CIRCLEQ_END(head) && \
589 ((tvar) = CIRCLEQ_NEXT(var, field), 1); \
590 (var) = (tvar))
591
592 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
593 for((var) = CIRCLEQ_LAST(head); \
594 (var) != CIRCLEQ_END(head); \
595 (var) = CIRCLEQ_PREV(var, field))
596
597 #define CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
598 for ((var) = CIRCLEQ_LAST(head, headname); \
599 (var) != CIRCLEQ_END(head) && \
600 ((tvar) = CIRCLEQ_PREV(var, headname, field), 1); \
601 (var) = (tvar))
602
603 /*
604 * Circular queue functions.
605 */
606 #define CIRCLEQ_INIT(head) do { \
607 (head)->cqh_first = CIRCLEQ_END(head); \
608 (head)->cqh_last = CIRCLEQ_END(head); \
609 } while (0)
610
611 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
612 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
613 (elm)->field.cqe_prev = (listelm); \
614 if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
615 (head)->cqh_last = (elm); \
616 else \
617 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
618 (listelm)->field.cqe_next = (elm); \
619 } while (0)
620
621 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
622 (elm)->field.cqe_next = (listelm); \
623 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
624 if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
625 (head)->cqh_first = (elm); \
626 else \
627 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
628 (listelm)->field.cqe_prev = (elm); \
629 } while (0)
630
631 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
632 (elm)->field.cqe_next = (head)->cqh_first; \
633 (elm)->field.cqe_prev = CIRCLEQ_END(head); \
634 if ((head)->cqh_last == CIRCLEQ_END(head)) \
635 (head)->cqh_last = (elm); \
636 else \
637 (head)->cqh_first->field.cqe_prev = (elm); \
638 (head)->cqh_first = (elm); \
639 } while (0)
640
641 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
642 (elm)->field.cqe_next = CIRCLEQ_END(head); \
643 (elm)->field.cqe_prev = (head)->cqh_last; \
644 if ((head)->cqh_first == CIRCLEQ_END(head)) \
645 (head)->cqh_first = (elm); \
646 else \
647 (head)->cqh_last->field.cqe_next = (elm); \
648 (head)->cqh_last = (elm); \
649 } while (0)
650
651 #define CIRCLEQ_REMOVE(head, elm, field) do { \
652 if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
653 (head)->cqh_last = (elm)->field.cqe_prev; \
654 else \
655 (elm)->field.cqe_next->field.cqe_prev = \
656 (elm)->field.cqe_prev; \
657 if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
658 (head)->cqh_first = (elm)->field.cqe_next; \
659 else \
660 (elm)->field.cqe_prev->field.cqe_next = \
661 (elm)->field.cqe_next; \
662 _Q_INVALIDATE((elm)->field.cqe_prev); \
663 _Q_INVALIDATE((elm)->field.cqe_next); \
664 } while (0)
665
666 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
667 if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
668 CIRCLEQ_END(head)) \
669 (head)->cqh_last = (elm2); \
670 else \
671 (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
672 if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
673 CIRCLEQ_END(head)) \
674 (head)->cqh_first = (elm2); \
675 else \
676 (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
677 _Q_INVALIDATE((elm)->field.cqe_prev); \
678 _Q_INVALIDATE((elm)->field.cqe_next); \
679 } while (0)
680
681 #endif /* !_SYS_QUEUE_H_ */